Applications of the Scalable Coherent Interface to Data Acquisition At

Total Page:16

File Type:pdf, Size:1020Kb

Applications of the Scalable Coherent Interface to Data Acquisition At CERN LIBRARIES, GENEVA e8a ¥foi`<¥ lllll flliIllllllllllllllllllllllllllll SCOOOO0123 SP:. Ib RDC- EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ... 3 Q` 6 CERN DRDC 92-6 QJan.DRDCPBS 2 , 1992 Add.1 Applications of the Scalable Coherent Interface to Data Acqu1s1t1on at LHC A. Bogaertsl, J. Buytaertz, R. Divia, H. Miillerl, C. Parkman, P. Ponting, D. Samyn CERN, Geneva, Switzerland B. Skaali, G. Midttun, D. Wormald, J. Wikne University of Oslo, Physics Department, Norway S. Falciano, F. Cesaroni INFN Sezione di Roma and University of Rome, La Sapienza, Italy V.I. Vinogradov Institute of Nuclear Research, Academy of Sciences, Moscow, Russia K. Lochsen, B. Solbergs Dolphin SCI Technology A.S., Oslo, Norway A. Guglielmi, A. Pastore Digital Equipment Corporation {DEC}, Joint Project at CERN F·H. Worm, J. Bovier Creative Electronic Systems {CES}, Geneva, Switzerland C. Davis Radstone Technology plc, Towcester, UK joint spokesmen Fellow at CERN Scientific associate at CERN, funded by Norwegian Research Council for Science and Humanities OCR Output $U?£(.<> Addendum to P33 The proposed work on SCI during 1992 has been revised due to delays in availibil ity of SCI chips. The revised plans are summarized in the new appendices A-D below. Some parts of the project for which the necessary items will not be available in 1992 (such as cache controller chip, the SCI-fiber version, the SCI-SCI bridge and the Futurebus+ bridge) have been postponed till 1993. This concerns primarily the cache coherent readout proposed for the 3"" level trigger. The content and spirit of proposal P33 is however unchanged. We will concentrate on building an SCI demonstration system which should test the data moving properties first, and at the same time prepare the first stage of an SCI ringlet system. This stage will initially not make use of caching nor cache coherency. These features will be added and tested after a successful first stage in 1993. The demonstration system will use an environment which produces real data. We have chosen Delphi because several participants have either historical or current links with DELPHI. Beneficial for this choice is that both profound knowledge of the Delphi Fastbus system is available within the SCI team and budget contributions to Fastbus·SCI developments can be expected under condition that these developments are linked to DELPHI. Resources are to a large extent brought in from other sources than the DRDC. The DEC-CERN Joint Project will contribute a VAXstation and interfacing software. The SCI-Fastbus interface will be developed and financed by the University of Oslo and ECP—EDA. Resources requested from the DRDC have been confined to the one year pro gram 1992-1993 and have consequently been reduced. DRDC money will be mainly used for constructing the first stage of the ringlet system during 1992. External con tributions have been increased. Interfacing to SCI has been simplified by connecting directly to the CBUS of the node chips. CBUS-adapters are required for SCI connections to external mem ory, Sparcstation (SBUS), VAXstation/DECstation (TURBOchannel), and VMEbus CPUs. All of these adapters have Dolphin’s CBUS in common, i.e. the bus protocol of the SCI node chips. By choosing modern, hardware independent design tools, we can build these adapters jointly with various partners. CERN-EDA will design the TUR BOchannel adapter, CERN/Dolphin the 68040 adapter, Dolphin the SBUS adapter, CERN/Dolphin/Radstone the VMEbus adapter and CES the RISC R4000 (MIPS) adapter. The CAE work at CERN on TURBOchannel interfacing will be carried out in collaboration with the NA48. The method of ’e1ectron.ic breadboarding’ using com puters leaves the choice of hardware open until the implementation stage when specific programmable devices, such as the XILINX technology, or fast ASICs can be selected. Due to this flexibility in hardware, the first stage of the SCI ringlet can still be refined, and even reprogrammed at implementation time. An SCI interface to external memories of data acquisition systems, such as the two port memories of the RD12 or RD16 projects can be derived from the design of the demonstration system, where experience with CBUS adapters has been acquired. OCR Output The SCI-68040 adapter is specifically important since it provides a natural in terface to 68040 based CPUs such as the VMEbus based SBC from Radstone but also commercial 68040 based workstations and possible standard VMEbus and Futu turebus+ bridges. Large computer manufacturers have expressed their interest in this development. This design could be the basis of many commercial products and will initially be carried out at CERN in collaboration with Dolphin. Most developments required for the construction of the first ringlet sys tem are carried out by our industrial partners. Apart from SCI chips, we expect commercial interfaces to Sparc workstations via SBus and MBus, developed by Dol phin. Two major European VME manufacturers, Radstone and CES are offering to extend their current VME CPU architectures to include SCI ports. The interfacing to VAXstations is performed with strong support from the Digital Joint Project at CERN. Our test program for the ringlet sytem includes access to data from external memories and performance measurements of the data driven implementation of the 2 level global trigger. SCI behavioural parameters will be measured and used as input into our large system simulation. Diagnostic hardware and software will be provided by the Physics Department of the University of Oslo. This software will be written for Dolphin’s SCI Tracer, connected to a UNIX workstation. This work has already started. The test software to control and evaluate both the demo system and the ringlet will be provided by ECP·DS. This software is a first step towards data acquisition packages for SCI. The new features of SCI need first to be tested and understood before such packages can be specified. The development environment is UNIX. We will adhere as much as possible to open standards such as Posix and Motif, following the work of RD13. The architectural studies of large SCI based DAQ systems are being continued. These studies, carried out in the object-oriented MODSIM II language within ECP-DS and ECP·RA, are meant to predict the behaviour of different architectural approaches, such as the data driven and the process-driven concept. These studies require input parameters from hardware components as well as from the detailed SCI behaviour. A large part of the required hardware descriptions are already available in Verilog, whilst the SCI protocol description is ava.ilable as the C code description of the IEEE P1596 specification. OCR Output A Collaboration with industry The European computer industry is providing a large measure of essential support for our proposal. Several companies are involved, lending their expertise as well as design and de velopment effort. In addition to bilateral contacts with our direct partners (listed below), the Project has numerous relations with industry at large through its involvement with the IEEE SCI standardisation process. These include: Apple Computers (personal computer net works), Hewlett Packard (optical SCI applications and specific SCI memories) and National Semiconductor (low—voltage CMOS implementations of SCI). CREATIVE ELECTRONIC SYSTEM- SA (Switzerland) CES is a very important supplier of VMEbus and related equipment to CERN and other research laboratories. They are bringing their expertise in VMEbus RISC microprocessor implementations and system interconnect technology to provide an intelligent data controller which will be used for the collection and high-performance processing of data. DIGITAL EQUIPMENT CORPORATION (CERN Joint Project) DEC is well known as a supplier of computer equipment and software for real-time appli cations. The DEC-CERN Joint Project, based on the CERN site, is participating in our proposal, bringing their experise in this field, particularly in the domain of powerful work stations allied to data acquisition systems. DOLPHIN SCI TECHNOLOGY AS (Norway) Dolphin is the supplier of indispensable technology and expertise for the SCI. Their personnel are heavily involved in the IEEE standardisation process for the SCI itself (IEEE Pl596) as well as a VMEbus to SCI bridge (IEEEP1596.1). They have taken the world-wide lead in developing the VLSI parts necessary for the initial implementation of SCI node. They are contributing one engineer who is working full-time at CERN paid by Dolphin and the Norwegian Research Council for Science and Humanities. RADSTONE TECHNOLOGY plc (United Kingdom) Radstone is a major manufacturer of VMEbus boards and VMEbus-based systems. They are bringing that expertise into the project to design and construct an SCI general-purpose CISC-based processor module in VMEbus. This device will provide the means to graft SCI into existing data acquisition systems and allow the early testing of some basic architectural concepts without major investments in hardware and software. OCR Output B 1992 Budgets Our revised budget estimation covers one year of pu1·cha.se and development of SCI test equipment, starting from an assumed approval in 2/92 and ends at 3/93 This includes the demo system and the first stage of the ringlet system. Work on the second stage after 2/93 will require an additional budget. DEMO SYSTEM: [fig. 2] kCHF Source VAXstation 4000 20 DEC Joint Project System Software: 20 DEC Joint Project TURBOchaxmel-XILINX interface: 10 ECP·EDA 1 CBUS·FIFO interface: 10 DRDC 1 CBUS-Fastbus interface: 10 ECP-EDA 2 SCI Node chips + carrier: 10 DRDC Fastbus Cable Master: 20 Uni Oslo Phys SCI Cables Connectors etc: DRDC Subtotal 105 (DRDC contribution: 25) STAGE 1 RINGLET SYSTEM [fig. 1] RADSTONE 68040 CPU: 10 Radstone RADSTONE SCI Node Adapter: 20 Radstone CES MIPS CPU: 15 CES CES MIPS·SCI Adapter: 15 CES Diagnostic Tracer: 30 Uni Oslo Phys. Var. Software Dolphin: 20 DRDC 1 SCI Node chips incl.
Recommended publications
  • SPARC/CPU-5V Technical Reference Manual
    SPARC/CPU-5V Technical Reference Manual P/N 203651 Edition 5.0 February 1998 FORCE COMPUTERS Inc./GmbH All Rights Reserved This document shall not be duplicated, nor its contents used for any purpose, unless express permission has been granted. Copyright by FORCE COMPUTERS CPU-5V Technical Reference Manual Table of Contents SECTION 1 INTRODUCTION ....................................................................................1 1. Getting Started ..................................................................................................................................... 1 1.1. The SPARC CPU-5V Technical Reference Manual Set.................................................................. 1 1.2. Summary of the SPARC CPU-5V ................................................................................................... 2 1.3. Specifications ................................................................................................................................... 4 1.3.1. Ordering Information........................................................................................................... 6 1.4. History of the Manual ...................................................................................................................... 9 SECTION 2 INSTALLATION ....................................................................................11 2. Introduction........................................................................................................................................ 11 2.1. Caution
    [Show full text]
  • Discontinued Emulex- Branded Products
    Broadcom 1320 Ridder Park Drive San Jose, CA 95131 broadcom.com Discontinued Emulex- branded Products . Fibre Channel Host Bus Adapters . Fibre Channel HUBS . Switches . Software Solutions October 30, 2020 This document only applies to Emulex- branded products. Consult your supplier for specific information on OEM-branded products. Discontinued Emulex-branded Products Overview Broadcom Limited is committed to our customers by delivering product functionality and reliability that exceeds their expectation. Below is a description of key terminology and discontinued product tables. Table 1—Fibre Channel Host Bus Adapters . Table 2—Fibre Channel Optical Transceiver Kits . Table 3—Fibre Channel HUBs . Table 4—Switches . Table 5—Software Solutions Key Terminology End of Life (EOL) notification EOL indicates the date that distributors were notified of Broadcom intent to discontinue an Emulex model in production. Distributors are typically given a three-to-six month notice of Broadcom plans to discontinue a particular model. Final order This is the last date that Broadcom will accept orders from a customer or distributor. End of support This is the last date technical support is available for reporting software issues on discontinued models. The tables below indicate the last date of support or whether support has already ended. Software updates Active devices: Drivers for already supported operating system (OS) versions and firmware are updated periodically with new features and/ or corrections. Customers should check www.broadcom.com or call technical support for support of new OS versions for a given device. End of maintenance, Support Availability For software solutions, this is the last date software upgrades or updates are available.
    [Show full text]
  • Sun Ultratm 2 Workstation Just the Facts
    Sun UltraTM 2 Workstation Just the Facts Copyrights 1999 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun Logo, Ultra, SunFastEthernet, Sun Enterprise, TurboGX, TurboGXplus, Solaris, VIS, SunATM, SunCD, XIL, XGL, Java, Java 3D, JDK, S24, OpenWindows, Sun StorEdge, SunISDN, SunSwift, SunTRI/S, SunHSI/S, SunFastEthernet, SunFDDI, SunPC, NFS, SunVideo, SunButtons SunDials, UltraServer, IPX, IPC, SLC, ELC, Sun-3, Sun386i, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. OpenGL is a registered trademark of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. Display PostScript and PostScript are trademarks of Adobe Systems, Incorporated. DLT is claimed as a trademark of Quantum Corporation in the United States and other countries. Just the Facts May 1999 Sun Ultra 2 Workstation Figure 1. The Sun UltraTM 2 workstation Sun Ultra 2 Workstation Scalable Computing Power for the Desktop Sun UltraTM 2 workstations are designed for the technical users who require high performance and multiprocessing (MP) capability. The Sun UltraTM 2 desktop series combines the power of multiprocessing with high-bandwidth networking, high-performance graphics, and exceptional application performance in a compact desktop package. Users of MP-ready and multithreaded applications will benefit greatly from the performance of the Sun Ultra 2 dual-processor capability.
    [Show full text]
  • Sbus Specification B.O Written by Edward H
    SBus Specification B.O Written by Edward H. Frank and Jim Lyle. Edited by Jim Lyle and Mike Harvey. Copyright ©1990 Sun Microsystems, Inc.-Printed in U.S.A. The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Microsystems, Inc. Sun, Sun-2, Sun-3, Sun-4, Sun386i, Sunlnstall, SunOS, SunView, NFS, SunLink, NeWS, SPARC, and SPARCstation 1 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T. The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees. All other products or services mentioned in this document are identified by the trademarks or service marks of their respective companies or organizations, and Sun Microsystems, Inc. disclaims any responsibility for specifying which marks are owned by which companies or organizations. All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any means-graphic, electronic, or mechanical-including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the copyright owner. Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and in similar clauses in the FAR and NASA FAR Supplement.
    [Show full text]
  • Archived: Getting Started with Your SB-GPIB and NI-488.2M for Solaris 1
    Getting Started with Your SB-GPIB and the NI-488.2M™ Software for Solaris 1 November 1993 Edition Part Number 320299-01 © Copyright 1991, 1994 National Instruments Corporation. All Rights Reserved. National Instruments Corporate Headquarters 6504 Bridge Point Parkway Austin, TX 78730-5039 (512) 794-0100 Technical support fax: (800) 328-2203 (512) 794-5678 Branch Offices: Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.00.20, Canada (Ontario) (519) 622-9310, Canada (Québec) (514) 694-8521, Denmark 45 76 26 00, Finland (90) 527 2321, France (1) 48 14 24 24, Germany 089/741 31 30, Italy 02/48301892, Japan (03) 3788-1921, Netherlands 03480-33466, Norway 32-848400, Spain (91) 640 0085, Sweden 08-730 49 70, Switzerland 056/20 51 51, U.K. 0635 523545 Limited Warranty The SB-GPIB is warranted against defects in materials and workmanship for a period of two years from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor. The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.
    [Show full text]
  • Ross Technology RT6224K User Manual 1 (Pdf)
    Full-service, independent repair center -~ ARTISAN® with experienced engineers and technicians on staff. TECHNOLOGY GROUP ~I We buy your excess, underutilized, and idle equipment along with credit for buybacks and trade-ins. Custom engineering Your definitive source so your equipment works exactly as you specify. for quality pre-owned • Critical and expedited services • Leasing / Rentals/ Demos equipment. • In stock/ Ready-to-ship • !TAR-certified secure asset solutions Expert team I Trust guarantee I 100% satisfaction Artisan Technology Group (217) 352-9330 | [email protected] | artisantg.com All trademarks, brand names, and brands appearing herein are the property o f their respective owners. Find the Ross Technology RT6224K-200/512S at our website: Click HERE 830-0016-03 Rev A 11/15/96 PRELIMINARY Colorado 4 RT6224K hyperSPARC CPU Module Features D Based on ROSS’ fifth-generation D SPARC compliant — Zero-wait-state, 512-Kbyte or hyperSPARC processor — SPARC Instruction Set Architec- 1-Mbyte 2nd-level cache — RT620D Central Processing Unit ture (ISA) Version 8 compliant — Demand-paged virtual memory (CPU) — Conforms to SPARC Reference management — RT626 Cache Controller, Memory MMU Architecture D Module design Management, and Tag Unit — Conforms to SPARC Level 2 MBus — MBus-standard form factor: 3.30” (CMTU) Module Specification (Revision 1.2) (8.34 cm) x 5.78” (14.67 cm) — Four (512-Kbyte) or eight D Dual-clock architecture — Provides CPU upgrade path at (1-Mbyte) RT628 Cache Data Units module level (CDUs) Ċ CPU scaleable up to
    [Show full text]
  • Draft Standard for a Common Mezzanine Card Family
    Introduction IEEE P1386/Draft 2.0 04-APR-1995 Draft Standard for a Common Mezzanine Card Family: CMC Sponsored by the Bus Architecture Standards Committee of the IEEE Computer Society P1386/Draft 2.0 April 4, 1995 Sponsor Ballot Draft Abstract: This draft standard defines the mechanics of a common mezzaninecard family. Mez- zanine cards designed to this draft standard can be usedinterchangeably on VME64 boards, Multibus I boards, Multibus II boards, Futurebus+ modules, desktopcomputers, portable com- puters, servers and other similar types of applications.Mezzanine cards can provide modular front panel I/O, backplane I/O or general function expansion or acombination for host comput- ers. Single wide mezzanine cards are 75 mm wide by 150 mm deep by 8.2 mmhigh. Keywords: Backplane I/O, Bezel, Board, Card, Face Plate, Front Panel I/O,Futurebus+, Host Computer, I/O, Local Bus, Metric, Mezzanine, Module, Modular I/O,Multibus, PCI, SBus, VME, VME64 or VMEbus Copyright (c) 1995 by the The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street New York, NY 10017-2394, USA All rights reserved. This is an unapproved draft of a proposed IEEE Standard, subjectto change. Permission is hereby granted for IEEE Standards Committee participants toreproduce this document for pur- poses of IEEE standardization activities. If this document is tobe submitted to ISO or IEC, noti- fication shall be given to the IEEE Copyright Administrator.Permission is also granted for member bodies and technical committees of ISO and IEC toreproduce this document for pur- poses of developing a national position. Other entities seekingpermission to reproduce this document for standardization or other activities, or to reproduceportions of this document for these or other uses must contact the IEEE Standards Department forthe appropriate license.
    [Show full text]
  • Fieldserver – EZ Gateway M-Bus to Modbus & Bacnet Start-Up Guide FS-EZX-MBUS-MOD-BAC
    FieldServer – EZ Gateway M-Bus to Modbus & BACnet Start-up Guide FS-EZX-MBUS-MOD-BAC APPLICABILITY & EFFECTIVITY Effective for all systems manufactured after March 2019. Document Revision: 2.D T18604 EZ Gateway M-Bus to Modbus & BACnet Start-up Guide Technical Support Please call us for any technical support needs related to the FieldServer product. Sierra Monitor Corporation 1991 Tarob Court Milpitas, CA 95035 Website: www.sierramonitor.com U.S. Support Information: +1 408 964-4443 +1 800 727-4377 Email: [email protected] EMEA Support Information: +31 33 808 0590 Email: [email protected] Technical Support EZ Gateway M-Bus to Modbus & BACnet Start-up Guide TABLE OF CONTENTS 1 About the EZ Gateway......................................................................................................................................... 5 2 Certification .......................................................................................................................................................... 5 2.1 BTL Mark – BACnet Testing Laboratory ........................................................................................................ 5 3 Supplied equipment ............................................................................................................................................ 5 4 Installing the EZ Gateway ................................................................................................................................... 6 4.1 Mounting ........................................................................................................................................................
    [Show full text]
  • An Overview of Soc Buses
    Vojin Oklobdzija/Digital Systems and Applications 6195_C007 Page Proof page 1 11.7.2007 2:16am Compositor Name: JGanesan 7 An Overview of SoC Buses 7.1 Introduction....................................................................... 7-1 7.2 On-Chip Communication Architectures ........................ 7-2 Background . Topologies . On-Chip Communication Protocols . Other Interconnect Issues . Advantages and M. Mitic´ Disadvantages of On-Chip Buses M. Stojcˇev 7.3 System-On-Chip Buses ..................................................... 7-4 AMBA Bus . Avalon . CoreConnect . STBus . Wishbone . University of Nisˇ CoreFrame . Manchester Asynchronous Bus for Low Energy . Z. Stamenkovic´ PI Bus . Open Core Protocol . Virtual Component Interface . m IHP GmbH—Innovations for High SiliconBackplane Network Performance Microelectronics 7.4 Summary.......................................................................... 7-15 7.1 Introduction The electronics industry has entered the era of multimillion-gate chips, and there is no turning back. This technology promises new levels of integration on a single chip, called the system-on-a-chip (SoC) design, but also presents significant challenges to the chip designers. Processing cores on a single chip may number well into the high tens within the next decade, given the current rate of advancements [1]. Interconnection networks in such an environment are, therefore, becoming more and more important [2]. Currently, on-chip interconnection networks are mostly implemented using buses. For SoC applications, design reuse becomes easier if standard internal connection buses are used for interconnecting components of the design. Design teams developing modules intended for future reuse can design interfaces for the standard bus around their particular modules. This allows future designers to slot the reuse module into their new design simply, which is also based around the same standard bus [3].
    [Show full text]
  • Sparc Cpu-8Vt
    SPARC CPU-8VT Superior performance with redundancy features for business critical applications SPARC CPU-8VT — SPARCstation 5 compatibility with TurboSPARC performance in a single 6U VMEbus slot. The SPARC® CPU-8VT further enhances FORCE COMPUTERS single-slot SPARC family bringing TurboSPARC performance and redundancy features to your telecommunications and C3I applications. The addition of an external cache for the TurboSPARCTM doubles the perfor- mance of the fastest microSPARC CPU, while retaining the major microSPARC advantages of low power consumption and compact design. Couple this powerful CPU core with the integral workstation-type I/O found on the CPU-8VT and you have the ideal platform to develop and deploy powerful Solaris® and real-time applications. Further enhance this I/O with an integral sec- ond SCSI and a second Ethernet channel and you have a board that fulfils the typical requirements of most common high-availability and network routing applications without the necessity of adding SBus cards. Full compatibility with the established CPU-5VT provides a seamless upgrade path, extending our portfolio of high volume, premium price/performance embed- ded SPARC solutions for your applications. Facts... ...and features ◆ High-performance TurboSPARC processor ◆ Highest performance single-slot SPARC CPU ◆ 512 KByte L2 cache ◆ Functionally compatible with the Sun® SPARCstation 5 family and Solaris/SunOS® operating environment ◆ 16 to 128 MByte field upgradable Memory providing shared access to CPU, VME, SCSI, Ethernet & Centronics
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Design Verification
    Design Verification Mike Butts Synopsys Prof. Kurt Keutzer EECS UC Berkeley 1 Design Process Design : specify and enter the design intent Verify: verify the Implement: correctness of refine the design and design implementation through all phases Kurt Keutzer 2 1 Design Verification HDL specification RTL manual Synthesis design netlist Is the Library/ design module logic generators optimization consistent with the original netlist specification? physical Is what I think I want design what I really want? layout Kurt Keutzer 3 Implementation Verification HDL RTL manual Synthesis design a 0 d netlist q b 1 Is the Library/ s clk implementation module logic generators optimization consistent with the original a 0 d q design intent? netlist b 1 s clk physical Is what I design implemented what I layout wanted? Kurt Keutzer 4 2 Manufacture Verification (Test) HDL Is the manufactured RTL manual circuit Synthesis design consistent with the a 0 d netlist q 1 Library/ b implemented s clk module logic design? generators optimization a 0 d Did they q b 1 netlist build s clk what I physical wanted? design layout Kurt Keutzer 5 Design Verification HDL specification RTL manual Synthesis design netlist Is the Library/ design module logic generators optimization consistent with the original netlist specification? physical Is what I think I want design what I really want? layout Kurt Keutzer 6 3 Verification is an Industry-Wide Issue Intel: Processor project verification: “Billions of generated vectors” “Our VHDL regression tests take 27 days to run. ” Sun:
    [Show full text]