Quick viewing(Text Mode)

Name Reactions Springer-Verlag Berlin Heidelberg Gmbh Jie Jack Li

Name Reactions Springer-Verlag Berlin Heidelberg GmbH Jie Jack Li

Name Reactions

A Collection of Detailed Reaction Mechanisms

Second Edition

t Springer Jie Jack Li, Ph. D. Pfizer Global Research and Development Chemistry Department 2800 Plymouth Road Ann Arbor,MI 48105 USA e-mail: [email protected]

ISBN 978-3-662-05338-6 ISBN 978-3-662-05336-2 (eBook) DOI 10.1007/978-3-662-05336-2

Cataloging-in-Publication Data applied for Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at .

This work is subjectto copyright. All rights are reserved, whether the whole or part ofthe material is concerned , specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution act under German Copyright Law.

http://www.springer .de © Springer-Verlag Berlin Heidelberg 2003 Originally published by Springer-Verlag Berlin Heidelberg New York in 2003 Softcover reprint of the hardcover 2nd edition 2003

The use ofgeneral descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Dataconversion by author Cover-design: design & production, Heidelberg Printed on acid-free paper 2/3111 -54 3 2 - SPIN 11359227 To Vivien Preface to the second edition

The second edition includes five points of improvement: (a) Additional 16 name reactions have been supplemented; (b) I have corrected typos and a few dubious mechanisms in the first edition. I wish to thank Prof. Rick L. Danheiser of Massa• chusetts Institute of Technology and Mr. Yiqian Lian of Michigan State Univer• sity for invaluable comments and suggestions. I have also incurred many debts of gratitude to Prof. Brian.M. Stoltz of California Institute of Technology and his students, Eric Ashley, Doug Behenna, Dan Caspi, Neil Garg, Blake Greene, Jeremy May, Sarah Spessard, Uttam Tambar, Raissa Trend, and Ryan Zeidan for proofreading the final draft of the second edition; (c) The references are expanded and updated; (d) A more thorough index has been implemented so the reader may navigate through the book more easily; (e) The short descriptions of name reactions given as mnemonics seem to be helpful to both novices and veterans. As a result, I added the descriptions for most reactions. Finally, I am grateful for permission to use the postage stamps on the inner covers from respective postal authorities, who still retail the copyrights of those stamps.

Jack Li Ann Arbor, Michigan, May 2003

Preface to the first edition

What's in a name? That which we call a rose by any other name would smell as sweet. 1 Contrary to Shakespeare's claim, name reactions in organic chemistry and the corresponding mechanisms are nevertheless fascinating for their far-reaching utilities as well as their insight into organic reactions. Understanding their mechanisms greatly enhances our ability to solve complex synthetic problems. As a matter of fact, some name reactions are the direct results of a better understand• ing of the mechanisms as exemplified by the Barton-McCombie reaction.2 In ad• dition, our knowledge of how reactions work can shed light on side reactions and by-products. When a reaction does not give the "desired" product, the mechanism may provide clues to where the reaction has gone awry. I started collecting named and unnamed organic reactions and their corre• sponding mechanisms while I was a graduate student. It occurred to me that many of my fellow practitioners are doing exactly the same, and that these efforts could be made easier through a monograph tabulating interesting and useful mechanisms VIII of name reactions. To this end, I have updated my collection with many contem• porary name reactions and added more recent references, especially up-to-date re• view articles. In reflecting the advent of asymmetric synthesis, relevant name re• actions in this field have been included to the repertoire. Since the step-by-step mechanisms delineated within are mostly self-explanatory, detailed verbal expla• nations are not offered, although some important jargons entailing the types of transformations are highlighted. Short descriptions of name reactions are given as mnemonics rather than accurate definitions. With regard to the references, the first one is generally the original article, whereas the rest are related articles and review articles. Readers interested in in-depth coverage of name reactions are en• couraged to follow up with the references as well as relevant books.3- 7 I would like to express my grateful thanks to Profs. Brian J. Myers of Ohio Northern University, Jeffrey N. Johnston of Indiana University and Christian M. Rojas of Barnard College, who read the manuscript and offered many invaluable comments and suggestions. Special thanks are due to Profs. Gordon W. Gribble of Dartmouth College, Louis S. Hegedus of Colorado State University and Tho• mas R. Hoye of University of Minnesota for their critique of the drafts. In addi• tion, I am very much indebted to Nadia M. Ahmad, John (Jack) Hodges, Michael D. Kaufman, W. Howard Roark, Peter L. Toogood and Kim E. Werner for proof• reading the manuscript. Any remaining errors are, of course, solely my own. I am also grateful to Ms. Ann Smith of Merck & Co., Inc. for her helpful communica• tions and discussions. Last but not the least, I wish to thank my wife, Sherry Chun-hua Cai, for her understanding and support throughout the project.

Jack Li Ann Arbor, Michigan, November 2001

References

1. William Shakespeare, "Romeo and Juliet" Act II, Scene ii, 1594-1595. 2. Derek H. R. Barton, "Some Recollections of Gap Jumping" Ameri• can Chemical Society, Washington, DC, 1991. 3. Mundy, B. R.; Ellerd, M. G. Name Reactions and Reagents in Or• ganic Synthesis John Wiley & Sons, New York,1988. 4. Laue, T.; Plagens, A. Named Organic Reactions John Wiley & Sons, New York, 1999. 5. "Organic Name Reactions" section, The Merck Index (13th edition), 2001. 6. Smith, M. B.; March, J. "Advanced Organic Chemistry" (51h edition), Wiley, New York, 2001. 7. Hassner, A.; Stumer, C. Organic Synthesis Based on Named Reac• tions Pergamon, 2002. Table of Contents

Abbreviations ...... XVII

1. Abnormal ...... 1 2. Alder ...... 2 3. Aldol condensation ...... 3 4. Allan-Robinson reaction ...... 4 5. Alper carbonylation ...... 6 6. Amadori rearrangement...... 8 7. Angeli-Rimini hydroxamic acid synthesis ...... 9 8. ANRORC mechanism ...... 10 9. Arndt-Eistert homologation ...... ]] 10. Auwers reaction ...... 13 11. Baeyer-Drewson indigo synthesis ...... 14 12. Baeyer-Villiger oxidation ...... 16 13. Baker-Venkataraman rearrangement ...... 17 14. Bamberger rearrangement ...... 18 15. Bamford-Stevens reaction ...... 19 16. Bargellini reaction ...... 20 17. Bartoli indole synthesis ...... 21 18. Barton decarboxylation ...... 22 19. Harton-McCombie deoxygenation ...... 23 20. Barton nitrite photolysis ...... 24 21. Baylis-Hillman reaction ...... 26 22. ...... 28 23. Beirut reaction ...... 29 24. Benzilic acid rearrangement ...... 31 25. Benzoin condensation ...... 32 26. Bergman cyclization ...... 33 27. Biginelli pyrimidone synthesis ...... 34 28. Birch reduction ...... 36 29. Bischler-Mohlau indole synthesis ...... 38 30. Bischler-Napieralski reaction ...... 39 31. Blaise reaction ...... 40 32. Blanc chloromethylation reaction ...... 41 33. Boekelheide reaction ...... 42 34. Boger pyridine synthesis ...... 43 35. Boord reaction ...... 44 36. Borsche-Drechsel cyclization ...... 45 37. Boulton-Katritzky rearrangement ...... 46 38. Bouveault synthesis ...... 47 39. Bouveault-Blanc reduction ...... 48 40. Boyland-Sims oxidation ...... 49 41. Bradsher reaction ...... 51 42. Brook rearrangement ...... 52 X

43. Brown reaction ...... 53 44. Bucherer carbazole synthesis ...... 54 45. Bucherer reaction ...... 56 46. Bucherer-Bergs reaction ...... 57 47. Buchner-Curtius-Schlotterbeck reaction ...... 58 48. Buchner method of ring expansion ·················································<·······59 49. Buchwald-Hartwig C-N bond and C-0 bond formation reactions ...... 60 50. Burgess dehydrating reagent ...... 61 51. Cadiot-Chodkiewicz coupling ...... 62 52. Cannizzaro dispropotionation reaction ...... 63 53. Carroll rearrangement ...... 65 54. Castro-Stephens coupling ...... 66 55. Chapman rearrangement ...... 67 56. Chichibabin amination reaction ...... 68 57. Chichibabin pyridine synthesis ...... 69 58. Chugaev reaction ...... 71 59. Ciamician-Dennsted rearrangement ...... 72 60. ...... 73 61. Claisen rearrangement...... 74 62. Clarke-Eschweiler reductive alkylation of ...... 76 63. Clemmensen reduction ...... 77 64. Combes quinoline synthesis ...... 79 65. Conrad-Limpach reaction ...... 81 66. Cook-Heilbron thiazole synthesis ...... 82 67. Cope ...... 83 68. Cope, oxy-Cope, and anionic oxy-Cope rearrangements ...... 84 69. Corey-Bakshi-Shibata (CBS) reduction ...... 86 70. Corey-chaykovsky reaction ...... 88 71. Corey-Fuchs reaction ...... 90 72. Corey-Kim oxidation ...... 92 73. Corey-Winter olefin synthesis ...... ;...... 93 74. Cornforth rearrangement ...... 95 75. Criegee glycol cleavage ...... 96 76. Criegee mechanism of ...... 97 77. Curti us rearrangement ...... 98 78. Dakin oxidation ...... 99 79. Dakin-West reaction ...... IOO 80. Danheiser annulation ...... l02 81. Darzens glycidic condensation ...... 103 82. Davis chiral oxaziridine reagent...... 104 83. de Mayo reaction ...... l05 84. Demjanov rearrangement ...... l07 85. Dess-Martin periodinane oxidation ...... 109 86. Dieckmann condensation ...... 11 0 87. Diels-Alder reaction ...... Ill 88. Dienone- rearrangement ...... 113 XI

89. Di-1t-methane rearrangement ...... II4 90. Doebner reaction ...... II5 9I. Doebner-von Miller reaction ...... II7 92. Doering-LaFlamme allene synthesis ...... II9 93. Dornow-Wiehler isoxazole synthesis ...... I20 94. Dotz reaction ...... I22 95. Dowd ring expansion ...... I23 96. Dutt-Wormall reaction ...... I25 97. Eglinton reaction ...... I26 98. Eschenmoser coupling reaction ...... I27 99. Eschenmoser-Tanabe fragmentation ...... I28 IOO. Etard reaction ...... I29 IOI. Evans aldol reaction ...... I30 I02. and Quasi-Favorskii rearrangement...... 132 I03. Feist-Benary furan synthesis ...... 134 I 04. Ferrier rearrangement ...... I35 I05. Finkelstein reaction ...... I36 I06. Fischer-Hepp rearrangement ...... 137 107. Fischer indole synthesis ...... I38 I 08. Fischer-Speier esterification ...... I39 I09. Fleming oxidation ...... I40 IIO. Forster reaction ...... I42 III. Frater-Seebach alkylation ...... I44 II2. Friedel-Crafts reaction ...... I45 II3. Friedlander synthesis ...... I47 II4. Fries rearrangement...... I49 II5. Fritsch-Buttenberg-Wiechell rearrangement...... I5I II6. Fujimoto-Belleau reaction ...... I 52 II7. Fukuyama synthesis ...... I53 II8. Gabriel synthesis ...... 155 119. Gassman indole synthesis ...... I56 I20. Gattermann-Koch reaction ...... I 57 I21. Gewald aminothiophene synthesis ...... I 58 I22. ...... I60 I23. Gomberg-Bachmann reaction ...... I6I 124. Gribble indole reduction ...... I62 I25. Gribble reduction of diaryl ...... I63 I26. ...... I64 127. ...... I66 I28. Guareschi-Thorpe condensation ...... I68 I29. Hajos-Wiechert reaction ...... I69 I30. Hailer-Bauer reaction ...... I7I 13I. Hantzsch pyridine synthesis ...... 172 I32. Hantzsch pyrrole synthesis ...... 174 133. Haworth reaction ...... 175 I34. Hayashi rearrangement...... 177 XII

135. Heckreaction ...... 179 136. Hegedus indole synthesis ...... 181 137. Hell-Volhardt-Zelinsky reaction ...... 182 138. Henry reaction (nitroaldol reaction) ...... 183 139. Herz reaction ...... l84 140. Heteroaryl Heck reaction ...... 186 141. Hiyama cross-coupling reaction ...... 187 142. Hoch-Campbell aziridine synthesis ...... 189 143. Hodges-Vedejs metallation of oxazoles ...... 191 144. Hofmann rearrangement (Hofmann degradation reaction) ...... 192 145. Hofmann-LOffler-Freytag reaction ...... 193 146. Hofmann-Martius reaction (Reilly-Hickinbottom rearrangement) ..... 194 147. Hooker oxidation ...... 196 148. Horner-Wadsworth-Emmons reaction ...... 198 149. Houben-Hoesch synthesis ...... 200 150. Hunsdiecker reaction ...... 202 151. Ing-Manske procedure ...... 203 152. Jacobsen-Katsuki epoxidation ...... 204 153. Jacobsen rearrangement ...... 206 154. Japp-K1ingemann synthesis ...... 208 155. Julia-Lythgoe olefination ...... 209 156. Kahne glycosidation ...... 211 157. Keck stereoselective allylation ...... 213 158. Keck macrolactonization ...... 215 159. Kemp elimination ...... 217 160. Kennedy oxidative cyclization ...... 218 161. Kharasch addition reaction ...... 219 162. Kn6evenagel condensation ...... 220 163. Knorr pyrrole synthesis ...... 222 164. Koch carbonylation reaction (Koch-Haaf carbonylation reaction) ...... 223 165. Koenig-Knorr glycosidation ...... 225 166. Kolbe electrolytic coupling ...... 226 167. Kolbe-Schmitt reaction ...... 227 168. Kostanecki reaction ...... 228 169. Krapcho decarboxylation ...... 230 170. Krohnke reaction (pyridine synthesis) ...... 231 171. Kumada cross-coupling reaction ...... 233 172. Larock indole synthesis ...... 235 173. Lawesson's reagent ...... 236 174. Leuckart-Wallach reaction ...... 237 175. Lieben ...... 238 17 6. Liebeskind-Srogl coupling ...... 239 177. Loss en rearrangement ...... 240 178. Luche reduction ...... 241 179. McFadyen-Stevens reduction ...... 242 180. McLafferty rearrangement ...... 243 xm

181. McMurry coupling ...... 244 182. Madelung indole synthesis ...... 245 183. Mannich reaction ...... 246 184. Marshall boron ate fragmentation ...... 248 185. Martin's sulfurane dehydrating reagent ...... 249 186. Masamune-Roush conditions ...... 251 187. Meerwein arylation ...... 253 188. Meerwein-Ponndorf-Verley reduction ...... 254 189. Meinwald rearrangement...... 255 190. Meisenheimer complex ...... 256 191. Meisenheimer rearrangement ...... 258 192. Meyer-Schuster rearrangement...... 259 193. Michael addition ...... 260 194. Michaelis-Arbuzov phosphonate synthesis ...... 261 195. Midland reduction ...... 262 196. Miller-Loudon-Snyder synthesis ...... 263 197. Mislow-Evans rearrangement ...... 264 198. Mitsunobu reaction ...... 265 199. Miyaura boration reaction ...... 266 200. Moffatt oxidation ...... 267 201. Morgan-Walls reaction (Pictet-Hubert reaction) ...... 269 202. Mori-Ban indole synthesis ...... 270 203. Morin rearrangement ...... 272 204. Mukaiyama aldol reaction ...... 27 4 205. Mukaiyama esterification ...... 275 206. Myers-Saito cyclization ...... 277 207. N ametkin rearrangement (retropinacol rearrangement) ...... 279 208. Nazarov cyclization ...... 280 209. Neher rearrangement ...... 281 210. Nef reaction ...... 282 211. Negishi cross-coupling reaction ...... 283 212. Nenitzescu indole synthesis ...... 284 213. Nicholas reaction ...... 286 214. Noyori asymmetric ...... 287 215. Nozaki-Hiyama-Kishi reaction ...... 289 216. Oppenauer oxidation ...... 290 217. Orton rearrangement ...... 291 218. Overman rearrangement ...... 293 219. Paal-Knorr furan synthesis ...... 294 220. Paal-Knorr pyrrole synthesis ...... 295 221. Parham cyclization ...... 296 222. Passerini reaction ...... 298 223. Paterno-Bi.ichi reaction ...... 299 224. Pauson-Khand cyclopentenone synthesis ...... 300 225. Payne rearrangement ...... 302 226. Pechmann condensation (coumarin synthesis) ...... 303 XN

227. Pechmann pyrazole synthesis ...... 304 228. Perkin reaction (cinnarnic acid synthesis) ...... 305 229. Perkow vinyl phosphate synthesis ...... 307 230. ...... 308 231. Pfau-Plattner azulene synthesis ...... 310 232. Pfitzinger quinoline synthesis ...... 311 233. Pictet-Garns isoquinoline synthesis ...... 312 234. Pictet-Spengler tetrahydroisoquinoline synthesis ...... 314 235. Pinacol rearrangement...... 315 236. Pinner synthesis ...... 316 237. Polonovski reaction ...... 317 238. Polonovski-Potier rearrangement ...... 319 239. Pomeranz-Fritsch reaction ...... 320 240. Prevost trans-dihydroxylation ...... 322 241. Prilezhaev reaction ...... 323 242. Prins reaction ...... 324 243. Pschorr ring closure ...... 325 244. Pummerer rearrangement ...... 327 245. Ramberg-Backlund olefin synthesis ...... 328 246. Reformatsky reaction ...... 329 247. Regitz synthesis ...... 330 248. Reimer-Tiemann reaction ...... 332 249. Reissert reaction (aldehyde synthesis) ...... 334 250. Riley oxidation (selenium dioxide oxidation) ...... 336 251. Ring-closing metathesis (RCM) using Grubbs and Schrock catalysts .. 337 252. Ritter reaction ...... 339 253. Robinson annulation ...... 340 254. Robinson-Schopf reaction ...... 341 255. Rosenmund reduction ...... 343 256. Roush allylboronate reagent...... 344 257. Rubottom oxidation ...... 345 258. Rupe rearrangement ...... 346 259. Rychnovsky polyol synthesis ...... 347 260. Sakurai allylation reaction (Hosomi-Sakurai reaction) ...... 349 261. Sandmeyer reaction ...... 351 262. Sarett oxidation ...... 352 263. Schiemann reaction (Balz-Schiemann reaction) ...... 354 264. Schlosser modification of the ...... 355 265. ...... 356 266. Schmidt's trichloroacetimidate glycosidation reaction ...... 357 267. Scholl reaction ...... 359 268. Schopf reaction ...... 361 269. Schotten-Baumann reaction ...... 362 270. ...... 363 271. Sharpless asymmetric amino hydroxylation ...... 364 272. Sharpless asymmetric epoxidation ...... 366 XV

273. Sharpless dihydroxylation ...... 369 274. Shi asymmetric epoxidation ...... 372 275. Simmons-Smith reaction ...... 374 276. Simonini reaction ...... 375 277. Simonis chromone cyclization ...... 376 278. Skraup quinoline synthesis ...... 378 279. Smiles rearrangement ...... 380 280. Sommelet reaction ...... 381 281. Sommelet-Hauser (ammonium ) rearrangement...... 383 282. Sonogashira reaction ...... 384 283. Staudinger reaction ...... 386 284. Stetter reaction (Michael-Stetter reaction) ...... 387 285. Stevens rearrangement ...... 389 286. Stieglitz rearrangement ...... 391 287. Still-Gennari phosphonate reaction ...... 392 288. Stille coupling ...... 393 289. Stille-Kelly reaction ...... 394 290. Stobbe condensation ...... 396 291. Stolle synthesis ...... 397 292. Stork enarnine reaction ...... 398 293. Strecker synthesis ...... 399 294. Suzuki coupling ...... 401 295. Swern oxidation ...... 402 296. Tamao-Kumada oxidation ...... 404 297. Tebbe olefination (Petasis alkenylation) ...... 405 298. Thorpe-Ziegler reaction ...... 407 299. Tiemann rearrangement...... 408 300. Tiffeneau-Demjanov rearrangement...... 409 301. Tishchenko reaction ...... 411 302. Toll ens reaction ...... 412 303. Tsuji-Trost allylation ...... 414 304. Ueno-Stork cyclization ...... 415 305. Ugi reaction ...... 416 306. Ullmann reaction ...... 418 307. Vilsmeier-Haack reaction ...... 419 308. von Braun reaction ...... 421 309. von Richter reaction ...... 422 310. Wacker oxidation ...... 424 311. W agner-Meerwein rearrangement ...... 426 312. Wallach rearrangement ...... 427 313. Weinreb ...... 428 314. Weiss reaction ...... 429 315. Wenker aziridine synthesis ...... 431 316. Wharton transposition reaction ...... 432 317. Willgerodt-Kindler reaction ...... 433 318. Williamson ether synthesis ...... 437 XVI

319. Wittig reaction ...... 438 320. [ 1,2)- Wittig rearrangement...... 439 321. [2,3)-Wittig rearrangement ...... 440 322. Wohl-Ziegler reaction ...... 441 323. Wolff rearrangement ...... 443 324. Wolff-Kishner reduction ...... 444 325. Woodward cis-dihydroxylation ...... 445 326. Wurtz reaction ...... 446 327. Yamada coupling reagent...... 44 7 328. Yamaguchi esterification ...... 448 329. Zaitsev elimination ...... 450 330. Zincke reaction ...... 451 331. Zinin benzidine rearrangement (semi dine rearrangement) ...... 453

Subject Index ...... 455 XVII

Abbreviations and Acronyms

Ac acetyl AIBN 2,2' -azobisisobutyronitrile Alpine-® B-isopinocamphenyl-9-borabicyclo[3.3.1 ]-nonane 8: generic base 9-BBN 9-borabicyclo[3.3.1 ]nonane BINAP 2,2' -bis(diphenylphosphino)-1,1' -binaphthyl Boc tert-butyloxycarbonyl t-Bu tert-butyl Cbz benzyloxycarbonyl m-CPBA m-chloroperoxybenzoic acid CuTC copper thiophene-2-carboxylate DAB CO 1,4-diazabicyclo[2.2.2]octane dba dibenzylideneacetone DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCC 1,3-dicyclohexylcarbodiimide DDQ 2,3-dichloro-5 ,6-dicyano-1 A-benzoquinone DEAD A solvent heated under reflux (DHQ)2-PHAL 1,4-bis(9-0-dihydroquinine )-phthalazine (DHQDh-PHAL 1,4-bis(9-0-dihydroquinidine )-phthalazine DIBAL diisobutylaluminum hydride DMA N,N-dimethylacetamide DMAP N,N-dimethylaminopyridine DME 1,2-dimethoxyethane DMF DMS dimethylsulfide DMSO dimethylsulfoxide DMSY dimethylsulfoxonium methylide DMT dimethoxytrityl dppb 1,4-bis( diphenylphosphino)butane dppe 1,2-bis( diphenylphosphino)ethane dppf 1,1' -bis(diphenylphosphino) dppp 1,3-bis(diphenylphosphino )propane E1 unimolecular elimination E2 bimolecular elimination E1cb 2-step, base-induced ~-elimination via carbanion Eq equivalent HMPA hexamethylphosphoric triamide Imd imidazole LAH lithium aluminum hydride LDA lithium diisopropylamide LHMDS lithium hexamethyldisilazane LTMP lithium 2,2,6,6-tetramethylpiperidine XVIII

M metal Mes mestyl MVK methyl vinyl NBS N-bromosuccinimide NCS N-chlorosuccinimide NIS N-iodosuccinimide NMP 1-methyl-2-pyrrolidinone Nu PCC pyridinium chlorochromate PDC pyridinium dichromate SET single electron transfer SNAr nucleophilic substitution on an aromatic ring SNI unimolecular nucleophilic substitution SN2 bimolecular nucleophilic substitution TBAF tetrabutylammonium fluoride TBDMS tert-butyldimethylsilyl TBS tert-butyldimethylsilyl Tf trifluoromethanesulfonyl (triflyl) TFA trifluoroacetic acid TFAA trifluoroacetic anhydride TFP tri-o-furylphosphine THF TIPS triisopropylsil yl TMEDA N,N,N',N' -tetramethylethylenediamine TMP tetramethylpiperidine TMS trimethylsil yl ToI toluene or tolyl Toi-BINAP 2,2' -bis(di-p-tolylphosphino)-1, I' -binaphthyl Ts tosyl