Investigation of Factors Influencing the Stereochemistry of the Wittig Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Factors Influencing the Stereochemistry of the Wittig Reaction THE INVESTIGATION OF FACTORS INFLUENCING THE STEREOCHEMISTRY OF THE WITTIG REACTION By JEROME THOMAS KRESSE A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA December, 1965 ACKNOWLEDGMENTS The author wishes to express his appreciation to his research director, Dr. George B. Butler, for his guidance and encouragement during the execution of this work. The author also expresses his gratitude to his fellow graduate students and associates for their helpful suggestions and criticisms. Particular thanks are due Mrs. Frances Kost and Mrs. Thyra Johnston for their conscientious typing of this dissertation. The author also thanks his wife for her patience, encouragement and under- standing. Without her cooperation this work would not have been possible. The financial support of the Petroleum Research Fund is also gratefully acknowledged. TABLE OF CONTENTS PAGE ACKNOWLEDGMENTS ii LIST OF TABLES v LIST OF FIGURES vi CHAPTER I INTRODUCTION 1 Historical Background 1 Stereochemistry 9 Statement of the Problem 19 Method of Attack 20 H DISCUSSION AND RESULTS 22 Solvents 22 Temperature Effects 27 Reaction Times 33 Concentration Effects 34 Substituent Effects 37 Anion Effects 49 1, 4 -Addition and Isomerization 51 TABLE OF CONTEXTS (Continued) CHAPTER PAGE EI EXPERIMENTAL 54 Equipment and Data 54 Source and Purification of Materials 54 Solvents 55 Aldehydes " 57 Miscellaneous Chemicals 57 Preparation and Purification of Phosphonium Salts ... 59 Apparatus 61 Reactants 61 65 The Reaction • • Analysis 67 Calibration of the Internal Standard 67 Qualitative Analysis 69 Precision of Chromatographic Analysis 72 IV SUMMARY 75 LIST OF REFERENCES 76 BIOGRAPHICAL SKETCH 79 LIST OF TABLES TABLE PAGE 1 Solvent and Halide Ion Effects 11 2 Combination Effects on Stereochemistry 13 3 Solvent Effects 23 4 Temperature Effects 28 5 Reaction Times 33 6 Concentration Effects 35 7 Substituent and Anion Effects 38 8 Ring Opening Reactions of 4-Octene Oxide and Stilbene Oxide 47 9 Anion Effects 50 10 Reactions of Methyltriphenylphosphoranes with Crotonaldehyde 52 11 Physical Constants of Phosphonium Salts 62 12 Infrared Absorption Phosphonium Salts 73 LIST OF FIGURES FIGURE PAGE 8 1 Energy Profile for the Reaction of a Stable Ylide 2 Postulated Reaction Paths of the Wittig Reaction 17 41 3 Possible Betaine Configurations 63 4 Reaction Manifold 70 5 Calibration Curve for trans -1, 3 -pentadiene 71 6 Chromatogram of Reaction Products vi CHAPTER I INTRODUCTION Historical Background Since Wittig and Geissler first reported the olefin synthesis which has be- come known as the Wittig- synthesis literally hundreds of papers have been published concerning the synthetic and mechanistic aspects of the reaction. This synthesis in its general form involves the reaction of a phosphorane derived from a phosphonium salt with an aldehyde or ketone. The phosphonium suits are usually prepared from triphenylphosphine and an alkyl or arylalkyl halide. The phosphorane is produced from the phosphonium salt by removal of an a-hydro- gen by a suitable base. Addition of a carbonyl containing compound to a solution of the phosphorane forms an intermediate betaine which then collapses to produce the olefin and triphenylphosphine oxide. + P: + R R CHX->[e P-CHR R ] X" 9 o i 9 I 1 + B:—>BK+ + P-C-R R 1 9 II II + RR,CO-»RRC-CRR, 3 4 1 2 3 4 | + j C.. P O in m->R, R ,C = CR R + ClP->0 x 2 o 4 J Although the reaction appears straightforward synthetically, mechanistically the reaction is exceedingly complex. The structure of the phosphorane is apparent- ly a resonance hybrid of canonical forms IV and V. Form IV is also referred to as an ylene and form V as an ylide. Form IV requires the assumption of d ir bonding, CR R " °R R V= 1 2 ~ ^ 1 2 IV V between carbon and phosphorus. That such bonding exists for phosphorus and 2 ofeerelements of the third period has been demonstrated by base catalyzed a deuterium exchange studies. Form V is that of a carbanion, the extremely strong conjugate base of the phosphonium salt. limiting forms of a If we assume that structures IV and V approximate the phosphorane we can see that the degree to which this structure resembles either IV and carbon. or V will be dependent on the nature of the substitutents on phosphorus 3 existence of a Jaffe has calculated that one of the criteria for d ir bonding is the groups positive charge on phosphorus in its singly bonded structure. It follows that lessen the on phosphorus which would be electron donating, e.g. alkyl groups would the incorporation importance of the contribution of form IV to the hybrid. Likewise would tend to make form of electron withdrawing groups on carbon, e. g. carbethoxy that groups IV more important. Regarding the reactivity of the phosphorane we find reactive species. increasing the contribution of form IV to the hybrid produce a less 4 triphenylfluorenylidenephosphorane This can be seen in comparing the properties of groups capable of delocal- and tributylethylidenephosphorane. The former contains positive charge on the phosphorus. izing the charge on the carbon and intensifying the 3 It is extremely unreactive. It can only be hydrolyzed by refluxing with strong base. The latter compound contains groups which tend to diminish the positive charge on phosphorus and increase the carbanion character of the structure. It is hydrolyzed rapidly on exposure to the atmosphere. Both compounds will react with carbonyl compounds but the conditions for carrying out the reaction are much more vigorous for the fluorenylidenephosphorane. Between these two extremes lie almost a continuum of compounds with vary- ing reactivities. It is this range of reactivity which has made the study of the Wittig reaction both interesting and challenging. Work done on one system cannot be directly correlated with a more or less reactive system. This is especially true of the stereochemistry of the reaction. 5 The mechanism of the reaction as postulated by Wittig involves an attack by form V of the phosphorane on the electrophilic carbon of the carbonyl to give a betaine. P+ o P+ o- I II II c- + .c —»- .c -c / N / \ / \ RS X R R R R R R R l 2 3 4 l 2 3 4 V VI The betaine then may collapse via a four membered cyclic transition state to olefin and triphenylphosphine oxide. In attempting to elucidate the mechanism Wittig studied the reaction between methylenetriphenylphosphorane and benzalde- — K><? P- -> o 3 c- -> = c V V ./ \v 7: R' R R R. 2 3 1 2 3 4 VI hyde. During the reaction Wittig was able to trap the betaine by the addition of hydrogen iodide giving 2-phenyl-2-hydroxyethyltriphenylphosphonium iodide which (£lP= CH + 0CHO —> 0CH— CH o 2 I 2 O PG^ VII k&CH - CH ! 2 vn OH P0 3 VIII on heating gave styrene and (LP —>0. He also refluxed benzophenone with the betaine hydroiodide, but was unable to obtain 1, 1-diphenylethylene, the product one might expect if betaine formation were reversible. Wittig therefore concluded that betaine formation is irreversible. 7 However, Filszar, Hudson and Salvadori found that the lithium bromide ether complex of the betaine isolated by Wittig yielded no olefin products on heating but rather benzaldehyde. These workers concluded that betaine formation is rever- sible and that decomposition of betaine to olefin and phosphine oxide is rate deter- . 0-CH— CH, pCH=CH + QP—>0 E:A + I c=o c9 ^r + bh r c=cn OH Pep, e _ 2 2 vm Q Speziale and Bissing have demonstrated the reversibility of betaine forma- tion by reacting triphenyl and tributylphosphine with cis_ and trans -ethyl phenyl- glycidate in the presence of m eta -chlor obenzaldehyde O /\ R P + 0CH—CHCO C H_ > R P —CHCO C H O" —CH0 IX x X > R P >0 + OCH = CHC0 C H 3 2 2 5 XI X —> R P = CHCO C H + 0CHO XII XII + m-CIC H CHO > B^—^O + m-ClC^CH^CHCO^H. xni They found using a 1:1:1 molar ratio of triphenylphosphine: trans-ethyl obtained 48.7 per cent cis phenylglyeidate: i .eta-chlorobenzaldehyde that they -chloro- ethyl cinnamate; 17.4 per cent trans ethyl cinnamate; 3. per cent cis meta cinnamate and 30.9 per cent trans meta-chiorocinnamate. These workers further showed through a kinetic study of the reaction between a series of substituted benzaldehydes with carbomethoxymethylenetriphenylphos- order, first order in phorane (a stable ylide) that the rate of reaction is second G ylide and first order in aldehyde. They found that the reaction rate is increased by increases in solvent polarity, substitution of butyl for phenyl on the phosphorus of the ylide and by electron withdrawing substitutents on the aldehyde. The mechanism they postulated based on kinetics and the epoxide ring open- ing reactions mentioned previously is slow, reversible betaine formation followed by rapid decomposition of the betaine to olefin and phosphine oxide. 9 House and Rasmusson had previously suggested a mechanism for the reaction of acetaldehyde with carbomethoxymethylenetriphenylphosphorane to give methyl tiglate and methyl angelate in which there is a rapid reversible formation of betaines with slow preferential decompositions of the stereoisomeric betaines to products. Concerning reactive ylides, Wittig, Weizmann and Schlosser had observed that though betaine formation with reactive ylides is rapid, taking place within a few minutes, the decomposition of betaine requires standing at room temperature or heating for several hours. They concluded that betaine decomposition is the slow step in this type of reaction. Bergelson and Shemyakin interpreted the stereochemistry observed in the reaction of stable ylides (giving mostly trans olefin) as opposed to unstable or reactive ylides (giving mostly cis olefin) by using two different reaction paths.
Recommended publications
  • Supporting Information a Convenient Chromatography-Free Method For
    Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 Supporting Information A Convenient Chromatography-Free Method for the Purification of Alkenes Produced in the Wittig Reaction Peter A. Byrne, Kamalraj V. Rajendran, Jimmy Muldoon and Declan G. Gilheany Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland 1. General Experimental 2 2. Synthesis of phosphonium salts 4 3. Procedures for Wittig reactions & phosphine oxide removal 11 4. Characterisation of purified alkenes 15 5. Reduction of phosphine chalcogenides 34 6. Synthesis & isolation of neomenthyl chloride and reduction of phosphine oxide-by-product 37 7. NMR spectra of phosphonium salts 42 8. NMR spectra of purified alkenes and regenerated phosphines from Wittig reactions 56 9. NMR spectra of phosphines produced by reduction of phosphine chalcogenides 85 10. NMR spectra of purified products from Appel-type reactions 90 11. References 91 1 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2012 1. General Experimental All chemicals were supplied by Aldrich, with the exception of Zeoprep silica, 2- methylbenzaldehyde ( o-tolualdehyde, Fluka), ( tert -butoxycarbonylmethyl)- -1 triphenylphosphonium bromide (Fluka), 1 mol L LiAlH 4 in THF (Acros Organics) and Merck standardised alumina 90. All chemicals were used without further purification except diethyl ether, toluene, and THF, which were processed through an Innovative Technology Inc. Pure Solv-400-3-MD solvent purification (Grubbs still) system and stored in Strauss flasks under a nitrogen atmosphere, and ethyl acetate and dichloromethane, which were degassed by passing a stream of dry nitrogen gas (oxygen- free) through the solvent for one hour for the purposes of work-ups in phosphine syntheses.
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • Solvents and Solvent E¤Ects in Organic Chemistry
    Contents 1 Introduction ......................................................... 1 2 Solute-Solvent Interactions ........................................... 7 2.1 Solutions . .......................................................... 7 2.2 Intermolecular Forces . ............................................ 12 2.2.1 Ion-Dipole Forces . ................................................. 13 2.2.2 Dipole-Dipole Forces................................................ 14 2.2.3 Dipole-Induced Dipole Forces ....................................... 15 2.2.4 Instantaneous Dipole-Induced Dipole Forces . ...................... 16 2.2.5 Hydrogen Bonding . ................................................. 17 2.2.6 Electron-Pair Donor/Electron-Pair Acceptor Interactions (EPD/EPA Interactions) . ..................................................... 23 2.2.7 Solvophobic Interactions ............................................ 31 2.3 Solvation . .......................................................... 34 2.4 Preferential Solvation................................................ 43 2.5 Micellar Solvation (Solubilization) ................................... 48 2.6 Ionization and Dissociation . ........................................ 52 3 Classification of Solvents ............................................. 65 3.1 Classification of Solvents according to Chemical Constitution ......... 65 3.2 Classification of Solvents using Physical Constants . .................. 75 3.3 Classification of Solvents in Terms of Acid-Base Behaviour. ......... 88 3.3.1 Brønsted-Lowry
    [Show full text]
  • Nicolet Condensed Phase Academic Sampler
    Nicolet Condensed Phase Academic Sampler Library Listing – 1,000 spectra This high resolution format library is suited to the needs of academic institutions and small QC labs. Chosen by chemistry professors from many disciplines, it includes spectra of chemicals used in a wide range of common laboratory experiments. The Nicolet Condensed Phase Academic Sampler includes 1,000 spectra of common chemicals representing the major functional groups and combinations of functional groups which are most likely to be observed in academic chemistry laboratories. These chemicals are also important building blocks commonly found in industrial applications. Thermo Nicolet Condensed Phase Academic Sampler Index Compound Name Index Compound Name 353 (+)-2-Phenyl-1-propanol, 97% 164 1,2,4,5-Tetramethylbenzene, 98% 768 (+)-4-Cholesten-3-one 161 1,2,4-Trimethylbenzene, 99+% 290 (+)-a-Lactose 254 1,2-Butanediol, 98% 262 (+)-b-Citronellol, 95% 499 1,2-Diaminopropane, 99% 344 (+/-)-1-Phenyl-1-propanol, 99% 128 1,2-Dibromoethylene, 98%, (Z) + (E) 101 (+/-)-2-Bromopentane, 97% 106 1,2-Dichloroethane, 99+% 228 (+/-)-2-Butanol, 99% 110 1,2-Dichloropropane, 99% 233 (+/-)-2-Heptanol, 96% 258 1,2-Pentanediol, tech., 95% 402 (+/-)-Camphor, 97% 550 1,2-Phenylenediamine, 98% 553 (+/-)-Epinephrine, 99% 77 1,3,5,7-Cyclooctatetraene, 98% 280 (+/-)-Isoborneol, 85% 45 1,3,5-Hexatriene 706 (+/-)-Warfarin, 98% 74 1,3-Cycloheptadiene, 97% 648 (+/-)-sec-Butyl acetate, 99% 72 1,3-Cyclohexadiene, 96% 490 (+/-)-sec-Butylamine, 99% 388 1,3-Cyclohexanedione, 97% 279 (-)-Borneol,
    [Show full text]
  • Synthetic and Mechanistic Investigations in Organophosphorus Chemistry Towards an Alternative Mitsunobu Protocol
    Synthetic and Mechanistic Investigations of Some Novel Organophosphorus Reagents Author Fairfull-Smith, Kathryn Elizabeth Published 2004 Thesis Type Thesis (PhD Doctorate) School School of Science DOI https://doi.org/10.25904/1912/3875 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/367534 Griffith Research Online https://research-repository.griffith.edu.au SYNTHETIC AND MECHANISTIC INVESTIGATIONS OF SOME NOVEL ORGANOPHOSPHORUS REAGENTS KATHRYN ELIZABETH FAIRFULL-SMITH (née ELSON) BSc (Hons) School of Science Faculty of Science Griffith University Submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy May 2004 i Statement of Originality This work has not previously been submitted for a degree or diploma in any University. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Kathryn Fairfull-Smith (née Elson) BSc (Hons) ii Preface Unless otherwise stated, the results in this thesis are those of the author. Parts of this work have appeared elsewhere. Refereed journal publications are submitted with the dissertation and are presented in Appendix Two. Refereed Journal Publications ‘The Hendrickson reagent and the Mitsunobu reaction : a mechanistic study’ Kathryn E. Elson, Ian D. Jenkins and Wendy A. Loughlin, Org. Biomol. Chem., 2003, 1, 2958-2965. ‘Cyclic analogues of the Hendrickson ‘POP’ reagent’ Kathryn E. Elson, Ian D. Jenkins and Wendy A. Loughlin, Aust. J. Chem., 2004, 57, 371-376. ‘Polymer-supported triphenylphosphine ditriflate : a novel dehydrating reagent’ Kathryn E. Elson, Ian D.
    [Show full text]
  • Diastereoisomers As Probes for Solvent Reorganizational Effects On
    Chemical Physics 324 (2006) 8–25 www.elsevier.com/locate/chemphys Diastereoisomers as probes for solvent reorganizational effects on IVCT in dinuclear ruthenium complexes Deanna M. DÕAlessandro, F. Richard Keene * Department of Chemistry, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Qld. 4811, Australia Received 19 June 2005; accepted 1 September 2005 Available online 3 October 2005 Abstract 5+ 0 0 IVCT solvatochromism studies on the meso and rac diastereoisomers of [{Ru(bpy)2}2(l-bpm)] (bpy = 2,2 -bipyridine; bpm = 2,2 - bipyrimidine) in a homologous series of nitrile solvents revealed that stereochemically directed specific solvent effects in the first solvation shell dominated the outer sphere contribution to the reorganizational energy for intramolecular electron transfer. Further, solvent pro- portion experiments in acetonitrile/propionitrile mixtures indicated that the magnitude and direction of the specific effect was dependent on the relative abilities of discrete solvent molecules to penetrate the clefts between the planes of the terminal polypyridyl ligands. In particular, the specific effects were dependent on the dimensionality of the clefts, and the number, size, orientation and location of the solvent dipoles within the interior and exterior clefts. 5+ 5+ IVCT solvatochromism studies on the diastereoisomeric forms of [{Ru(bpy)2}2(l-dbneil)] and [{Ru(pp)2}2(l-bpm)] {dbneil = dibenzoeilatin; pp = substituted derivatives of 2,20-bipyridine and 1,10-phenanthroline} revealed that the subtle and systematic changes in the nature of the clefts by the variation of the bridging ligand, and the judicious positioning of substituents on the terminal ligands, profoundly influenced the magnitude of the reorganizational energy contribution to the electron transfer barrier.
    [Show full text]
  • Thesis Has Been Carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, Under the Supervision of Dr Michael D
    University of Bath PHD Inhibitors of DNA repair processes as potentiating drugs in cancer radiotherapy and chemotherapy Watson, Corrine Yvonne Award date: 1997 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 Inhibitors of DNA Repair Processes as Potentiating Drugs in Cancer Radiotherapy and Chemotherapy submitted by Corrine Yvonne Watson for the degree of PhD of the University of Bath 1997 The research work in this thesis has been carried out in the School of Pharmacy and Pharmacology and in the School of Biology and Biochemistry, under the supervision of Dr Michael D. Threadgill and Dr William J. D. Whish. COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author.
    [Show full text]
  • Organic Chemistry/Fourth Edition: E-Text
    CHAPTER 17 ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION TO THE CARBONYL GROUP O X ldehydes and ketones contain an acyl group RC± bonded either to hydrogen or Ato another carbon. O O O X X X HCH RCH RCRЈ Formaldehyde Aldehyde Ketone Although the present chapter includes the usual collection of topics designed to acquaint us with a particular class of compounds, its central theme is a fundamental reaction type, nucleophilic addition to carbonyl groups. The principles of nucleophilic addition to alde- hydes and ketones developed here will be seen to have broad applicability in later chap- ters when transformations of various derivatives of carboxylic acids are discussed. 17.1 NOMENCLATURE O X The longest continuous chain that contains the ±CH group provides the base name for aldehydes. The -e ending of the corresponding alkane name is replaced by -al, and sub- stituents are specified in the usual way. It is not necessary to specify the location of O X the ±CH group in the name, since the chain must be numbered by starting with this group as C-1. The suffix -dial is added to the appropriate alkane name when the com- pound contains two aldehyde functions.* * The -e ending of an alkane name is dropped before a suffix beginning with a vowel (-al) and retained be- fore one beginning with a consonant (-dial). 654 Back Forward Main Menu TOC Study Guide TOC Student OLC MHHE Website 17.1 Nomenclature 655 CH3 O O O O CH3CCH2CH2CH CH2 CHCH2CH2CH2CH HCCHCH CH3 4,4-Dimethylpentanal 5-Hexenal 2-Phenylpropanedial When a formyl group (±CHœO) is attached to a ring, the ring name is followed by the suffix -carbaldehyde.
    [Show full text]
  • ELECTRONICS AUTHENTICITY TESTING USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY by Joseph C
    ELECTRONICS AUTHENTICITY TESTING USING COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY by Joseph C. Cacciatore A Thesis Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of Master of Science School of Engineering Technology West Lafayette, Indiana December 2019 2 THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL Dr. J. Eric Dietz, Chair Department of Computer and Information Technology Dr. Gozdem Kilaz, Chair School of Engineering Technology Dr. Ken Burbank School of Engineering Technology Approved by: Dr. Duane Dunlap Head of the Graduate Program 2 TABLE OF CONTENTS LIST OF TABLES .......................................................................................................................... 5 LIST OF FIGURES ........................................................................................................................ 6 LIST OF ABBREVIATIONS ......................................................................................................... 7 DEFINITIONS ................................................................................................................................ 8 ABSTRACT .................................................................................................................................... 9 INTRODUCTION .............................................................................................. 10 1.1 Introduction to the Problem .............................................................................................
    [Show full text]
  • S.T.E.T.Women's College, Mannargudi Semester Iii Ii M
    S.T.E.T.WOMEN’S COLLEGE, MANNARGUDI SEMESTER III II M.Sc., CHEMISTRY ORGANIC CHEMISTRY - II – P16CH31 UNIT I Aliphatic nucleophilic substitution – mechanisms – SN1, SN2, SNi – ion-pair in SN1 mechanisms – neighbouring group participation, non-classical carbocations – substitutions at allylic and vinylic carbons. Reactivity – effect of structure, nucleophile, leaving group and stereochemical factors – correlation of structure with reactivity – solvent effects – rearrangements involving carbocations – Wagner-Meerwein and dienone-phenol rearrangements. Aromatic nucleophilic substitutions – SN1, SNAr, Benzyne mechanism – reactivity orientation – Ullmann, Sandmeyer and Chichibabin reaction – rearrangements involving nucleophilic substitution – Stevens – Sommelet Hauser and von-Richter rearrangements. NUCLEOPHILIC SUBSTITUTION Mechanism of Aliphatic Nucleophilic Substitution. Aliphatic nucleophilic substitution clearly involves the donation of a lone pair from the nucleophile to the tetrahedral, electrophilic carbon bonded to a halogen. For that reason, it attracts to nucleophile In organic chemistry and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which a leaving group(nucleophile) is replaced by an electron rich compound(nucleophile). The whole molecular entity of which the electrophile and the leaving group are part is usually called the substrate. The nucleophile essentially attempts to replace the leaving group as the primary substituent in the reaction itself, as a part of another molecule. The most general form of the reaction may be given as the following: Nuc: + R-LG → R-Nuc + LG: The electron pair (:) from the nucleophile(Nuc) attacks the substrate (R-LG) forming a new 1 bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged.
    [Show full text]
  • 19.13 the Wittig Alkene Synthesis 933
    19_BRCLoudon_pgs5-0.qxd 12/9/08 11:41 AM Page 933 19.13 THE WITTIG ALKENE SYNTHESIS 933 PROBLEMS 19.32 Draw the structures of all aldehydes or ketones that could in principle give the following product after application of either the Wolff–Kishner or Clemmensen reduction. H3C CH2CH(CH3)2 L L 19.33 Outline a synthesis of 1,4-dimethoxy-2-propylbenzene from hydroquinone (p-hydroxyphenol) and any other reagents. 19.13 THE WITTIG ALKENE SYNTHESIS Our tour through aldehyde and ketone chemistry started with simple additions; then addition followed by substitution (acetal formation); then additions followed by elimination (imine and enamine formation). Another addition–elimination reaction, called the Wittig alkene synthe- sis, is an important method for preparing alkenes from aldehydes and ketones. An example of the Wittig alkene synthesis is the preparation of methylenecyclohexane from cyclohexanone. 1 1 A | A | O CH_ 2 PPh3 CH2 Ph3P O _ (19.70) 1 + 3 anL ylid + L 1 3 triphenylphosphine cyclohexanone methylenecyclohexane oxide The Wittig synthesis is especially important because it gives alkenes in which the position of the double bond is unambiguous; in other words, the Wittig synthesis is completely regios- elective.Itcanbeusedforthepreparationofalkenesthatwouldbedifficulttoprepareby other reactions. For example, methylenecyclohexane, which is readily prepared by the Wittig synthesis (Eq. 19.70), cannot be prepared by dehydration of 1-methylcyclohexanol; 1- methylcyclohexene is obtained instead, because alcohol dehydration gives the alkene iso- mer(s) in which the double bond has the greatest number of alkyl substituents (Sec. 10.1). OH " H2SO4 " CH3 H2O CH3 L + 1-methylcyclohexene H2SO4 (19.71) A CH2 (little or none formed) methylenecyclohexane The nucleophile in the Wittig alkene synthesis is a type of ylid.
    [Show full text]
  • Nucleophilic Substitution and Elimination Reactions
    8 NUCLEOPHILIC SUBSTITUTION AND ELIMINATION REACTIONS substitution reactions involve the replacement of one atom or group (X) by another (Y): We already have described one very important type of substitution reaction, the halogenation of alkanes (Section 4-4), in which a hydrogen atom is re- placed by a halogen atom (X = H, Y = halogen). The chlorination of 2,2- dimethylpropane is an example: CH3 CH3 I I CH3-C-CH3 + C12 light > CH3-C-CH2Cl + HCI I I Reactions of this type proceed by radical-chain mechanisms in which the bonds are broken and formed by atoms or radicals as reactive intermediates. This 8-1 Classification of Reagents as Electrophiles and Nucleophiles. Acids and Bases mode of bond-breaking, in which one electron goes with R and the other with X, is called homolytic bond cleavage: R 'i: X + Y. - X . + R : Y a homolytic substitution reaction There are a large number of reactions, usually occurring in solution, that do not involve atoms or radicals but rather involve ions. They occur by heterolytic cleavage as opposed to homolytic cleavage of el~ctron-pairbonds. In heterolytic bond cleavage, the electron pair can be considered to go with one or the other of the groups R and X when the bond is broken. As one ex- ample, Y is a group such that it has an unshared electron pair and also is a negative ion. A heterolytic substitution reaction in which the R:X bonding pair goes with X would lead to RY and :X? R~:X+ :YO --' :x@+ R :Y a heterolytic substitution reaction A specific substitution reaction of this type is that of chloromethane with hydroxide ion to form methanol: In this chapter, we shall discuss substitution reactions that proceed by ionic or polar mechanisms' in which the bonds cleave heterolytically.
    [Show full text]