Evaluation of New Or Emerging Remote Inspection Technologies for Conduits Ranging from 12” to 120” Spans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Venus Aerobot Multisonde Mission
w AIAA Balloon Technology Conference 1999 Venus Aerobot Multisonde Mission By: James A. Cutts ('), Viktor Kerzhanovich o_ j. (Bob) Balaram o), Bruce Campbell (2), Robert Gershman o), Ronald Greeley o), Jeffery L. Hall ('), Jonathan Cameron o), Kenneth Klaasen v) and David M. Hansen o) ABSTRACT requires an orbital relay system that significantly Robotic exploration of Venus presents many increases the overall mission cost. The Venus challenges because of the thick atmosphere and Aerobot Multisonde (VAMuS) Mission concept the high surface temperatures. The Venus (Fig 1 (b) provides many of the scientific Aerobot Multisonde mission concept addresses capabilities of the VGA, with existing these challenges by using a robotic balloon or technology and without requiring an orbital aerobot to deploy a number of short lifetime relay. It uses autonomous floating stations probes or sondes to acquire images of the (aerobots) to deploy multiple dropsondes capable surface. A Venus aerobot is not only a good of operating for less than an hour in the hot lower platform for precision deployment of sondes but atmosphere of Venus. The dropsondes, hereafter is very effective at recovering high rate data. This described simply as sondes, acquire high paper describes the Venus Aerobot Multisonde resolution observations of the Venus surface concept and discusses a proposal to NASA's including imaging from a sufficiently close range Discovery program using the concept for a that atmospheric obscuration is not a major Venus Exploration of Volcanoes and concern and communicate these data to the Atmosphere (VEVA). The status of the balloon floating stations from where they are relayed to deployment and inflation, balloon envelope, Earth. -
Titan and Enceladus $1 B Mission
JPL D-37401 B January 30, 2007 Titan and Enceladus $1B Mission Feasibility Study Report Prepared for NASA’s Planetary Science Division Prepared By: Kim Reh Contributing Authors: John Elliott Tom Spilker Ed Jorgensen John Spencer (Southwest Research Institute) Ralph Lorenz (The Johns Hopkins University, Applied Physics Laboratory) KSC GSFC ARC Approved By: _________________________________ Kim Reh Dr. Ralph Lorenz Jet Propulsion Laboratory The Johns Hopkins University, Applied Study Manager Physics Laboratory Titan Science Lead _________________________________ Dr. John Spencer Southwest Research Institute Enceladus Science Lead Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B The following members of an Expert Advisory and Review Board contributed to ensuring the consistency and quality of the study results through a comprehensive review and advisory process and concur with the results herein. Name Title/Organization Concurrence Chief Engineer/JPL Planetary Flight Projects Gentry Lee Office Duncan MacPherson JPL Review Fellow Glen Fountain NH Project Manager/JHU-APL John Niehoff Sr. Research Engineer/SAIC Bob Pappalardo Planetary Scientist/JPL Torrence Johnson Chief Scientist/JPL i Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B This page intentionally left blank ii Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B Table of Contents 1. EXECUTIVE SUMMARY.................................................................................................. 1-1 1.1 Study Objectives and Guidelines............................................................................ 1-1 1.2 Relation to Cassini-Huygens, New Horizons and Juno.......................................... 1-1 1.3 Technical Approach............................................................................................... -
Geting (Parakilas and Bryce, 2018; ICRC, 2019; Abaimov and Martellini, 2020)
Journal of Future Robot Life -1 (2021) 1–24 1 DOI 10.3233/FRL-200019 IOS Press Algorithmic fog of war: When lack of transparency violates the law of armed conflict Jonathan Kwik ∗ and Tom Van Engers Faculty of Law, University of Amsterdam, Amsterdam 1001NA, Netherlands Abstract. Underinternationallaw,weapon capabilitiesand theiruse areregulated by legalrequirementsset by International Humanitarian Law (IHL).Currently,there arestrong military incentivestoequip capabilitieswith increasinglyadvanced artificial intelligence (AI), whichinclude opaque (lesstransparent)models.As opaque models sacrifice transparency for performance, it is necessary toexaminewhether theiruse remainsinconformity with IHL obligations.First,wedemon- strate that theincentivesfor automationdriveAI toward complextaskareas and dynamicand unstructuredenvironments, whichinturnnecessitatesresorttomore opaque solutions.Wesubsequently discussthe ramifications of opaque models for foreseeability andexplainability.Then, we analysetheir impact on IHLrequirements froma development, pre-deployment and post-deployment perspective.We findthatwhile IHL does not regulate opaqueAI directly,the lack of foreseeability and explainability frustratesthe fulfilmentofkey IHLrequirementstotheextent that theuse of fully opaqueAI couldviolate internationallaw.Statesare urgedtoimplement interpretability duringdevelopmentand seriously consider thechallenging complicationofdetermining theappropriate balancebetween transparency andperformance in their capabilities. Keywords:Transparency, interpretability,foreseeability,weapon, -
Variety of Research Work Has Already Been Done to Develop an Effective Navigation Systems for Unmanned Ground Vehicle
Design of a Smart Unmanned Ground Vehicle for Hazardous Environments Saurav Chakraborty Subhadip Basu Tyfone Communications Development (I) Pvt. Ltd. Computer Science & Engineering. Dept. ITPL, White Field, Jadavpur University Bangalore 560092, INDIA. Kolkata – 700032, INDIA Abstract. A smart Unmanned Ground Vehicle needs some organizing principle, based on the (UGV) is designed and developed for some characteristics of each system such as: application specific missions to operate predominantly in hazardous environments. In The purpose of the development effort our work, we have developed a small and (often the performance of some application- lightweight vehicle to operate in general cross- specific mission); country terrains in or without daylight. The The specific reasons for choosing a UGV UGV can send visual feedbacks to the operator solution for the application (e.g., hazardous at a remote location. Onboard infrared sensors environment, strength or endurance can detect the obstacles around the UGV and requirements, size limitation etc.); sends signals to the operator. the technological challenges, in terms of functionality, performance, or cost, posed by Key Words. Unmanned Ground Vehicle, the application; Navigation Control, Onboard Sensor. The system's intended operating area (e.g., indoor environments, anywhere indoors, 1. Introduction outdoors on roads, general cross-country Robotics is an important field of interest in terrain, the deep seafloor, etc.); modern age of automation. Unlike human being the vehicle's mode of locomotion (e.g., a computer controlled robot can work with speed wheels, tracks, or legs); and accuracy without feeling exhausted. A robot How the vehicle's path is determined (i.e., can also perform preassigned tasks in a control and navigation techniques hazardous environment, reducing the risks and employed). -
Demonstrating Real-World Cooperative Systems Using Aerobots
In Proceedings of the 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation 'ASTRA 2006' ESTEC, Noordwijk, The Netherlands, November 28-30, 2006 DEMONSTRATING REAL-WORLD COOPERATIVE SYSTEMS USING AEROBOTS Ehsan Honary1, Frank McQuade1, Roger Ward1, Ian Woodrow2, Andy Shaw3, Dave Barnes3, Matthew Fyfe4 1SciSys [email protected], [email protected], [email protected] Clothier Road, Bristol BS4 5SS, UK TEL: +44 (117) 9717251, FAX: +44 (117) 9721846 2SEA [email protected] Systems Engineering & Assessment Ltd, Beckington Castle, Castle Corner, Beckington, Frome BA11 6TB, UK, TEL: +44 (1373) 852120, FAX: +44 (1373) 831133 3University of Wales Aberystwyth Andy Shaw: [email protected], Dave Barnes: [email protected] Computer Science Department, Penglais, Aberystwyth, Ceredigion, SY23 3DB, Wales, UK TEL: +44 (1970) 621561, FAX: +44 (1970) 622455 4SCS [email protected] Systems Consultants Services Limited, Henley-on-Thames, Oxfordshire, England, RG9 2JN TEL: +44 (1491) 412102, FAX: +44 (1491) 412082 ABSTRACT Use of multiple autonomous robots for practical applications has become more important over the years [1][2][3][4]. The potential for applications of collective robotics is high, in particular in the aerospace environment. SciSys has been involved in the development of Planetary Aerobots funded by ESA for use on Mars and has developed image-based localisation technology as part of the activity. It is however possible to use the Aerobots in a different environment to investigate issues in regard with robotics behaviour such as data handling, communications, limited processing power, limited sensors, GNC, etc. This paper summarises the activity where Aerobot platform was used to investigate the use of multiple autonomous Unmanned Underwater Vehicles (UUVs), basically simulating their movement and behaviour. -
Increasing the Trafficability of Unmanned Ground Vehicles Through Intelligent Morphing
Increasing the Trafficability of Unmanned Ground Vehicles through Intelligent Morphing Siddharth Odedra 1, Dr Stephen Prior 1, Dr Mehmet Karamanoglu 1, Dr Siu-Tsen Shen 2 1Product Design and Engineering, Middlesex University Trent Park Campus, Bramley Road, London N14 4YZ, U.K. [email protected] [email protected] [email protected] 2Department of Multimedia Design, National Formosa University 64 Wen-Hua Road, Hu-Wei 63208, YunLin County, Taiwan R.O.C. [email protected] Abstract Unmanned systems are used where humans are either 2. UNMANNED GROUND VEHICLES unable or unwilling to operate, but only if they can perform as Unmanned Ground Vehicles can be defined as good as, if not better than us. Systems must become more mechanised systems that operate on ground surfaces and autonomous so that they can operate without assistance, relieving the burden of controlling and monitoring them, and to do that they serve as an extension of human capabilities in unreachable need to be more intelligent and highly capable. In terms of ground or unsafe areas. They are used for many things such as vehicles, their primary objective is to be able to travel from A to B cleaning, transportation, security, exploration, rescue and where the systems success or failure is determined by its mobility, bomb disposal. UGV’s come in many different for which terrain is the key element. This paper explores the configurations usually defined by the task at hand and the concept of creating a more autonomous system by making it more environment they must operate in, and are either remotely perceptive about the terrain, and with reconfigurable elements, controlled by the user, pre-programmed to carry out specific making it more capable of traversing it. -
Sensors and Measurements for Unmanned Systems: an Overview
sensors Review Sensors and Measurements for Unmanned Systems: An Overview Eulalia Balestrieri 1,* , Pasquale Daponte 1, Luca De Vito 1 and Francesco Lamonaca 2 1 Department of Engineering, University of Sannio, 82100 Benevento, Italy; [email protected] (P.D.); [email protected] (L.D.V.) 2 Department of Computer Science, Modeling, Electronics and Systems (DIMES), University of Calabria, 87036 Rende, CS, Italy; [email protected] * Correspondence: [email protected] Abstract: The advance of technology has enabled the development of unmanned systems/vehicles used in the air, on the ground or on/in the water. The application range for these systems is continuously increasing, and unmanned platforms continue to be the subject of numerous studies and research contributions. This paper deals with the role of sensors and measurements in ensuring that unmanned systems work properly, meet the requirements of the target application, provide and increase their navigation capabilities, and suitably monitor and gain information on several physical quantities in the environment around them. Unmanned system types and the critical environmental factors affecting their performance are discussed. The measurements that these kinds of vehicles can carry out are presented and discussed, while also describing the most frequently used on-board sensor technologies, as well as their advantages and limitations. The paper provides some examples of sensor specifications related to some current applications, as well as describing the recent research contributions in the field. Citation: Balestrieri, E.; Daponte, P.; Keywords: unmanned systems; UAV; UGV; USV; UUV; sensors; payload; challenges De Vito, L.; Lamonaca, F. Sensors and Measurements for Unmanned Systems: An Overview. -
Design of a Reconnaissance and Surveillance Robot
DESIGN OF A RECONNAISSANCE AND SURVEILLANCE ROBOT A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ERMAN ÇAĞAN ÖZDEMİR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING AUGUST 2013 Approval of the thesis: DESIGN OF A RECONNAISSANCE AND SURVEILLANCE ROBOT submitted by ERMAN ÇAĞAN ÖZDEMİR in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof. Dr. Canan Özgen _____________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Süha Oral _____________________ Head of Department, Mechanical Engineering Prof. Dr. Eres Söylemez _____________________ Supervisor, Mechanical Engineering Dept., METU Examining Committee Members: Prof. Dr. Kemal İder _____________________ Mechanical Engineering Dept., METU Prof. Dr. Eres Söylemez _____________________ Mechanical Engineering Dept., METU Prof. Dr. Kemal Özgören _____________________ Mechanical Engineering Dept., METU Ass. Prof. Dr. Buğra Koku _____________________ Mechanical Engineering Dept., METU Alper Erdener, M.Sc. _____________________ Project Manager, Unmanned Systems, ASELSAN Date: 29/08/2013 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name: Erman Çağan ÖZDEMİR Signature: iii ABSTRACT DESIGN OF A RECONNAISSANCE AND SURVEILLANCE ROBOT Özdemir, Erman Çağan M.Sc., Department of Mechanical Engineering Supervisor: Prof. Dr. Eres Söylemez August 2013, 72 pages Scope of this thesis is to design a man portable robot which is capable of carrying out reconnaissance and surveillance missions. -
Energy Efficient Trajectory Generation for a State-Space Based JPL Aerobot
The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Energy Efficient Trajectory Generation for a State-Space Based JPL Aerobot Weizhong Zhang, Tamer Inanc and Alberto Elfes Abstract— The 40th anniversary of Apollo 11 project with For aerial robotic planetary exploration, some aerial vehi- man landing on the moon reminds the world again by what cles such as airplanes, gliders, helicopters, balloons [4] and science and engineering can do if the man is determined airships [5][6][7][8] have been considered. Airplanes and to do. However, a huge step can only be achieved step by step which may be relatively small at the beginning. Robotic helicopters require significant energy to just stay airborne, exploration can provide necessary information needed to do the flight time of gliders depend mainly on wind, while balloons further step safely, with less cost, more conveniently. Trajectory have limited navigation capabilities. Lighter-Than-Air (LTA) generation for a robotic vehicle is an essential part of the vehicles combine long term mission capability and low total mission planning. To save energy by exploiting possible energy requirement of balloons with the maneuverability of resources such as wind will assist a robotic explorer extend its life span and perform tasks more reliably. In this paper, airplanes. LTA systems, a.k.a. Aerobots or Robotic Airships, we propose to utilize Nonlinear Trajectory Generation (NTG) bring a new opportunity for robotic exploration of planets methodology to generate energy efficient trajectores for the JPL and their moons which have atmosphere. Aerobots can pro- Aerobot by exploiting wind. -
Mabvap: One Step Closer to an Aerobot Mission to Mars
Fifth International Conference on Mars 6119.pdf MABVAP: ONE STEP CLOSER TO AN AEROBOT MISSION TO MARS V.V.Kerzhanovich1, J.A.Cutts1, A.D.Bachelder1, J.M.Cameron1, J.L.Hall1, J.D.Patzold1, M.B.Quadrelli1, A.H.Yavrouian1, J.A.Cantrell2, T. T. Lachenmeier3, M.G.Smith4, 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; 2 Space Dynamics Laboratory, Utah State University, Logan, UT; 3 GSSL, Inc., Hillsboro, OR; 4 Raven Industries, Sulphur Springs, TX Lighter-than-air planetary missions continued attract MABTEX would employ a ~10-m spherical super- growing interest in Mars exploration due to unique pressure balloon with 2.5-3 kg payload providing a combination of proximity to the surface and mobility lifetime in excess of 1 week and possibly much that far surpasses capability of surface vehicles. longer. Recent progress in microminiaturization - Following the experience with the Sojourner rover Sojourner(10 kg) and Muses-C(1.2 kg) rovers, DS-2 and subsequent development of powerful rovers for Mars Microprobes(3.5 kg) - proves that this payload Mars 2003 and 2005 missions it became clear that can serve not only as a technology demonstration but on Mars surface rover mobility is quite restricted. alos can provide a significant opportunity for new Realistic travel distances may be limited to tens of types of scientific measurements. High spatial reso- kilometers per year on relatively obstacle-free plains lution measurements of the remanent magnetic field and a few kilometers or less on the more rugged ter- on Mars, high-resolution imaging and sub-surface rains. -
US Ground Forces Robotics and Autonomous Systems (RAS)
U.S. Ground Forces Robotics and Autonomous Systems (RAS) and Artificial Intelligence (AI): Considerations for Congress Updated November 20, 2018 Congressional Research Service https://crsreports.congress.gov R45392 U.S. Ground Forces Robotics and Autonomous Systems (RAS) and Artificial Intelligence (AI) Summary The nexus of robotics and autonomous systems (RAS) and artificial intelligence (AI) has the potential to change the nature of warfare. RAS offers the possibility of a wide range of platforms—not just weapon systems—that can perform “dull, dangerous, and dirty” tasks— potentially reducing the risks to soldiers and Marines and possibly resulting in a generation of less expensive ground systems. Other nations, notably peer competitors Russia and China, are aggressively pursuing RAS and AI for a variety of military uses, raising considerations about the U.S. military’s response—to include lethal autonomous weapons systems (LAWS)—that could be used against U.S. forces. The adoption of RAS and AI by U.S. ground forces carries with it a number of possible implications, including potentially improved performance and reduced risk to soldiers and Marines; potential new force designs; better institutional support to combat forces; potential new operational concepts; and possible new models for recruiting and retaining soldiers and Marines. The Army and Marines have developed and are executing RAS and AI strategies that articulate near-, mid-, and long-term priorities. Both services have a number of RAS and AI efforts underway and are cooperating in a number of areas. A fully manned, capable, and well-trained workforce is a key component of military readiness. The integration of RAS and AI into military units raises a number of personnel-related issues that may be of interest to Congress, including unit manning changes, recruiting and retention of those with advanced technical skills, training, and career paths.