Catalytic Wittig Reaction by Lucas Brett Fallot Master of Science in Chemistry San Diego State University, 2014

Total Page:16

File Type:pdf, Size:1020Kb

Catalytic Wittig Reaction by Lucas Brett Fallot Master of Science in Chemistry San Diego State University, 2014 “ON WATER” WITTIG REACTION LABORATORY EXPERIMENT AND THE DEVELOPMENT OF AN “ON WATER” CATALYTIC WITTIG REACTION _______________ A Thesis Presented to the Faculty of San Diego State University _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemistry _______________ by Lucas Brett Fallot Spring 2014 iii Copyright © 2014 by Lucas Brett Fallot All Rights Reserved iv DEDICATION This thesis is dedicated to my beloved family; Laura, Autumn and Preston. You follow me to the ends of the earth and unconditionally support me through whatever I do. Thank you for believing in me. v ABSTRACT OF THE THESIS “On Water” Wittig Reaction Laboratory Experiment and the Development of an “On Water” Catalytic Wittig Reaction by Lucas Brett Fallot Master of Science in Chemistry San Diego State University, 2014 I. “On Water” Wittig Reaction Laboratory Experiment The aqueous Wittig reaction is a suitable undergraduate experiment which allows for instructors to effectively and very quickly demonstrate and promote a greener alternative of an alkene synthesis in the organic chemistry teaching laboratory. There is an opportunity for students to compare previously reported Wittig reaction approaches and evaluate those with the green “on water” type Wittig reaction methodology. II. Development of an “On Water” Catalytic Wittig Reaction The achievement of an “on water” catalytic Wittig reaction is the next big step in making the Wittig reaction greener. Employing the normal phosphine oxide by-product of the Wittig reaction as the catalyst will improve the reactions overall atom economy. The development of an “on water” catalytic Wittig reaction using triphenylphosphine oxide and 3-methyl-1-phenylphospholane oxide is reported. 3-Methyl-1-phenylphospholane oxide compared to triphenylphosphine oxide is a more promising catalyst to achieve an “on water” catalytic Wittig reaction because it reduces more easily. vi TABLE OF CONTENTS PAGE ABSTRACT ...............................................................................................................................v LIST OF TABLES ................................................................................................................... ix LIST OF FIGURES ...................................................................................................................x LIST OF ABBREVIATIONS ................................................................................................ xiii ACKNOWLEDGMENTS ..................................................................................................... xiv CHAPTER 1 “ON WATER” WITTIG REACTION LABORATORY EXPERIMENT ....................1 1.1 Introduction ........................................................................................................1 1.2 Previous Wittig Reaction Protocols ...................................................................3 1.2.1 Hazardous Reagent Wittig Reaction Protocols .........................................3 1.2.2 Phase Transfer Catalysis ...........................................................................5 1.2.3 “Instant Ylid” ............................................................................................5 1.2.4 Solvent-Free Wittig Reactions ..................................................................6 1.2.4.1 Ball Milling ......................................................................................6 1.2.4.2 Mortar and Pestle .............................................................................8 1.2.5 Microwave Assisted Experiments .............................................................9 1.2.5.1 Household Microwave .....................................................................9 1.2.5.2 Laboratory Grade Microwave Reactor ..........................................10 1.2.6 Stabilized Ylide Wittig Reaction ............................................................11 1.3 “On Water” Wittig Reaction Laboratory Experiment .....................................11 1.3.1 Experimental Procedure ..........................................................................12 1.3.2 Results and Discussion ...........................................................................15 1.3.3 Hazards of the Experiment ......................................................................18 1.4 Laboratory Experiment Comparison ................................................................18 1.5 Conclusion .......................................................................................................20 2 THE ATTEMPTED DEVELOPMENT OF AN “ON WATER” CATALYTIC WITTIG REACTION ..................................................................................................21 vii 2.1 Introduction ......................................................................................................21 2.2 Use of Triphenylphosphine Oxide ...................................................................21 2.2.1 Standard Wittig Reaction Using Ph3P in Organic Solvent .....................23 2.2.2 Reduction Protocols for Ph3PO ...............................................................24 2.2.2.1 Metal Hydrides...............................................................................24 2.2.2.2 Hydrosilanes and a Titanium Catalyst ...........................................24 2.2.2.3 Phosphoric Acid Derivative with a Silane .....................................25 2.2.2.4 Benzoic Acid Derivative with a Silane ..........................................26 2.2.3 Work Towards a Catalytic Wittig Reaction in Organic Solvent .............29 2.2.3.1 Wittig Reaction and Beller Reduction Protocol .............................29 2.2.3.2 O’Brien Catalytic Wittig Reaction in Organic Solvents ................32 2.2.3.3 Catalytic Wittig Reaction Attempt Using O’Brien’s Protocol with Diphenylsilane and Sodium Carbonate ...................33 2.2.4 “On Water” Reduction Protocols for Ph3PO ..........................................34 2.2.5 “On Water” Catalytic Wittig Reaction Attempt Using Ph3PO ...............37 2.3 Use of 3-methyl-1-phenylphospholane Oxide .................................................38 2.3.1 Standard “On Water” Wittig Reaction Using 3-methyl-1- phenylphospholane .................................................................................39 2.3.2 “On Water” Reduction of 3-methyl-1-phenylphospholane oxide with Ph2SiH2 ...........................................................................................39 2.3.3 “On Water” Catalytic Wittig Reaction Attempts Using 3-methyl- 1-phenylphospholane oxide ....................................................................40 2.4 Future Work for the Development of an “On Water” Catalytic Wittig Reaction ...........................................................................................................43 2.5 Conclusion .......................................................................................................46 3 THE EXPERIMENTAL PART ...................................................................................47 3.1 General .............................................................................................................47 3.2 “On Water” Wittig Reaction Experiment ........................................................47 3.3 Attempted Catalytic Wittig Reaction Experiments Using Ph3P and Ph3PO ...............................................................................................................48 3.3.1 Standard Wittig Reaction Using Ph3P in Organic Solvent .....................48 3.3.2 Reduction of Ph3PO in Organic Solvent .................................................48 3.3.3 Compatibility Test of Standard Wittig Reaction and Beller Reduction Protocol ..................................................................................49 viii 3.3.4 Experiments to Develop a Catalytic Wittig Reaction in Organic Solvent ....................................................................................................49 3.3.5 Attempted Catalytic Wittig Reaction Experiment Using Ph3PO in Organic Solvents Without NEt3 ..............................................................50 3.3.6 Standard Wittig Reaction Experiment Using Diethoxymethylsilane and Ph3P ..............................................................50 3.3.7 Attempted Catalytic Wittig Reaction Using O’Brien’s Protocol, Sodium Carbonate, and Ph3PO ...............................................................51 3.3.8 “On Water” Reduction of Ph3PO ............................................................51 3.3.9 Reduction of Ph3PO in 15% DMSO and Water ......................................52 3.3.10 Attempted Catalytic Wittig Reaction in Water Using 5% DMSO, NaCO3, Ph3PO, and Ph2SiH2 .....................................................52 3.4 Experimental Work Towards an “On Water” Catalytic Wittig Reaction Using 3-methyl-1-phenylphospholane oxide ...................................................53 3.4.1 Optimized O’Brien Catalytic Wittig Reaction in Toluene .....................53 3.4.2 “On Water” Wittig Reaction Using 3-methyl-1- phenylphospholane .................................................................................53 3.4.3 “On Water” Reduction of 3-methyl-1-phenylphospholane oxide ..........54 3.4.4 Attempted “On Water” Catalytic Wittig Reaction using Optimized O’Brien Catalytic Wittig Reaction Protocol .........................54 3.4.5 Attempted “On Water” Catalytic Wittig Reactions Using 3- methyl-1-phenylphospholane oxide
Recommended publications
  • Supporting Information a Convenient Chromatography-Free Method For
    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 Supporting Information A Convenient Chromatography-Free Method for the Purification of Alkenes Produced in the Wittig Reaction Peter A. Byrne, Kamalraj V. Rajendran, Jimmy Muldoon and Declan G. Gilheany Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland 1. General Experimental 2 2. Synthesis of phosphonium salts 4 3. Procedures for Wittig reactions & phosphine oxide removal 11 4. Characterisation of purified alkenes 15 5. Reduction of phosphine chalcogenides 34 6. Synthesis & isolation of neomenthyl chloride and reduction of phosphine oxide-by-product 37 7. NMR spectra of phosphonium salts 42 8. NMR spectra of purified alkenes and regenerated phosphines from Wittig reactions 56 9. NMR spectra of phosphines produced by reduction of phosphine chalcogenides 85 10. NMR spectra of purified products from Appel-type reactions 90 11. References 91 1 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 1. General Experimental All chemicals were supplied by Aldrich, with the exception of Zeoprep silica, 2- methylbenzaldehyde ( o-tolualdehyde, Fluka), ( tert -butoxycarbonylmethyl)- -1 triphenylphosphonium bromide (Fluka), 1 mol L LiAlH 4 in THF (Acros Organics) and Merck standardised alumina 90. All chemicals were used without further purification except diethyl ether, toluene, and THF, which were processed through an Innovative Technology Inc. Pure Solv-400-3-MD solvent purification (Grubbs still) system and stored in Strauss flasks under a nitrogen atmosphere, and ethyl acetate and dichloromethane, which were degassed by passing a stream of dry nitrogen gas (oxygen- free) through the solvent for one hour for the purposes of work-ups in phosphine syntheses.
    [Show full text]
  • Nicolet Condensed Phase Academic Sampler
    Nicolet Condensed Phase Academic Sampler Library Listing – 1,000 spectra This high resolution format library is suited to the needs of academic institutions and small QC labs. Chosen by chemistry professors from many disciplines, it includes spectra of chemicals used in a wide range of common laboratory experiments. The Nicolet Condensed Phase Academic Sampler includes 1,000 spectra of common chemicals representing the major functional groups and combinations of functional groups which are most likely to be observed in academic chemistry laboratories. These chemicals are also important building blocks commonly found in industrial applications. Thermo Nicolet Condensed Phase Academic Sampler Index Compound Name Index Compound Name 353 (+)-2-Phenyl-1-propanol, 97% 164 1,2,4,5-Tetramethylbenzene, 98% 768 (+)-4-Cholesten-3-one 161 1,2,4-Trimethylbenzene, 99+% 290 (+)-a-Lactose 254 1,2-Butanediol, 98% 262 (+)-b-Citronellol, 95% 499 1,2-Diaminopropane, 99% 344 (+/-)-1-Phenyl-1-propanol, 99% 128 1,2-Dibromoethylene, 98%, (Z) + (E) 101 (+/-)-2-Bromopentane, 97% 106 1,2-Dichloroethane, 99+% 228 (+/-)-2-Butanol, 99% 110 1,2-Dichloropropane, 99% 233 (+/-)-2-Heptanol, 96% 258 1,2-Pentanediol, tech., 95% 402 (+/-)-Camphor, 97% 550 1,2-Phenylenediamine, 98% 553 (+/-)-Epinephrine, 99% 77 1,3,5,7-Cyclooctatetraene, 98% 280 (+/-)-Isoborneol, 85% 45 1,3,5-Hexatriene 706 (+/-)-Warfarin, 98% 74 1,3-Cycloheptadiene, 97% 648 (+/-)-sec-Butyl acetate, 99% 72 1,3-Cyclohexadiene, 96% 490 (+/-)-sec-Butylamine, 99% 388 1,3-Cyclohexanedione, 97% 279 (-)-Borneol,
    [Show full text]
  • Synthetic and Mechanistic Investigations in Organophosphorus Chemistry Towards an Alternative Mitsunobu Protocol
    Synthetic and Mechanistic Investigations of Some Novel Organophosphorus Reagents Author Fairfull-Smith, Kathryn Elizabeth Published 2004 Thesis Type Thesis (PhD Doctorate) School School of Science DOI https://doi.org/10.25904/1912/3875 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367534 Griffith Research Online https://research-repository.griffith.edu.au SYNTHETIC AND MECHANISTIC INVESTIGATIONS OF SOME NOVEL ORGANOPHOSPHORUS REAGENTS KATHRYN ELIZABETH FAIRFULL-SMITH (née ELSON) BSc (Hons) School of Science Faculty of Science Griffith University Submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy May 2004 i Statement of Originality This work has not previously been submitted for a degree or diploma in any University. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Kathryn Fairfull-Smith (née Elson) BSc (Hons) ii Preface Unless otherwise stated, the results in this thesis are those of the author. Parts of this work have appeared elsewhere. Refereed journal publications are submitted with the dissertation and are presented in Appendix Two. Refereed Journal Publications ‘The Hendrickson reagent and the Mitsunobu reaction : a mechanistic study’ Kathryn E. Elson, Ian D. Jenkins and Wendy A. Loughlin, Org. Biomol. Chem., 2003, 1, 2958-2965. ‘Cyclic analogues of the Hendrickson ‘POP’ reagent’ Kathryn E. Elson, Ian D. Jenkins and Wendy A. Loughlin, Aust. J. Chem., 2004, 57, 371-376. ‘Polymer-supported triphenylphosphine ditriflate : a novel dehydrating reagent’ Kathryn E. Elson, Ian D.
    [Show full text]
  • Thesis Has Been Carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, Under the Supervision of Dr Michael D
    University of Bath PHD Inhibitors of DNA repair processes as potentiating drugs in cancer radiotherapy and chemotherapy Watson, Corrine Yvonne Award date: 1997 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Inhibitors of DNA Repair Processes as Potentiating Drugs in Cancer Radiotherapy and Chemotherapy submitted by Corrine Yvonne Watson for the degree of PhD of the University of Bath 1997 The research work in this thesis has been carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, under the supervision of Dr Michael D. Threadgill and Dr William J. D. Whish. COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.
    [Show full text]
  • Organic Chemistry/Fourth Edition: E-Text
    CHAPTER 17 ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP O X ldehydes and ketones contain an acyl group RC± bonded either to hydrogen or Ato another carbon. O O O X X X HCH RCH RCRЈ Formaldehyde Aldehyde Ketone Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds, its central theme is a fundamental reaction type, nucleophilic addition to carbonyl groups. The principles of nucleophilic addition to alde- hydes and ketones developed here will be seen to have broad applicability in later chap- ters when transformations of various derivatives of carboxylic acids are discussed. 17.1 NOMENCLATURE O X The longest continuous chain that contains the ±CH group provides the base name for aldehydes. The -e ending of the corresponding alkane name is replaced by -al, and sub- stituents are specified in the usual way. It is not necessary to specify the location of O X the ±CH group in the name, since the chain must be numbered by starting with this group as C-1. The suffix -dial is added to the appropriate alkane name when the com- pound contains two aldehyde functions.* * The -e ending of an alkane name is dropped before a suffix beginning with a vowel (-al) and retained be- fore one beginning with a consonant (-dial). 654 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 17.1 Nomenclature 655 CH3 O O O O CH3CCH2CH2CH CH2 CHCH2CH2CH2CH HCCHCH CH3 4,4-Dimethylpentanal 5-Hexenal 2-Phenylpropanedial When a formyl group (±CHœO) is attached to a ring, the ring name is followed by the suffix -carbaldehyde.
    [Show full text]
  • ELECTRONICS AUTHENTICITY TESTING USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY by Joseph C
    ELECTRONICS AUTHENTICITY TESTING USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY by Joseph C. Cacciatore A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science School of Engineering Technology West Lafayette, Indiana December 2019 2 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. J. Eric Dietz, Chair Department of Computer and Information Technology Dr. Gozdem Kilaz, Chair School of Engineering Technology Dr. Ken Burbank School of Engineering Technology Approved by: Dr. Duane Dunlap Head of the Graduate Program 2 TABLE OF CONTENTS LIST OF TABLES .......................................................................................................................... 5 LIST OF FIGURES ........................................................................................................................ 6 LIST OF ABBREVIATIONS ......................................................................................................... 7 DEFINITIONS ................................................................................................................................ 8 ABSTRACT .................................................................................................................................... 9 INTRODUCTION .............................................................................................. 10 1.1 Introduction to the Problem .............................................................................................
    [Show full text]
  • 19.13 the Wittig Alkene Synthesis 933
    19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 933 19.13 THE WITTIG ALKENE SYNTHESIS 933 PROBLEMS 19.32 Draw the structures of all aldehydes or ketones that could in principle give the following product after application of either the Wolff–Kishner or Clemmensen reduction. H3C CH2CH(CH3)2 L L 19.33 Outline a synthesis of 1,4-dimethoxy-2-propylbenzene from hydroquinone (p-hydroxyphenol) and any other reagents. 19.13 THE WITTIG ALKENE SYNTHESIS Our tour through aldehyde and ketone chemistry started with simple additions; then addition followed by substitution (acetal formation); then additions followed by elimination (imine and enamine formation). Another addition–elimination reaction, called the Wittig alkene synthe- sis, is an important method for preparing alkenes from aldehydes and ketones. An example of the Wittig alkene synthesis is the preparation of methylenecyclohexane from cyclohexanone. 1 1 A | A | O CH_ 2 PPh3 CH2 Ph3P O _ (19.70) 1 + 3 anL ylid + L 1 3 triphenylphosphine cyclohexanone methylenecyclohexane oxide The Wittig synthesis is especially important because it gives alkenes in which the position of the double bond is unambiguous; in other words, the Wittig synthesis is completely regios- elective.Itcanbeusedforthepreparationofalkenesthatwouldbedifficulttoprepareby other reactions. For example, methylenecyclohexane, which is readily prepared by the Wittig synthesis (Eq. 19.70), cannot be prepared by dehydration of 1-methylcyclohexanol; 1- methylcyclohexene is obtained instead, because alcohol dehydration gives the alkene iso- mer(s) in which the double bond has the greatest number of alkyl substituents (Sec. 10.1). OH " H2SO4 " CH3 H2O CH3 L + 1-methylcyclohexene H2SO4 (19.71) A CH2 (little or none formed) methylenecyclohexane The nucleophile in the Wittig alkene synthesis is a type of ylid.
    [Show full text]
  • Journal Name Dynamic Article Links ►
    Journal Name Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE A Convenient & Mild Chromatography-Free Method for the Purification of the Products of Wittig and Appel Reactions† Peter A. Byrne,a Kamalraj V. Rajendrana and Declan G. Gilheany*a 5 Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x A mild method for the facile removal of phosphine oxide from On a laboratory scale, phosphine oxide removal generally the crude products of Wittig and Appel reactions is described. necessitates the use of column chromatography. This presents Work-up with oxalyl chloride to generate insoluble 50 problems if the product is sensitive to decomposition or 10 chlorophosphonium salt (CPS) yields phosphorus-free isomerisation through contact with the stationary phase or by products for a wide variety of these reactions. The CPS light, or if it is sensitive to decomposition in air. For example, product can be further converted into phosphine. certain alkenes produced in Wittig reactions have been shown to be sensitive to isomerisation by light, or by contact with silica or 12 Phosphines and reagents derived from them are ubiquitous 55 alumina. Thus, there is a strong imperative for the development reagents in organic chemistry used, for example, in the Wittig of chromatography-free phosphine oxide removal. Reported 1 2 3 15 reaction, in Appel and Mitsunobu conditions and in the aza- methods addressing this need include modification of Wittig reaction.4 However the phosphine oxide by-product of phosphonium ylides to furnish a phosphine oxide by-product that these reactions poses significant problems, both of separation and may be removed by aqueous work-up13,14 and the use of water- disposal, leading to poor atom efficiency 5,6,7 and requiring 60 soluble and hydrolytically stable ylides to allow reactions to be complex procedures,7,8 particularly for large-scale reactions.
    [Show full text]
  • Biosynthesis of C11 Hydrocarbons in the Brown Alga Ectocarpus
    Biosynthesis of C11 hydrocarbons in the brown alga Ectocarpus siliculosus Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat) Vorgelegt dem Rat der Chemisch-Geowissenschafltlichen Fakultät der Friedrich-Schiller- Universität Jena von Diplom-Chemiker Fabio Rui geboren am 04.02.1975 in Pordenone Gutachter: 1. Prof. Dr. Wilhelm Boland Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena 2. Prof. Dr. Reiner Beckert Institute für Organische Chemie und Makromolekulare Chemie, Friedrich Schiller Universität, Jena Tag der öffentlicher Verteidigung: 20.05.2009 List of abbreviations CLS closed loop stripping DCC dicyclohexylcarbodiimide DiHODA dihydroxyoctadecadienoic acid DMAP 4-Dimethylaminopyridine DMSO dimethylsulfoxide GC/MS gas chromatography/mass spectrometry HETE hydroxyeicosatetraenoic acid HKR hydrolytic kinetic resolution HPETE hydroperoxyeicosatetraenoic acid HPL hydropeoxyde lyase HPOT hydroperoxyoctadecatetraenoic IBX 1-Hydroxy-1,2-benziodoxol-3-(1H)-one 1-Oxide LDS linoleate diol synthase LOX lipoxygenase PFBHA pentafluorobenzyl hydroxylamine PGG2 prostaglandin G2 PGHS prostaglandin H synthase PUFA polyunsaturated fatty acid SPME solid phase microextraction THF tetrahydrofurane Table of contents Biosynthesis of C11 hydrocarbons in the brown alga E. siliculosus List of abbreviations 5 1 Introduction 9 1.1 Chemical ecology of brown algal pheromones 9 1.2 Biosynthesis of C11 hydrocarbons in Ectocarpus siliculosus and other organisms 12 1.3 Selected enzymes catalysing
    [Show full text]
  • Appendix I: Named Reactions Single-Bond Forming Reactions Co
    Appendix I: Named Reactions 235 / 335 432 / 533 synthesis / / synthesis Covered in Covered Featured in problem set problem Single-bond forming reactions Grignard reaction various Radical couplings hirstutene Conjugate addition / Michael reaction strychnine Stork enamine additions Aldol-type reactions (incl. Mukaiyama aldol) various (aldol / Claisen / Knoevenagel / Mannich / Henry etc.) Asymmetric aldol reactions: Evans / Carreira etc. saframycin A Organocatalytic asymmetric aldol saframycin A Pseudoephedrine glycinamide alkylation saframycin A Prins reaction Prins-pinacol reaction problem set # 2 Morita-Baylis-Hillman reaction McMurry condensation Gabriel synthesis problem set #3 Double-bond forming reactions Wittig reaction prostaglandin Horner-Wadsworth-Emmons reaction prostaglandin Still-Gennari olefination general discussion Julia olefination and heteroaryl variants within the Corey-Winter olefination prostaglandin Peterson olefination synthesis Barton extrusion reaction Tebbe olefination / other methylene-forming reactions tetrodotoxin hirstutene / Selenoxide elimination tetrodotoxin Burgess dehydration problem set # 3 Electrocyclic reactions and related transformations Diels-Alder reaction problem set # 1 Asymmetric Diels-Alder reaction prostaglandin Ene reaction problem set # 3 1,3-dipolar cycloadditions various [2,3] sigmatropic rearrangement various Cope rearrangement periplanone Claisen rearrangement hirstutene Oxidations – Also See Handout # 1 Swern-type oxidations (Swern / Moffatt / Parikh-Doering etc. N1999A2 Jones oxidation
    [Show full text]
  • Studies in Directed Catalytic Asymmetric Hydroboration of 1,2-Disubstituted Unsaturated Amide
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Chemistry, Department of Theses - Chemistry Department Summer 7-2017 STUDIES IN DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,2-DISUBSTITUTED UNSATURATED AMIDE Shuyang Zhang University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydiss Part of the Organic Chemistry Commons Zhang, Shuyang, "STUDIES IN DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,2-DISUBSTITUTED UNSATURATED AMIDE" (2017). Student Research Projects, Dissertations, and Theses - Chemistry Department. 85. http://digitalcommons.unl.edu/chemistrydiss/85 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. STUDIES IN DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,2- DISUBSTITUTED UNSATURATED AMIDE by Shuyang Zhang A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Professor James M. Takacs Lincoln, Nebraska July 2017 DIRECTED CATALYTIC ASYMMETRIC HYDROBORATION OF 1,2- DISUBSTITUTED ALKENES Shuyang Zhang, M.S. University of Nebraska 2017 Advisor: Professor James M. Takacs The Rh-catalyzed, substrate directed catalytic asymmetric hydroboration of γ,δ-unsaturated amides provides a direct route to enantioenriched acyclic secondary γ- borylated carbonyl derivatives with high regio- and enantioselectivity. The catalytic condition optimization and substrate scope study is discussed, including the effects in catalytical asymmetric hydroboration on pre-installed chiral γ,δ-unsaturated amides.
    [Show full text]
  • Dulaneyspr15.Pdf (409.1Kb)
    Adventures in Organophosphorus Chemistry James W. Dulaney, III (Faculty Mentor: David E. Lewis) Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, WI 54702-4004 Background Challenges with the Mitsunobu reaction What is required in a replacement to make the reaction Azodicarboxylates, an important component of the re- “green”? Organophosphorus compounds have been an increasingly important part of organic synthesis since the discovery action, are very hazardous: of the Arbuzov rearrangement in 1905. In the century that followed this discovery, the applications of phosphorus- O Green? based reagents in synthesis has grown to incorporate the Wittig and Horner-Wadsworth-Emmons reactions for OEt • They are highly explosive (especially diethyl azodi- N alkene formation, as well as the Mitsunobu inversion reaction, which is used to convert alcohols to a wide range carboxylate). N Green reactions are run under more environmentally sustainable conditions with a view to of products with inversion of configuration. O minimizing environmental impact: • They are highly toxic (especially diethyl azodicar- OEt boxylate). diethyl azodicarboxylate • They are highly regulated. (DEAD) • Wherever possible, renewable sources are used • Wherever possible, hazardous materials are eliminated completely or replaced by The Wittig reaction Ph Ph Ph BuLi Ph less hazardous materials P R P R Regulations have been put into place by the DOT that O Ph Ph O-i-Pr • Wherever possibler, catalytic reactions are used Reaction between an ylide and an aldehyde or ketone to give an alkene. make azodicarboxylic esters even more difficult to ob- N • Hazardous waste is minimized wherever possible (e.g. organic solvents can be re- Reaction gives mainly the Z isomer with aldehydes O tain and use.
    [Show full text]