Ross Technology RT6224K User Manual 1 (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPARC/IOBP-CPU-56 Installation Guide
SPARC/IOBP-CPU-56 Installation Guide P/N 220226 Revision AB September 2003 Copyright The information in this publication is subject to change without notice. Force Computers, GmbH reserves the right to make changes without notice to this, or any of its products, to improve reliability, performance, or design. Force Computers, GmbH shall not be liable for technical or editorial errors or omissions contained herein, nor for indirect, special, incidental, or consequential damages resulting from the furnishing, performance, or use of this material. This information is provided "as is" and Force Computers, GmbH expressly disclaims any and all warranties, express, implied, statutory, or otherwise, including without limitation, any express, statutory, or implied warranty of merchantability, fitness for a particular purpose, or non−infringement. This publication contains information protected by copyright. This publication shall not be reproduced, transmitted, or stored in a retrieval system, nor its contents used for any purpose, without the prior written consent of Force Computers, GmbH. Force Computers, GmbH assumes no responsibility for the use of any circuitry other than circuitry that is part of a product of Force Computers, GmbH. Force Computers, GmbH does not convey to the purchaser of the product described herein any license under the patent rights of Force Computers, GmbH nor the rights of others. CopyrightE 2003 by Force Computers, GmbH. All rights reserved. The Force logo is a trademark of Force Computers, GmbH. IEEER is a registered trademark of the Institute for Electrical and Electronics Engineers, Inc. PICMGR, CompactPCIR, and the CompactPCI logo are registered trademarks and the PICMG logo is a trademark of the PCI Industrial Computer Manufacturer’s Group. -
System Administration
System Administration Varian NMR Spectrometer Systems With VNMR 6.1C Software Pub. No. 01-999166-00, Rev. C0503 System Administration Varian NMR Spectrometer Systems With VNMR 6.1C Software Pub. No. 01-999166-00, Rev. C0503 Revision history: A0800 – Initial release for VNMR 6.1C A1001 – Corrected errors on pg 120, general edit B0202 – Updated AutoTest B0602 – Added additional Autotest sections including VNMRJ update B1002 – Updated Solaris patch information and revised section 21.7, Autotest C0503 – Add additional Autotest sections including cryogenic probes Applicability: Varian NMR spectrometer systems with Sun workstations running Solaris 2.x and VNMR 6.1C software By Rolf Kyburz ([email protected]) Varian International AG, Zug, Switzerland, and Gerald Simon ([email protected]) Varian GmbH, Darmstadt, Germany Additional contributions by Frits Vosman, Dan Iverson, Evan Williams, George Gray, Steve Cheatham Technical writer: Mike Miller Technical editor: Dan Steele Copyright 2001, 2002, 2003 by Varian, Inc., NMR Systems 3120 Hansen Way, Palo Alto, California 94304 1-800-356-4437 http://www.varianinc.com All rights reserved. Printed in the United States. The information in this document has been carefully checked and is believed to be entirely reliable. However, no responsibility is assumed for inaccuracies. Statements in this document are not intended to create any warranty, expressed or implied. Specifications and performance characteristics of the software described in this manual may be changed at any time without notice. Varian reserves the right to make changes in any products herein to improve reliability, function, or design. Varian does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. -
LSU EE 4720 Homework 1 Solution Due: 3 March 2006
LSU EE 4720 Homework 1 Solution Due: 3 March 2006 Several Web links appear below and at least one is long, to avoid the tedium of typing them view the assignment in Adobe reader and click. Problem 1: Consider these add instructions in three common ISAs. (Use the ISA manuals linked to the references page, http://www.ece.lsu.edu/ee4720/reference.html.) # MIPS64 addu r1, r2, r3 # SPARC V9 add g2, g3, g1 # PA RISC 2 add r1, r2, r3 (a) Show the encoding (binary form) for each instruction. Show the value of as many bits as possible. Codings shown below. For PA-RISC the ea, ec, and ed ¯elds are labeled e1, e2, and e3, respectively in the instruction descriptions. There is no label for the eb ¯eld in the instruction description of the add and yes it would make sense to use e0 instead of e1 but they didn't for whatever reason. opcode rs rt rd sa func MIPS64: 0 2 3 1 0 0x21 31 26 25 21 20 16 15 11 10 6 5 0 op rd op3 rs1 i asi rs2 SPARC V9: 2 1 0 2 0 0 3 31 30 29 25 24 19 18 14 13 13 12 5 4 0 OPCD r2 r1 c f ea eb ec ed d t PA-RISC 2: 2 3 2 0 0 01 1 0 00 0 1 0 5 6 10 11 15 16 18 19 19 20 21 22 22 23 23 24 25 26 26 27 31 (b) Identify the ¯eld or ¯elds in the SPARC add instruction which are the closest equivalent to MIPS' func ¯eld. -
SPARC Assembly Language Reference Manual
SPARC Assembly Language Reference Manual 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. -
Solaris Powerpc Edition: Installing Solaris Software—May 1996 What Is a Profile
SolarisPowerPC Edition: Installing Solaris Software 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business Copyright 1996 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the United States and other countries and is exclusively licensed by X/Open Company Ltd. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. Sun, Sun Microsystems, the Sun logo, Solaris, Solstice, SunOS, OpenWindows, ONC, NFS, DeskSet are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. -
V850 Series Development Environment Pamphlet
To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. -
Fieldserver – EZ Gateway M-Bus to Modbus & Bacnet Start-Up Guide FS-EZX-MBUS-MOD-BAC
FieldServer – EZ Gateway M-Bus to Modbus & BACnet Start-up Guide FS-EZX-MBUS-MOD-BAC APPLICABILITY & EFFECTIVITY Effective for all systems manufactured after March 2019. Document Revision: 2.D T18604 EZ Gateway M-Bus to Modbus & BACnet Start-up Guide Technical Support Please call us for any technical support needs related to the FieldServer product. Sierra Monitor Corporation 1991 Tarob Court Milpitas, CA 95035 Website: www.sierramonitor.com U.S. Support Information: +1 408 964-4443 +1 800 727-4377 Email: [email protected] EMEA Support Information: +31 33 808 0590 Email: [email protected] Technical Support EZ Gateway M-Bus to Modbus & BACnet Start-up Guide TABLE OF CONTENTS 1 About the EZ Gateway......................................................................................................................................... 5 2 Certification .......................................................................................................................................................... 5 2.1 BTL Mark – BACnet Testing Laboratory ........................................................................................................ 5 3 Supplied equipment ............................................................................................................................................ 5 4 Installing the EZ Gateway ................................................................................................................................... 6 4.1 Mounting ........................................................................................................................................................ -
Unit 2: Instruction Set Architectures
Computer Architecture Unit 2: Instruction Set Architectures Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'' with'sources'that'included'University'of'Wisconsin'slides' by'Mark'Hill,'Guri'Sohi,'Jim'Smith,'and'David'Wood' Computer Architecture | Prof. Milo Martin | Instruction Sets 1 Instruction Set Architecture (ISA) Application • What is an ISA? OS • A functional contract Compiler Firmware • All ISAs similar in high-level ways • But many design choices in details CPU I/O • Two “philosophies”: CISC/RISC Memory • Difference is blurring Digital Circuits • Good ISA… Gates & Transistors • Enables high-performance • At least doesn’t get in the way • Compatibility is a powerful force • Tricks: binary translation, µISAs Computer Architecture | Prof. Milo Martin | Instruction Sets 2 Readings • Suggested reading: • “The Evolution of RISC Technology at IBM” by John Cocke and V. Markstein Computer Architecture | Prof. Milo Martin | Instruction Sets 3 Execution Model Computer Architecture | Prof. Milo Martin | Instruction Sets 4 Program Compilation int array[100], sum;! void array_sum() {! for (int i=0; i<100;i++) {! sum += array[i];! }! }! • Program written in a “high-level” programming language • C, C++, Java, C# • Hierarchical, structured control: loops, functions, conditionals • Hierarchical, structured data: scalars, arrays, pointers, structures • Compiler: translates program to assembly • Parsing and straight-forward translation • Compiler also optimizes • Compiler itself another application … who compiled compiler? Computer Architecture | Prof. Milo Martin | Instruction Sets 5 Assembly & Machine Language • Assembly language • Human-readable representation • Machine language • Machine-readable representation • 1s and 0s (often displayed in “hex”) • Assembler • Translates assembly to machine Example is in “LC4” a toy instruction set architecture, or ISA Computer Architecture | Prof. -
An Overview of Soc Buses
Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Page Proof page 1 11.7.2007 2:16am Compositor Name: JGanesan 7 An Overview of SoC Buses 7.1 Introduction....................................................................... 7-1 7.2 On-Chip Communication Architectures ........................ 7-2 Background . Topologies . On-Chip Communication Protocols . Other Interconnect Issues . Advantages and M. Mitic´ Disadvantages of On-Chip Buses M. Stojcˇev 7.3 System-On-Chip Buses ..................................................... 7-4 AMBA Bus . Avalon . CoreConnect . STBus . Wishbone . University of Nisˇ CoreFrame . Manchester Asynchronous Bus for Low Energy . Z. Stamenkovic´ PI Bus . Open Core Protocol . Virtual Component Interface . m IHP GmbH—Innovations for High SiliconBackplane Network Performance Microelectronics 7.4 Summary.......................................................................... 7-15 7.1 Introduction The electronics industry has entered the era of multimillion-gate chips, and there is no turning back. This technology promises new levels of integration on a single chip, called the system-on-a-chip (SoC) design, but also presents significant challenges to the chip designers. Processing cores on a single chip may number well into the high tens within the next decade, given the current rate of advancements [1]. Interconnection networks in such an environment are, therefore, becoming more and more important [2]. Currently, on-chip interconnection networks are mostly implemented using buses. For SoC applications, design reuse becomes easier if standard internal connection buses are used for interconnecting components of the design. Design teams developing modules intended for future reuse can design interfaces for the standard bus around their particular modules. This allows future designers to slot the reuse module into their new design simply, which is also based around the same standard bus [3]. -
12 MULTICHIP MODULES (Mcms)
12 MULTICHIP MODULES (MCMs) HISTORICAL PERSPECTIVE Virtually every large computer manufacturer, telecommunications products manufacturer, high volume consumer electronics manufacturer and aerospace products manufacturer is working on or considering designs that include multichip modules. There has been a dramatic increase in activity over the last five years, with entire conferences being dedicated to multichip modules. MCMs have gone through three phases in their growth. Phase one was the widespread use in mainframe and super computer products. Some examples of MCMs used for these high-end applications are shown in Figure 12-1. The primary driving force was performance. These systems were predominately ECL based, with relatively low inte- gration levels. The MCM implementation allowed the Òre-integrationÓ of the LSI chips into VLSI modules, while keeping the wiring delays small. Source: DEC Source: IBM Source: Motorola/Siemens Source: ICE, “Roadmaps of Packaging Technology” 22555 Figure 12-1. Early MCMs in ECL Mainframe Computers in the Mid 1980Õs INTEGRATED CIRCUIT ENGINEERING CORPORATION 12-1 Multichip Modules (MCMs) Using a conventional single chip package and circuit board interconnect strategy, the package and interconnects took up over 50% of the timing budget. Decreases in the chip delays could not have much impact on system performance without a significant decrease in the interconnect delays as well. The use of MCMs reduced the interconnect delays significantly. This is shown in Figure 12-2 com- paring the delays in the IBM 3033 with a CPU using single chip packages and four circuit boards, and the IBM 3081, the first mainframe that used the Thermal Conduction Module (TCM). -
Hypersparc Module Installation Guide E ROSS Technology, Inc
TM hyperSPARC Module Installation Guide E ROSS Technology, Inc. 5316 Highway 290 West Austin, Texas 78735 U.S.A. All rights reserved. This product and related documentation is protected by copyright and distributed under licenses re- stricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be repro- duced in any form by any means without prior written authorization of ROSS Technology and its licensors, if any. Portions of this product may be derived from the UNIXR and Berkeley 4.3 BSD systems, licensed from UNIX Systems Laboratories, Inc. and the University of California, respectively. Third party font software in this product is protected by copyright and licensed from Sun’s Font Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applica- tions. TRADEMARKS: ROSS, ROSS Technology, and the ROSS Technology, Inc. logo are registered trademarks of ROSS Technology, Inc. hyperSPARC is a trademark of SPARC International, Inc. and is licensed exclusively to ROSS Technology, Inc. Sun, Sun Microsystems, and the Sun logo are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX, and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc. All other product names mentioned herein are the trademarks of their respective owners. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC Interna- tional, Inc. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.