Robot Spacecraft (Frontiers in Space)

Total Page:16

File Type:pdf, Size:1020Kb

Robot Spacecraft (Frontiers in Space) Frontiers in Space Robot Spacecraft JOSEPH A. ANGELO, JR. To the memory of my paternal (Italian) grandparents, Antonio and Nina, who had the great personal courage to leave Europe early in the 20th century and embrace the United States as their new home. Through good fortune they met, married, and raised a family. Their simple, hardworking lives taught me what is most important in life. This book also carries a special dedication to Mugsy-the-Pug (February 23, 1999, to January 2, 2006)—my faithful canine companion—who provided so much joy and relaxation during the preparation of this book and many other works. ROBOT SPACECRAFT Copyright © 2007 by Joseph A. Angelo, Jr. All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Robot spacecraft / Joseph A. Angelo, Jr. p. cm.— (Frontiers in space) Includes bibliographical references and index. ISBN 0-8160-5773-7 1. Space robotics—Juvenile literature. 2. Space probes—Juvenile literature. 3. Roving vehicles (Astronautics)—Juvenile literature. I. Title. II. Series. TL1097.A54 2007 629.47—dc22 2006001118 Facts On File books are available at special discounts when purchased in bulk quantities for businesses, associations, institutions, or sales promotions. Please call our Special Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can find Facts On File on the World Wide Web at http://www.factsonfile.com Text design by Erika K. Arroyo Cover design by Salvatore Luongo Illustrations by Sholto Ainslie Printed in the United States of America VB FOF 10 9 8 7 6 5 4 3 2 1 This book is printed on acid-free paper. Contents Preface vii Acknowledgments x Introduction xi ✧ 1 From Pioneer Lunar Probes to Interstellar Messengers 1 ARTIFICIAL INTELLIGENCE 2 The Basic Principles of Robotics 6 Pioneer to the Moon and Beyond 9 EARLY SOVIET LUNA MISSIONS 14 Jet Propulsion Laboratory (JPL)—America’s Premier Space Robot Factory 17 MESSENGER MISSION 26 Robot Spacecraft in Service to Astronomy 30 ✧ 2 How Robot Spacecraft Work 34 Space Robots in Service to Science 35 General Classes of Scientific Spacecraft 37 Functional Subsystems 50 SOLAR PHOTOVOLTAIC CONVERSION 51 ELECTRO-OPTICAL IMAGING INSTRUMENTS 52 Spacecraft Clock and Data Handling Subsystem 56 SINGLE-EVENT UPSET 57 Navigation of a Robot Spacecraft 58 Telecommunications 59 Deep Space Network 61 ✧ 3 Robot Spacecraft Come in All Shapes and Sizes 67 Pioneer 3 Spacecraft 68 Ranger Project 70 Lunar Prospector Spacecraft 75 LUNAR PROSPECTOR’S NEUTRON SPECTROMETER 76 Magellan Spacecraft 78 Galileo Spacecraft 80 NASA’s Soccer-Ball Space Robot 85 USING ROBOTS OR HUMANS IN SPACE EXPLORATION 88 ✧ 4 Flyby Spacecraft 91 Mariner 10—First Spacecraft to Mercury 92 Pioneer 11—First Space Robot to Saturn 94 The Grand Tour of Voyager 2 98 NEPTUNE AND TRITON 100 ✧ 5 Orbiters, Probes, and Penetrators 103 Mariner 9 Spacecraft 105 Viking 1 and 2 Orbiter Spacecraft 107 Mars Global Surveyor (MGS) Spacecraft 109 Mars Climate Orbiter (MCO)—Lost in Space Due to Human Error 110 MARS OBSERVER (MO) MISSION 111 Mars Odyssey 2001 Spacecraft 112 Cassini Spacecraft 113 Huygens Spacecraft 120 Pioneer Venus Mission 122 Ulysses Spacecraft 122 ✧ 6 Lander and Rover Spacecraft 126 Surveyor Project 126 Lunokhod 1 and 2 Robot Rovers 128 Viking 1 and 2 Lander Spacecraft 130 Mars Pathfinder Mission 132 MARS POLAR LANDER (MPL)—ANOTHER MARTIAN MYSTERY 134 Mars Exploration Rover (MER) 2003 Mission 135 ✧ 7 Sample Return Missions 139 Genesis Solar-Wind Sample Return Mission 141 Stardust Mission 143 Mars Sample Return Mission 146 EXTRATERRESTRIAL CONTAMINATION 148 ✧ 8 Mobile Robots as Scientific Laboratories 150 Prospecting for Lunar Water with Smart Robots 151 Smarter Robots to the Red Planet 153 ✧ 9 Robot Spacecraft Visiting Small Bodies in the Solar System 159 Giotto Spacecraft 162 Deep Space 1 (DS1) Spacecraft 164 Deep Impact Spacecraft 167 Rosetta Spacecraft 170 Near Earth Asteroid Rendezvous (NEAR) Spacecraft 171 Dawn Spacecraft 174 ✧ 10 Future Generations of Robot Explorers 177 New Horizons Pluto–Kuiper Belt Flyby Mission 178 KUIPER BELT 180 Telepresence, Virtual Reality, and Robots with Human Traits 181 ANDROIDS AND CYBORGS 184 Mars Airplane 185 Robots Exploring Icy Regions 187 EUROPA 190 Star Probe Mission 193 Space Nuclear Power 195 The Need for High Levels of Machine Intelligence 197 ✧ 11 Self-Replicating Systems 202 The Theory and Operation of Self-Replicating Systems 203 Extraterrestrial Impact of Self-Replicating Systems 208 Control of Self-Replicating Systems 212 ✧ 12 Interstellar Probes 218 Interstellar Journeys of the Pioneer 10 and 11 Spacecraft 220 Voyager Interstellar Mission 224 Thousand Astronomical Unit (TAU) Probe Mission 227 Designing an Interstellar Probe 229 Project Daedalus 232 ✧ 13 Conclusion 236 Chronology 237 Glossary 259 Further Reading 291 Index 297 Preface It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow. —Robert Hutchings Goddard rontiers in Space is a comprehensive multivolume set that explores F the scientific principles, technical applications, and impacts of space technology on modern society. Space technology is a multidisciplinary en deavor, which involves the launch vehicles that harness the principles of rocket propulsion and provide access to outer space, the spacecraft that operate in space or on a variety of interesting new worlds, and many dif- ferent types of payloads (including human crews) that perform various functions and objectives in support of a wide variety of missions. This set presents the people, events, discoveries, collaborations, and important ex periments that made the rocket the enabling technology of the space age. The set also describes how rocket propulsion systems support a variety of fascinating space exploration and application missions—mis- sions that have changed and continue to change the trajectory of human civilization. The story of space technology is interwoven with the history of astron- omy and humankind’s interest in flight and space travel. Many ancient peoples developed enduring myths about the curious lights in the night sky. The ancient Greek legend of Icarus and Daedalus, for example, por- trays the age-old human desire to fly and to be free from the gravitational bonds of Earth. Since the dawn of civilization, early peoples, including the Babylonians, Mayans, Chinese, and Egyptians, have studied the sky and recorded the motions of the Sun, the Moon, the observable planets, and the so-called fixed stars. Transient celestial phenomena, such as a passing comet, a solar eclipse, or a supernova explosion, would often cause a great deal of social commotion—if not out right panic and fear—because these events were unpredictable, unexplainable, and appeared threatening. vii viii Robot Spacecraft It was the ancient Greeks and their geocentric (Earth-centered) cos- mology that had the largest impact on early astronomy and the emer- gence of Western Civilization. Beginning in about the fourth century B.C.E., Greek philosophers, mathematicians, and astronomers articulated a geocentric model of the universe that placed Earth at its center with everything else revolving about it. This model of cosmology, polished and refined in about 150 C.E. by Ptolemy (the last of the great early Greek astronomers), shaped and molded Western thinking for hundreds of years until displaced in the 16th century by Nicholas Copernicus and a helio- centric (sun-centered) model of the solar system. In the early 17th century, Galileo Galilei and Johannes Kepler used astronomical observations to validate heliocentric cosmology and, in the process, laid the foundations of the Scientific Revolution. Later that century, the incomparable Sir Isaac Newton completed this revolution when he codified the fundamental principles that explained how objects moved in the “mechanical” universe in his great work Principia Mathematica. The continued growth of science over the 18th and 19th centuries set the stage for the arrival of space technology in the middle of the 20th cen- tury. As discussed in this multivolume set, the advent of space technology dramatically altered the course of human history. On the one hand, mod- ern military rockets with their nuclear warheads redefined the nature of strategic warfare. For the first time in history, the human race developed a weapon system with which it could actually commit suicide. On the other hand, modern rockets and space technology allowed scientists to send smart robot exploring machines to all the major planets in the solar sys- tem (including tiny Pluto), making those previously distant and unknown worlds almost as familiar as the surface of the Moon. Space technology also supported the greatest technical accomplishment of the human race, the Apollo Project lunar landing missions. Early in the 20th century, the Russian space travel visionary Konstantin E. Tsiolkovsky boldly predicted that humankind would not remain tied to Earth forever. When astronauts Neil Armstrong and Edwin (Buzz) Aldrin stepped on the Moon’s surface on July 20, 1969, they left human footprints on another world. After mil- lions of years of patient evolution, intelligent life was able to migrate from one world to another. Was this the first time such an event has happened in the history of the 14-billion-year-old universe? Or, as some exobiolo- gists now suggest, perhaps the spread of intelligent life from one world to another is a rather common occurrence within the galaxy. At present, most scientists are simply not sure. But, space technology is now helping them search for life beyond Earth. Most exciting of all, space technology offers the universe as both a destination and a destiny to the human race.
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Venus Aerobot Multisonde Mission
    w AIAA Balloon Technology Conference 1999 Venus Aerobot Multisonde Mission By: James A. Cutts ('), Viktor Kerzhanovich o_ j. (Bob) Balaram o), Bruce Campbell (2), Robert Gershman o), Ronald Greeley o), Jeffery L. Hall ('), Jonathan Cameron o), Kenneth Klaasen v) and David M. Hansen o) ABSTRACT requires an orbital relay system that significantly Robotic exploration of Venus presents many increases the overall mission cost. The Venus challenges because of the thick atmosphere and Aerobot Multisonde (VAMuS) Mission concept the high surface temperatures. The Venus (Fig 1 (b) provides many of the scientific Aerobot Multisonde mission concept addresses capabilities of the VGA, with existing these challenges by using a robotic balloon or technology and without requiring an orbital aerobot to deploy a number of short lifetime relay. It uses autonomous floating stations probes or sondes to acquire images of the (aerobots) to deploy multiple dropsondes capable surface. A Venus aerobot is not only a good of operating for less than an hour in the hot lower platform for precision deployment of sondes but atmosphere of Venus. The dropsondes, hereafter is very effective at recovering high rate data. This described simply as sondes, acquire high paper describes the Venus Aerobot Multisonde resolution observations of the Venus surface concept and discusses a proposal to NASA's including imaging from a sufficiently close range Discovery program using the concept for a that atmospheric obscuration is not a major Venus Exploration of Volcanoes and concern and communicate these data to the Atmosphere (VEVA). The status of the balloon floating stations from where they are relayed to deployment and inflation, balloon envelope, Earth.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • New Idea for Dyson Sphere Proposed 30 March 2015, by Bob Yirka
    New idea for Dyson sphere proposed 30 March 2015, by Bob Yirka that the massive amount of material needed to build such a sphere would be untenable, thus, a more likely scenario would be a civilization building a ring of energy capturing satellites which could be continually expanded. But the notion of the sphere persists and so some scientists continue to look for one, believing that if such a sphere were built, the process of capturing the energy from the interior sun would cause an unmistakable infrared signature, allowing us to notice its presence. But thus far, no such signatures have been found. That might be because we are alone in the universe, or, as Semiz and O?ur argue, it might be because we are looking at the wrong types of stars. They suggest that it would seem to make more sense for an advanced civilization to build their sphere around a white A Dyson Sphere with 1 AU radius in Sol system. Credit: dwarf, rather than a star that is in its main arXiv:1503.04376 [physics.pop-ph] sequence, such as our sun—not only would the sphere be smaller (they have even calculated an estimate for a sphere just one meter thick—1023 (Phys.org)—A pair of Turkish space scientists with kilograms of matter) but the gravity at its surface Bogazici University has proposed that researchers would be similar to their home planet (assuming it looking for the existence of Dyson spheres might were similar to ours). be looking at the wrong objects. ?brahim Semiz and Salim O?ur have written a paper and uploaded Unfortunately, if Semiz and O?ur are right, we may it to the preprint server arXiv, in which they suggest not be able to prove it for many years, as the that if an advanced civilization were to build a luminosity of a white dwarf is much less than other Dyson sphere, it would make the most sense to stars, making it extremely difficult to determine if build it around a white dwarf.
    [Show full text]
  • Pyramid Volume 3 in These Issues (A Compilation of Tables of Contents and in This Issue Sections) Contents Name # Month Tools Of
    Pyramid Volume 3 In These Issues (A compilation of tables of contents and In This Issue sections) Contents Name # Month Name # Month Tools of the Trade: Wizards 1 2008-11 Noir 42 2012-04 Looks Like a Job for… Superheroes 2 2008-12 Thaumatology III 43 2012-05 Venturing into the Badlands: Post- Alternate GURPS II 44 2012-06 3 2009-01 Apocalypse Monsters 45 2012-07 Magic on the Battlefield 4 2009-02 Weird Science 46 2012-08 Horror & Spies 5 2009-03 The Rogue's Life 47 2012-09 Space Colony Alpha 6 2009-04 Secret Magic 48 2012-10 Urban Fantasy [I] 7 2009-05 World-Hopping 49 2012-11 Cliffhangers 8 2009-06 Dungeon Fantasy II 50 2012-12 Space Opera 9 2009-07 Tech and Toys III 51 2013-01 Crime and Grime 10 2009-08 Low-Tech II 52 2013-02 Cinematic Locations 11 2009-09 Action [I] 53 2013-03 Tech and Toys [I] 12 2009-10 Social Engineering 54 2013-04 Thaumatology [I] 13 2009-11 Military Sci-Fi 55 2013-05 Martial Arts 14 2009-12 Prehistory 56 2013-06 Transhuman Space [I] 15 2010-01 Gunplay 57 2013-07 Historical Exploration 16 2010-02 Urban Fantasy II 58 2013-08 Modern Exploration 17 2010-03 Conspiracies 59 2013-09 Space Exploration 18 2010-04 Dungeon Fantasy III 60 2013-10 Tools of the Trade: Clerics 19 2010-05 Way of the Warrior 61 2013-11 Infinite Worlds [I] 20 2010-06 Transhuman Space II 62 2013-12 Cyberpunk 21 2010-07 Infinite Worlds II 63 2014-01 Banestorm 22 2010-08 Pirates and Swashbucklers 64 2014-02 Action Adventures 23 2010-09 Alternate GURPS III 65 2014-03 Bio-Tech 24 2010-10 The Laws of Magic 66 2014-04 Epic Magic 25 2010-11 Tools of the
    [Show full text]
  • The Quest to Understand the Pioneer Anomaly
    The quest to understand the Pioneer anomaly I Michael Martin Nieto, Theoretical Division (MS-8285) Los Alamos National Laboratory Los Alarnos, New Mexico 87545 USA E-mail: [email protected] +a l1 l I l uring the 1960's, when the Jet Propulsion Laboratory (JPL) Pioneer 10 was launched on 2 March 1972 local time, aboard D first started thinking about what eventually became the an Atlas/Centaur/TE364-4launch vehicle (see Fig. l).It was the "Grand Tours" of the outer planets (the Voyager missions of the first craft launched into deep space and was the first to reach an 1970's and 1980's),the use of planetary flybys for gravity assists of outer giant planet, Jupiter,on 4 Dec. 1973 [l, 21. Later it was the first spacecraft became of great interest. The concept was to use flybys to leave the "solar system" (past the orbit of Pluto or, should we now of the major planets to both mowthe direction of the spacecraft say, Neptune). The Pioneer project, eventually extending over and also to add to its heliocentric velocity in a manner that was decades, was managed at NASAIAMES Research Center under the unfeasible using only chemical fuels. The first time these ideas were hands of four successive project managers, the legendary Charlie put into practice in deep space was with the Pioneers. Hall, Richard Fimrnel, Fred Wirth, and the current Larry Lasher. While in its Earth-Jupiter cruise, Pioneer 10 was still bound to the solar system. By 9 January 1973 Pjoneer l0 was at a distance of 3.40 AU (Astronomical Units'), beyond the asteroid belt.
    [Show full text]
  • Atmospheric Mining in the Outer Solar System: Mining Design Issues and Considerations,” AIAA 2009- 4961, August 2009
    Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization Bryan Palaszewski* NASA John H. Glenn Research Center Lewis Field MS 5-10 Cleveland, OH 44135 (216) 977-7493 Voice (216) 433-5802 FAX [email protected] Fuels and Space Propellants Web Site: http://www.grc.nasa.gov/WWW/Fuels-And-Space-Propellants/foctopsb.htm Abstract Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. Nomenclature 3He Helium 3 4He Helium (or Helium 4) AMOSS Atmospheric mining in the outer solar system CC Closed cycle delta-V Change in velocity (km/s) GCR Gas core rocket GTOW Gross Takeoff Weight H2 Hydrogen He Helium 4 IEC Inertial-Electrostatic Confinement (related to nuclear fusion) ISRU In Situ Resource Utilization Isp Specific Impulse (s) K Kelvin kWe Kilowatts of electric power LEO Low Earth Orbit MT Metric tons MWe Megawatt electric (power level) NEP Nuclear Electric Propulsion NTP Nuclear Thermal Propulsion NTR Nuclear Thermal Rocket OC Open cycle O2 Oxygen PPB Parts per billion STO Surface to Orbit ________________________________________________________________________ * Leader of Advanced Fuels, AIAA Associate Fellow I.
    [Show full text]
  • Mariner to Mercury, Venus and Mars
    NASA Facts National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 Mariner to Mercury, Venus and Mars Between 1962 and late 1973, NASA’s Jet carry a host of scientific instruments. Some of the Propulsion Laboratory designed and built 10 space- instruments, such as cameras, would need to be point- craft named Mariner to explore the inner solar system ed at the target body it was studying. Other instru- -- visiting the planets Venus, Mars and Mercury for ments were non-directional and studied phenomena the first time, and returning to Venus and Mars for such as magnetic fields and charged particles. JPL additional close observations. The final mission in the engineers proposed to make the Mariners “three-axis- series, Mariner 10, flew past Venus before going on to stabilized,” meaning that unlike other space probes encounter Mercury, after which it returned to Mercury they would not spin. for a total of three flybys. The next-to-last, Mariner Each of the Mariner projects was designed to have 9, became the first ever to orbit another planet when two spacecraft launched on separate rockets, in case it rached Mars for about a year of mapping and mea- of difficulties with the nearly untried launch vehicles. surement. Mariner 1, Mariner 3, and Mariner 8 were in fact lost The Mariners were all relatively small robotic during launch, but their backups were successful. No explorers, each launched on an Atlas rocket with Mariners were lost in later flight to their destination either an Agena or Centaur upper-stage booster, and planets or before completing their scientific missions.
    [Show full text]
  • 2001 Mars Odyssey 1/24 Scale Model Assembly Instructions
    2001 Mars Odyssey 1/24 Scale Model Assembly Instructions This scale model of the 2001 Mars Odyssey spacecraft is designed for anyone interested, although it might be inappropriate for children younger than about ten years of age. Children should have adult supervision to assemble the model. Copyright (C) 2002 Jet Propulsion Laboratory, California Institute of Technology. All rights reserved. Permission for commercial reproduction other than for single-school in- classroom use must be obtained from JPL Commercial Programs Office. 1 SETUP 1.1 DOWNLOAD AND PRINT o You'll need Adobe Acrobat Reader software to read the Parts Sheet file. You'll find instructions for downloading the software free of charge from Adobe on the web page where you found this model. o Download the Parts file from the web page to your computer. It contains paper model parts on several pages of annotated graphics. o Print the Parts file with a black & white printer; a laser printer gives best results. It is highly recommended to print onto card stock (such as 110 pound cover paper). If you can't print onto card stock, regular paper will do, but assembly will be more difficult, and the model will be much more fragile. In any case, the card stock or paper should be white. The Parts file is designed for either 8.5x11-inch or A4 sheet sizes. o Check the "PRINTING CALIBRATION" on each Parts Sheet with a ruler, to be sure the cm or inch scale is full size. If it isn't, adjust the printout size in your printing software.
    [Show full text]
  • Titan and Enceladus $1 B Mission
    JPL D-37401 B January 30, 2007 Titan and Enceladus $1B Mission Feasibility Study Report Prepared for NASA’s Planetary Science Division Prepared By: Kim Reh Contributing Authors: John Elliott Tom Spilker Ed Jorgensen John Spencer (Southwest Research Institute) Ralph Lorenz (The Johns Hopkins University, Applied Physics Laboratory) KSC GSFC ARC Approved By: _________________________________ Kim Reh Dr. Ralph Lorenz Jet Propulsion Laboratory The Johns Hopkins University, Applied Study Manager Physics Laboratory Titan Science Lead _________________________________ Dr. John Spencer Southwest Research Institute Enceladus Science Lead Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B The following members of an Expert Advisory and Review Board contributed to ensuring the consistency and quality of the study results through a comprehensive review and advisory process and concur with the results herein. Name Title/Organization Concurrence Chief Engineer/JPL Planetary Flight Projects Gentry Lee Office Duncan MacPherson JPL Review Fellow Glen Fountain NH Project Manager/JHU-APL John Niehoff Sr. Research Engineer/SAIC Bob Pappalardo Planetary Scientist/JPL Torrence Johnson Chief Scientist/JPL i Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B This page intentionally left blank ii Pre-decisional — For Planning and Discussion Purposes Only Titan and Enceladus Feasibility Study Report Table of Contents JPL D-37401 B Table of Contents 1. EXECUTIVE SUMMARY.................................................................................................. 1-1 1.1 Study Objectives and Guidelines............................................................................ 1-1 1.2 Relation to Cassini-Huygens, New Horizons and Juno.......................................... 1-1 1.3 Technical Approach...............................................................................................
    [Show full text]