Demonstrating Real-World Cooperative Systems Using Aerobots

Total Page:16

File Type:pdf, Size:1020Kb

Demonstrating Real-World Cooperative Systems Using Aerobots In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2006' ESTEC, Noordwijk, The Netherlands, November 28-30, 2006 DEMONSTRATING REAL-WORLD COOPERATIVE SYSTEMS USING AEROBOTS Ehsan Honary1, Frank McQuade1, Roger Ward1, Ian Woodrow2, Andy Shaw3, Dave Barnes3, Matthew Fyfe4 1SciSys [email protected], [email protected], [email protected] Clothier Road, Bristol BS4 5SS, UK TEL: +44 (117) 9717251, FAX: +44 (117) 9721846 2SEA [email protected] Systems Engineering & Assessment Ltd, Beckington Castle, Castle Corner, Beckington, Frome BA11 6TB, UK, TEL: +44 (1373) 852120, FAX: +44 (1373) 831133 3University of Wales Aberystwyth Andy Shaw: [email protected], Dave Barnes: [email protected] Computer Science Department, Penglais, Aberystwyth, Ceredigion, SY23 3DB, Wales, UK TEL: +44 (1970) 621561, FAX: +44 (1970) 622455 4SCS [email protected] Systems Consultants Services Limited, Henley-on-Thames, Oxfordshire, England, RG9 2JN TEL: +44 (1491) 412102, FAX: +44 (1491) 412082 ABSTRACT Use of multiple autonomous robots for practical applications has become more important over the years [1][2][3][4]. The potential for applications of collective robotics is high, in particular in the aerospace environment. SciSys has been involved in the development of Planetary Aerobots funded by ESA for use on Mars and has developed image-based localisation technology as part of the activity. It is however possible to use the Aerobots in a different environment to investigate issues in regard with robotics behaviour such as data handling, communications, limited processing power, limited sensors, GNC, etc. This paper summarises the activity where Aerobot platform was used to investigate the use of multiple autonomous Unmanned Underwater Vehicles (UUVs), basically simulating their movement and behaviour. The main purpose of the Multiple UUV Operations (MuOps) project within the BAUUV1 program was to identify and de- risk critical UUV components and raise the technology readiness level of the components required for the operation of multiple cooperative vehicles. This paper reports the computer simulations and the real-world tests and the lessons learnt from them. 1. INTRODUCTION Autonomous underwater operations are an attractive solution for challenges confronted in modern battlefields. A swarm of UUVs can collectively co-operate together to carry out missions or to survey a targeted area. Robots operating in land, underwater, air or space can all benefit from collective activity and despite the differences between the environments, the same principles and solutions can be applied to all of them. 1 The BAUUV program (Battlefield Access Unmanned Underwater Vehicle) was led by SEA on behalf of UK MOD. SciSys Ltd. led the consortium to complete the MuOps study with contributions from University of Wales, Aberystwyth (UWA) and SCS. The MuOps study consisted of three main phases: 1. Operational concepts. A series of scenarios were considered as part of the MuOps study. Scenarios such as Anti- submarine warfare, Littoral Beach Operations, Harbour Operations, Surveillance, etc. were considered and based on a trade off table eventually Mine Counter Measures (MCM) was selected as the most appropriate scenario to test the multi-UUV principle. 2. Simulation of underwater vehicles. This included 5 degrees of freedom, ocean model, buoyancy, inertia matrices to calculate motion underwater, drag and PID routines to control the robot. A behaviour-based approach was used in conjunction with minimal collective robotics principles to guide a swarm of robots underwater. The scenarios consisted of MCM, were the swarm was responsible to detect, classify and dispose of mines in the target area. 3. Demonstration with physical hardware. The algorithms were subsequently put onboard Aerobots (Autonomous flying balloons) to validate the simulation results with real-world experiments. Aerobots were used as an analogy to UUVs to move freely in a 3D space. The Aerobots were tracked with a positioning system and horizontal and vertical thrusters were used to navigate the robots around the lab environment. The focus of this paper is on the implementation of the command and control algorithms and their deployment onto the Aerobot platform. 2. SIMULATION ARCHITECTURE The simulation tool is divided into four primary blocks with their corresponding sublevel modules as shown in Fig 1 (Left). • Dynamics Module. Dynamics of all UUV’s and the underwater environment simulation: o Environment Model. o Translational Dynamics o Attitude Dynamics • Guidance and Sensors. This module performed Guidance, Navigation and Control management: o Sensors and Navigation o Behaviour. Controlling the overall behaviour of a UUV o Guidance, control (PID), and propulsions models. 3. GUIDANCE ARCHITECTURE The purpose of the guidance algorithms is to generate the target Cartesian coordinates for the location of the vehicle in the next time step. The control module (either in the simulation or in the real world) is then responsible for implementing the described commands. By continuously generating a series of target points the UUVs can be controlled to move and function within the environment. In simulations, the calculation of the eventual behaviour of UUVs is carried out in the guidance algorithms. This means that commands for the actuators (such as ‘fire weapon’, or ‘communicate’) are all issued within this block. Special care has been taken into account to create an architecture which allows the generation of multiple scenarios, based on different number of UUVs and different behaviours that can be active at any one time. The architecture of the guidance algorithms was based around the implementation and use of multiple behaviours for different purposes. The core of the architecture was designed using the DAMN (Distributed Architecture for Mobile Navigation)[5]. The architecture is shown in Fig 1 (Right). 2 Mode Manager weights votes Maximum depth Mine classification & control disposal Mine detection Arbiter Supervisor duties Trajectory following Flocking Minimum altitude votes control Other behaviours … Commands UUV Controller Fig 1. (Left) Simulations modules and their interconnection. (Right) Guidance architecture. Groups of distributed behaviours communicate with a centralised command arbiter. Each behaviour is responsible to control certain aspects of the UUVs functionality. The behaviour sends its output to the arbiter. These outputs tend to satisfy the behaviour’s objectives. The arbiter is then responsible to combine the outputs from various behaviours and generate actions based on that. Multiple outputs are combined by weighting. A high level mode selection system controls the overall operation of the UUVs. 4. INFLUENTIAL PARAMETERS In the context of MCM, there are a variety of scenarios that can take place. Certain parameters have more impact on the overall performance than others. The following are perhaps the most important influential parameters in the context of multiple UUV operations: • Cooperation versus non-cooperation. • Heterogeneous swarms versus homogenous swarms. • Variations on number of UUVs. • Cooperation using various algorithms such as flocking, formation flying and leader-follower. • Impact of communication (or lack of it) on cooperative solutions. • Analysis of coverage, detection, classification and disposal rates of mines under different scenarios. 5. THE MCM SCENARIOS The intention in this study was to shed light on these issues and to provide results based on the simulation and then analyse and justify the conclusions. For this, two sets of scenarios were selected: • Scenario 1: Detection (Coverage). This contained the following cases: Single UUV, Non-cooperative UUVs and Cooperative UUV swarm. • Scenario 2: Detection, classification and disposal. This contained the following cases: Single disposal UUV, Homogenous disposal swarm (all members identical), Heterogeneous disposal swarm (with different types of robots) 3 6. UUV TYPES This section briefly summarises the 3 main types of UUVs used in simulations and demonstrations. The actual requirements for each UUV depend on the selected scenario and solution. • Type I: Detection UUV. This UUV is equipped with appropriate sensors (such as sonar) for mine detection purposes. • Type II: Communication UUV. This is a communication UUV that is capable of communicating with the outside world as well as with other UUVs. Hence, it can be the point of contact for a group of UUVs. • Type III: Classification & Disposal UUV. This UUV is capable of classifying a detected mine-like object. Once it has classified the mine it can move on to dispose it by using its finite number of ‘disarming’ weapons. This UUV need to be rearmed every time the weapons are depleted, by returning to a predefined replenishing point. 7. SIMULATION OF SCENARIOS As part of the simulation phase, scenario cases were simulated case by case. Key parameters (such as drift, number of UUVs, communications, etc.) were varied for multiple runs and the results were graphed and analysed. Measures of performance such as coverage and time to carry out the mission were used to compare the results between the cases. The UUVs and ocean environment were simulated in Matlab-Simulink. The results were later visualised in our in-house 3D visualisation program. As part of this exercise different cooperative algorithms such as hybrid flocking, leader follower and formation flying were considered. Continuous and periodical
Recommended publications
  • Venus Aerobot Multisonde Mission
    w AIAA Balloon Technology Conference 1999 Venus Aerobot Multisonde Mission By: James A. Cutts ('), Viktor Kerzhanovich o_ j. (Bob) Balaram o), Bruce Campbell (2), Robert Gershman o), Ronald Greeley o), Jeffery L. Hall ('), Jonathan Cameron o), Kenneth Klaasen v) and David M. Hansen o) ABSTRACT requires an orbital relay system that significantly Robotic exploration of Venus presents many increases the overall mission cost. The Venus challenges because of the thick atmosphere and Aerobot Multisonde (VAMuS) Mission concept the high surface temperatures. The Venus (Fig 1 (b) provides many of the scientific Aerobot Multisonde mission concept addresses capabilities of the VGA, with existing these challenges by using a robotic balloon or technology and without requiring an orbital aerobot to deploy a number of short lifetime relay. It uses autonomous floating stations probes or sondes to acquire images of the (aerobots) to deploy multiple dropsondes capable surface. A Venus aerobot is not only a good of operating for less than an hour in the hot lower platform for precision deployment of sondes but atmosphere of Venus. The dropsondes, hereafter is very effective at recovering high rate data. This described simply as sondes, acquire high paper describes the Venus Aerobot Multisonde resolution observations of the Venus surface concept and discusses a proposal to NASA's including imaging from a sufficiently close range Discovery program using the concept for a that atmospheric obscuration is not a major Venus Exploration of Volcanoes and concern and communicate these data to the Atmosphere (VEVA). The status of the balloon floating stations from where they are relayed to deployment and inflation, balloon envelope, Earth.
    [Show full text]
  • Titan and Enceladus $1 B Mission
    JPL D-37401 B January 30, 2007 Titan and Enceladus $1B Mission Feasibility Study Report Prepared for NASA’s Planetary Science Division Prepared By: Kim Reh Contributing Authors: John Elliott Tom Spilker Ed Jorgensen John Spencer (Southwest Research Institute) Ralph Lorenz (The Johns Hopkins University, Applied Physics Laboratory) KSC GSFC ARC Approved By: _________________________________ Kim Reh Dr. Ralph Lorenz Jet Propulsion Laboratory The Johns Hopkins University, Applied Study Manager Physics Laboratory Titan Science Lead _________________________________ Dr. John Spencer Southwest Research Institute Enceladus Science Lead Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B The following members of an Expert Advisory and Review Board contributed to ensuring the consistency and quality of the study results through a comprehensive review and advisory process and concur with the results herein. Name Title/Organization Concurrence Chief Engineer/JPL Planetary Flight Projects Gentry Lee Office Duncan MacPherson JPL Review Fellow Glen Fountain NH Project Manager/JHU-APL John Niehoff Sr. Research Engineer/SAIC Bob Pappalardo Planetary Scientist/JPL Torrence Johnson Chief Scientist/JPL i Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B This page intentionally left blank ii Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B Table of Contents 1. EXECUTIVE SUMMARY.................................................................................................. 1-1 1.1 Study Objectives and Guidelines............................................................................ 1-1 1.2 Relation to Cassini-Huygens, New Horizons and Juno.......................................... 1-1 1.3 Technical Approach...............................................................................................
    [Show full text]
  • Energy Efficient Trajectory Generation for a State-Space Based JPL Aerobot
    The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Energy Efficient Trajectory Generation for a State-Space Based JPL Aerobot Weizhong Zhang, Tamer Inanc and Alberto Elfes Abstract— The 40th anniversary of Apollo 11 project with For aerial robotic planetary exploration, some aerial vehi- man landing on the moon reminds the world again by what cles such as airplanes, gliders, helicopters, balloons [4] and science and engineering can do if the man is determined airships [5][6][7][8] have been considered. Airplanes and to do. However, a huge step can only be achieved step by step which may be relatively small at the beginning. Robotic helicopters require significant energy to just stay airborne, exploration can provide necessary information needed to do the flight time of gliders depend mainly on wind, while balloons further step safely, with less cost, more conveniently. Trajectory have limited navigation capabilities. Lighter-Than-Air (LTA) generation for a robotic vehicle is an essential part of the vehicles combine long term mission capability and low total mission planning. To save energy by exploiting possible energy requirement of balloons with the maneuverability of resources such as wind will assist a robotic explorer extend its life span and perform tasks more reliably. In this paper, airplanes. LTA systems, a.k.a. Aerobots or Robotic Airships, we propose to utilize Nonlinear Trajectory Generation (NTG) bring a new opportunity for robotic exploration of planets methodology to generate energy efficient trajectores for the JPL and their moons which have atmosphere. Aerobots can pro- Aerobot by exploiting wind.
    [Show full text]
  • Mabvap: One Step Closer to an Aerobot Mission to Mars
    Fifth International Conference on Mars 6119.pdf MABVAP: ONE STEP CLOSER TO AN AEROBOT MISSION TO MARS V.V.Kerzhanovich1, J.A.Cutts1, A.D.Bachelder1, J.M.Cameron1, J.L.Hall1, J.D.Patzold1, M.B.Quadrelli1, A.H.Yavrouian1, J.A.Cantrell2, T. T. Lachenmeier3, M.G.Smith4, 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; 2 Space Dynamics Laboratory, Utah State University, Logan, UT; 3 GSSL, Inc., Hillsboro, OR; 4 Raven Industries, Sulphur Springs, TX Lighter-than-air planetary missions continued attract MABTEX would employ a ~10-m spherical super- growing interest in Mars exploration due to unique pressure balloon with 2.5-3 kg payload providing a combination of proximity to the surface and mobility lifetime in excess of 1 week and possibly much that far surpasses capability of surface vehicles. longer. Recent progress in microminiaturization - Following the experience with the Sojourner rover Sojourner(10 kg) and Muses-C(1.2 kg) rovers, DS-2 and subsequent development of powerful rovers for Mars Microprobes(3.5 kg) - proves that this payload Mars 2003 and 2005 missions it became clear that can serve not only as a technology demonstration but on Mars surface rover mobility is quite restricted. alos can provide a significant opportunity for new Realistic travel distances may be limited to tens of types of scientific measurements. High spatial reso- kilometers per year on relatively obstacle-free plains lution measurements of the remanent magnetic field and a few kilometers or less on the more rugged ter- on Mars, high-resolution imaging and sub-surface rains.
    [Show full text]
  • Development of Small, Mobile, Special-Purpose
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT NO. NAS 7-918 TECHNICAL SUPPORT PACKAGE On DEVELOPMENT OF SMALL, MOBILE, SPECIAL-PURPOSE . ROBOTS I for March 98 NASA TECH BRIEF Vol. 22, No. 2, Item #109 from JPL NEW TECHNOLOGY REPORT NPO-20267 Inventor(s): NOTICE Sarita Thakoor Neither the United States Government, nor NASA, nor any person acting on behalf of NASA: a. Makes any warranty or representation, express or implied, with respect of the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or b. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this document. TSP assembled by: JPL Technology Reporting Office pp. i, 1-15 JET PRO PULSION LABORATORY CA LIFO RN IA IN ST IT UTEOF TECHNOLOGY PA SAD EN A, CALIFORNIA March 98 Development of Small, Mobile, Special-Purpose Robots A report presents a scenario for the pro- communicate with fewer larger, more- various robotic tasks. A list of tentative posed development of insectlike robots complex robots, and so forth up a hierar- development goals is presented; the final that would be equipped with microsensors chy to a central robot or instrumentation goal in this list is the demonstration of an and/or micromanipulators, and would be system. The report discusses the historical insectlike exploratory robot in the year designed, variously, to crawl, burrow, background of the concept, presents an 2001 and beyond.
    [Show full text]
  • Mission and System Design of a Venus Entry Probe And
    SSC05-V-4 MISSION AND SYSTEM DESIGN OF A VENUS ENTRY PROBE AND AEROBOT Andy Phipps, Adrian Woodroffe, Dave Gibbon, Peter Alcindor, Mukesh Joshi Alex da Silva Curiel, Dr Jeff Ward, Professor Sir Martin Sweeting (SSTL) John Underwood, Dr. Steve Lingard (Vorticity Ltd) Dr Marcel van den Berg, Dr Peter Falkner (European Space Agency) Surrey Satellite Technology Limited University of Surrey, Guildford, Surrey. GU2 7XH, UK Tel: (44) 1483 689278 Fax: (44) 1483 689503 [email protected] Abstract The Venus Entry Probe study is one of ESA's technology reference studies. It aims to identify; the technologies required to develop a low-cost, science-driven mission for in-situ exploration of the atmosphere of Venus, and the philosophy that can be adopted. The mission includes a science gathering spacecraft in an elliptical polar Venus orbit, a relay satellite in highly elliptical Venus orbit, and an atmospheric entry probe delivering a long duration aerobot which will drop several microprobes during its operational phase. The atmospheric entry sequence is initiated at 120 km altitude and an entry velocity of 9.8 kms-1. Once the velocity has reduced to 15 ms-1 the aerobot is deployed. This consists of a gondola and balloon and has a floating mass of 32 kg (which includes 8 kg of science instruments and microprobes). To avoid Venus’ crushing surface pressure and high temperature an equilibrium float altitude of around 55 km has been baselined. The aerobot will circumnavigate Venus several times over a 22-day period analysing the Venusian middle cloud layer. Science data will be returned at 2.5 kbps over the mission duration.
    [Show full text]
  • Autonomous Planning and Execution for a Future Titan Aerobot∗
    Autonomous Planning and Execution for a Future Titan Aerobot∗ Daniel Gaines, Tara Estlin, Steve Schaffer, Caroline Chouinard and Alberto Elfes Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, California 91109 firstname.lastname @jpl.nasa.gov { } Abstract We are developing onboard planning and execution technologies to provide robust and opportunistic mis- sion operations for a future Titan aerobot. Aerobot have the potential for collecting a vast amount of high pri- ority science data. However, to be effective, an aer- obot must address several challenges including com- munication constraints, extended periods without con- tact with Earth, uncertain and changing environmental conditions, maneuvarability constraints and potentially short-lived science opportunities. We are developing the AerOASIS system to develop and test technology to support autonomous science operations for a future Ti- tan Aerobot. The planning and execution component of AerOASIS is able to generate mission operations plans that achieve science and engineering objectives while respecting mission and resource constraints as well as adapting the plan to respond to new science opportuni- ties. Our technology leverages prior work on the OA- SIS system for autonomous rover exploration. In this paper we describe how the OASIS planning component was adapted to address the unique challenges of a Titan Aerobot and we describe a field demonstration of the system with the JPL prototype aerobot. Dune Field Possible Cryovolcano (Huygens) (Cassini VIMS) Introduction NASAs 2008 Solar System Exploration Roadmap (NASA 2008) highlights the importance of aerial probes as a strate- gic new technology for Solar System exploration, and out- lines missions to Venus and Titan that would use airborne vehicles, such as balloons and airships (blimps).
    [Show full text]
  • Application to an Underwater Glider and a JPL Aerobot
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2009 Optimal trajectory generation with DMOC versus NTG : application to an underwater glider and a JPL aerobot. Weizhong Zhang University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Recommended Citation Zhang, Weizhong, "Optimal trajectory generation with DMOC versus NTG : application to an underwater glider and a JPL aerobot." (2009). Electronic Theses and Dissertations. Paper 1633. https://doi.org/10.18297/etd/1633 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS NTG: APPLICATION TO AN UNDERWATER GLIDER AND A JPL AEROBOT By Weizhong Zhang B.5c. 2002, Electrical Engineering and Automation, Harbing Engineering University M.5c. 2005, Control Theory and Control Engineering, Shanghai Jiaotong University A Dissertation Submitted to the Faculty of the Graduate School of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Electrical and Computer Engineering University of Louisville Louisville, Kentucky December 2009 OPTIMAL TRAJECTORY GENERATION WITH DMOC VERSUS NTG: APPLICATION TO AN UNDERWATER GLIDER AND A JPL AERO BOT By Weizhong Zhang BSc. 2002, Electrical Engineering and Automation, Harbing Engineering University MSc.
    [Show full text]
  • What Do Collaborations with the Arts Have to Say About Human-Robot Interaction?" Report Number: WUCSE-2010-15 (2010)
    Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2010-15 2010 What do Collaborations with the Arts Have to Say About Human- Robot Interaction? William D. Smart, Annamaria Pileggi, and Leila Takayama This is a collection of papers presented at the workshop "What Do Collaborations with the Arts Have to Say About HRI", held at the 2010 Human-Robot Interaction Conference, in Osaka, Japan. Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Smart, William D.; Pileggi, Annamaria; and Takayama, Leila, "What do Collaborations with the Arts Have to Say About Human-Robot Interaction?" Report Number: WUCSE-2010-15 (2010). All Computer Science and Engineering Research. https://openscholarship.wustl.edu/cse_research/38 Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. Department of Computer Science & Engineering 2010-15 What do Collaborations with the Arts Have to Say About Human-Robot Interaction? Authors: William D. Smart, Annamaria Pileggi, and Leila Takayama Corresponding Author: [email protected] Abstract: This is a collection of papers presented at the workshop "What Do Collaborations with the Arts Have to Say About HRI", held at the 2010 Human-Robot Interaction Conference, in Osaka, Japan. Type of Report: Other Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160 What Do Collaborations with the Arts Have to Say About Human-Robot Interaction? Papers from the 2010 HRI Workshop William D.
    [Show full text]
  • Robot Spacecraft (Frontiers in Space)
    Frontiers in Space Robot Spacecraft JOSEPH A. ANGELO, JR. To the memory of my paternal (Italian) grandparents, Antonio and Nina, who had the great personal courage to leave Europe early in the 20th century and embrace the United States as their new home. Through good fortune they met, married, and raised a family. Their simple, hardworking lives taught me what is most important in life. This book also carries a special dedication to Mugsy-the-Pug (February 23, 1999, to January 2, 2006)—my faithful canine companion—who provided so much joy and relaxation during the preparation of this book and many other works. ROBOT SPACECRAFT Copyright © 2007 by Joseph A. Angelo, Jr. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Robot spacecraft / Joseph A. Angelo, Jr. p. cm.— (Frontiers in space) Includes bibliographical references and index. ISBN 0-8160-5773-7 1. Space robotics—Juvenile literature. 2. Space probes—Juvenile literature. 3. Roving vehicles (Astronautics)—Juvenile literature. I. Title. II. Series. TL1097.A54 2007 629.47—dc22 2006001118 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755.
    [Show full text]
  • Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report
    Publications Summer 2009 Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report Abdul Mohsen Al Husseini Luis Alvarez Sanchez Konstantinos Antonakopoulos Jeffrey (Johannes) Apeldoorn Kenneth Lowell Ashford Jr. See next page for additional authors Follow this and additional works at: https://commons.erau.edu/publication Part of the Air and Space Law Commons, and the Space Habitation and Life Support Commons Scholarly Commons Citation Al Husseini, A. M., Alvarez Sanchez, L., Antonakopoulos, K., Apeldoorn, J., Ashford, K. L., Atabay, K. D., Langston, S., & et al. (2009). Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report. , (). Retrieved from https://commons.erau.edu/publication/1232 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Authors Abdul Mohsen Al Husseini, Luis Alvarez Sanchez, Konstantinos Antonakopoulos, Jeffrey (Johannes) Apeldoorn, Kenneth Lowell Ashford Jr., Kutay Deniz Atabay, Sara Langston, and et al. This article is available at Scholarly Commons: https://commons.erau.edu/publication/1232 ACCESS Mars Assessing Cave Capabilities Establishing Specific Solutions Final Report International Space University Space Studies Program 2009 © International Space University. All Rights Reserved. The 2009 Summer Session Program of the International Space University was hosted by NASA Ames Research Center, San Francisco Bay Area, California, USA. Cover images courtesy of: Mars-Astronaut: Austrian Space Forum - Fotostudio Lang The Executive Summary and the Final report may be found on the ISU web site at http://www.isunet.edu in the “ISU Publications/Student Reports” section.
    [Show full text]
  • The Venus Climate and Geophysics Mission Concept
    WHITE PAPER FOR THE PLANETARY SCIENCE DECADAL SURVEY OF 2023-2032 New-Frontiers ClAss In-Situ ExplorAtion of Venus: The Venus ClimAte And Geophysics Mission Concept Primary author: Kevin H. BAines Jet Propulsion LaborAtory, CAliforniA Institute of Technology Phone: (818) 354-0481 E-Mail: [email protected] Co-authors Alexander Akins 1 Jeffery Hall 1 DrAgAn Nikolic 1 David H. Atkinson 1 Joern Helbert 9 Joseph O’Rourke 15 Sushil AtreyA 2 Gary Hunter 10 MichAel T. PAuken 1 MArk Bullock 3 Kandis-LeA Jessup 7 Jean-Baptiste RenArd 16 Kar-Ming Cheung 1 Armin Kleinboehl1 Sara Seager 17 James A. Cutts 1 AttilA KomjAthy 1 NicolAs Verdier 18 Len Dorsky 1 SebAstien Lebonnois 11 PanAgiotis VergAdos 1 Darby DyAr 4,5 Phillippe Lognonné 12 Colin Wilson 19 RaphAel GArciA 6 Kevin McGouldrick 13 Yuk Yung 20 Robert Grimm 7 David Mimoun 6 MAxim De Jong, 8 Olivier Mousis 14 Co-signers 9.. GermAn AerospAce Center (DLR) PatriciA BeAuchAmp 1 10. NASA Glenn ReseArch Center Jacob Izraelevitz 1 11. LMD/IPSL, Sorbonne University SiddhArth KrishnAmoorthy 1 12. IPGP, FrAnce Christopher T. Russell 21 13. University of ColorAdo, Boulder 14. Aix-MArseille Universite Institutions 15. ArizonA StAte University 16. Centre NationAl de lA Recherche 1. Jet Propulsion LaborAtory, Scientifique (CNRS) California Institute of Technology 17. MAssAchusetts Institute of 2. University of MichigAn Technology 3. Science And Technology Corp 18. Centre NAtionAl d’Etudes SpAtiAles 4. PlAnetAry Science Institute (CNES) 5. Mount Holyoke College 19. Oxford University 6. ISAE-SUPAERO, University of Toulouse 20. CAliforniA Institute of Technology 7.
    [Show full text]