<<

S pecial Subject Book January 2000

Thermal Resistance Theory and Practice

http://www.infineon.com

SMD Packages

Never stop thinking Edition January 2000 Published by AG, St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.

Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in or our Infineon Technologies Representatives worldwide (see address list).

Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. - Theory and Practice Contents

Introduction ...... 4 SMD-Package Properties for Power Applications ...... 5 Using a as a Sink ...... 6 Static Properties ...... 6 Dynamic Properties ...... 9 Finite Element Method (FEM) ...... 13 Determining the Static Heat Resistance ...... 16

Measuring the Rthj-a in the Real Application ...... 17 Determining the Dynamic Heat Resistance ...... 19 Summary ...... 20 Package and Thermal Information ...... 21

Michael Lenz Günther Striedl Ulrich Fröhler

Infineon Technologies AG 3 Thermal Resistance - Theory and Practice Introduction

Power-SMD applications or what’s the size of the ?

More and more frequently, modern SMD-component users (Surface Mounted Devices) ask the question, “What’s the size of the heat sink ?” The reason: The trend from through-hole packages to low-cost SMD-applications is marked by the improvement of chip technologies. „Silicon instead of heat sink“ is therefore possible in many cases. The printed circuit board (PCB) itself becomes the heat sink. As many applications today use PCBs assembled with SMD- technology, the emphasis is on Power-ICs in SMD packages mounted on single-sided PCBs laminated on one side. Pricing demands simple processes and lowest-cost solutions. This report describes a solution.

4 Infineon Technologies AG SMD-Package Properties for packages. Metal bridges are Power Applications connected between the ( frame) and the pins. There are two basic groups of From the outside, this package packages: looks identical to standard Heat Sink packages are the first components because the group.The heat sink (chip carrier - molding compound conceals ) is soldered directly to these details. Figure 1 shows the PCB. The thermal resistance both types of packages with the of this packages between chip examples P-TO252-3-1 (D-Pack)

and heat sink is called Rthj-c and P-DSO-14-4 (3 center pins (junction-case) and has low each per side of the cooling path). values. The internal structure is described Thermal Enhanced Leadframes in more detail in this report and constitute the second group of can be seen in Figure 11.

Footprint / Dimensions 5.8 Package e A L B P-DSO-14-4 1.27 5.69 1.31 0.65 L 6.4 2.2 10.6

1.2 e 5.76 B A +0.15 6.5 -0.10 +0.05 2.3 -0.10 A 0.35 x 45˚ ±0.1 B +0.08 5.4 0.9 -0.04 1) -0.2 4 -0.2 -0.1 ±0.1 +0.06 1

0.2 1.45 1.75 max.

0.19 -0.2 ±0.15 (4.17) ±0.5 1.27 0.8 6.22 8 max. 9.9

min 0.1 0.35 +0.15 2) 0.4 +0.8 0.2 14x 0.15 max 0.51 0...0.15 3x 6 ±0.2 per side +0.08 0.75 ±0.1 0.5 -0.04 14 8 2.28 1±0.1 4.57 0.25 M A B 0.1 17 1) 8.75 -0.2 All metal surfaces thin plated, except area of cut. Index Marking P-TO252-3-1 P-DSO-14-4 Dimensions in mm

Figure 1 Heat Sink - vs. Thermal Enhanced Package Types

Infineon Technologies AG 5 Thermal Resistance - Theory and Practice

Using a printed circuit board as a heat sink ? Package Heat Sink / Pin How do I calculate that ? P-DSO-8-1 – How big does my heat sink P-DSO-14-4 Pin 3-5; 10-12 need to be ? P-DSO-16-1 – Which size do we need ? P-DSO-20-1 – In earlier fabrications, a solid heat P-DSO-20-6 Pin 4-7; 14-17 sink was either screwed or P-DSO-24-3 Pin 5-8; 17-20 clamped to the power package. It P-DSO-28-6 Pin 6-9; 20-23 was easy to calculate the thermal P-DSO-20-10 Tab resistance from the geometry of the heat sink. P-DSO-36-10 Tab In SMD-technology, this SCT-595-5-1 Pin 2; 5 calculation is much more difficult SOT-223-4-2 Tab or Pin 4 because the heat path must be P-TO252-3-1 (D-Pack) Tab evaluated: chip (junction) - lead P-TO263-5-1 Tab frame - case or pin - footprint - PCB materials (basic material, Table 1 The Most Important thickness of the laminate) - PCB SMD-Packages volume - surroundings. As the layout of the PCB is a main contributor to the result, a new technique must be applied. The Appendix proivdes thermal data for all packages listed in Table 1.

Let us start with some theoretical considerations:

Static Properties

To facilitate discussion of the static properties of a Power IC (PIC), the internal structure of a PIC and its method of mounting on a PCB or heat sink is illustrated in Figure 2. The PIC consists of a chip mounted on a chip carrier or lead frame, and held by solder or bonding adhesive. The lead frame consists of a high-conductivity material such as copper, and can have a

6 Infineon Technologies AG thickness of several millimeters. The associated static equivalent circuit is shown in Figure 3. The following analogies with electrical Molding compound quantities have been used: (Molding) C The power PV Chip () occurring close to the chip Chip adhesive / Lot surface is symbolized by a (Die bond) current source. Chip carrier (Leadframe) The thermal resistances are Solder C represented by ohmic Heat sink or PCB resistors. The “resistance” (Heat sink) network is essentially a serial connection to the ambient . As a first approximation, the parallel- connected thermal resistance of the molding (broken lines) can be neglected in power Figure 2 Internal Structure of packages. a PIC and Method of Mounting on C The ambient temperature is a Heat Sink represented by a voltage source. In accordance with the analogy,

the thermal current PV = Q/t can now be calculated from the “thermic Ohm’s law” • • V = I R as Tj - Ta = PV Rthj-a.

Rth Molding For the purpose of discussing the

Rth Rth Rth Rth Rth application as a whole, the function PV = ƒ(Ta) is of practical Die Die Lead- Solder Heat interest. One obtains: bond frame sink PV = - Ta / Rthj-a + Tj / Rthj-a. T PV j Rthj-c Tc Rth = Ta This is a descending straight line Application of gradient -1 / Rthj-a with its zero at Tj.

Rthj-a

Figure 3 Static Equivalent Circuit for the Structure shown in Figure 2

Infineon Technologies AG 7 Thermal Resistance - Theory and Practice

In Figure 4, this function is shown for the P-DSO-14-4 Pack- age (Thermal Enhanced Power Package) mounted on the PV standard application board. From W Tj 150 this function, the user can derive 1.63 P = = W ≈ 1.63 W VO R 92 the permissible power dissipation thj-a directly for any ambient Parameter: Tjmax = 150 ˚C temperature. At Ta = 85 °C, for 1.08 ∆ Rthj-a = 92 K/W example, the permissible PV = 1 W Tamax = 85 ˚C dissipation is approxi-mately ∆T = 92 ˚C 0.7 W. The exact value can be 0.54 calculated from the equation Tamax PV = (Tj - Tamax) / Rthj-a = Tj 65 K / 92 K/W = 0.7 W. 0 Ta It should be noted that in the data 0 50 100 150 ˚C sheets of the PICs the power dissipation is given as a function of the package (case) tempera- Figure 4 Permissible Power Dissipation of the ture TC, because the application- P-DSO-14-4 Package Mounted on a specific thermal resistances are PCB with 300 mm² Cooling Area, as not known to the manufacturer. a Function of Ambient Temperature This function, like the previous one, is a descending straight line. The slope now has the value

1 / Rthj-c. The zero remains at Tj. As an example, this function is P presented in Figure 5 for the V W P-TO252-3-1 Package.

The new P-TO252-3-1 package 30 has a thermal resistance of max. 4 K/W and is unique in the small

size of its base area when com- 20 Rthj-c = 4 K/W pared with packages of equivalent performance (PCB board area). At approximately 30 °C, the permis- 10 sible power dissipation is 30 W. Higher power dissipation is 0 TC prevented by intervention of the 0 50 100 150 ˚C chip-internal current limiters. For this reason, the value for power dissipation at lower remains constant. Figure 5 Permissible Power Dissipation of the P-TO252-3-1 as a Function of the Package (Case) Temperature

8 Infineon Technologies AG Dynamic Properties needed to heat the body by 1 °C. The equivalent circuit of the To calculate the temperature P-TO263-7-3 power package, with As mentioned earlier, the thermal change ∆T it is necessary to use the thermal capacities added, is behavior of PICs changes when the quantity-of-charge equation shown in Figure 6. The thermal dynamic phenomena are for a capacitance C. capacities calculated from the considered (pulse power The equation is: material and the volume are operation). This behavior can be V • C = I • t = Q shown in parallel with the thermal described in terms of thermal By analogy, the quantity-of-heat resistances. capacity Cth, which is directly equation is: When calculating the components ∆ • • proportional to the relevant T Cth = P t = Q of a network it is necessary to volume V (in cm³), to the density This means: Just as the current know the thickness d, the cross- ρ (in g/cm³) of the material and to I = Q/t represents a transport of sectional area A and the thermal a proportionality factor of the charge per unit of , the conductivity L in W/m • K, in order specific heat c in Ws/g • K. power dissipation P represents to obtain the appropriate thermal

The applicable equation is: the transport of thermal energy resistance Rth. The formula is: • ρ • • Cth = c V = m c per unit of time. Consequently: d K R = This means: The thermal capacity • th • ∆T = P t L A [W ] of a body of mass m = ρ • V Cth corresponds to the quantity of heat

Die Heat sink

RthD RthHS

0.48 K/W 0.24 K/W

= Tcase PV CthD 3 mWs/K CthHS 300 mWs/K

τ τ D = 1.5 ms HS = 70 ms

Figure 6 Thermal Equivalent Circuit of the P-TO263-7-3 Package (Simplified)

Infineon Technologies AG 9 Thermal Resistance - Theory and Practice

10 ±0.2 4.4 Footprint 9.8 ±0.15 1.27±0.1 1) 0.1

3 8.5 .

0 0.05 ± 7 2 8 1 A 4 B . 8 . 4 . . 0 0 0 8 2.4 1 ) 3 2 . 1 . 0 0 8 ± ± ) 3 5 . 5 2 1 . 1 9.4 4.6 3 ( . 9 0 5 . ± 0 7 ±

. 16.15 2 7 . 4 0...0.15 7x0.6 ±0.1 0.1 1) Typical 0.5 ±0.1 6x1.27 All metal surfaces tin plated, except area of cut. 0.25 M A B 8˚ max.

Figure 7 Outline Drawing of the P-TO263-7-3 Power Package

To calculate the thermal capacity The thermal capacity Cth is Table 2 lists all the important Cth, it is necessary to know the calculated from: parametric data of the • • volume V = d A, the specific Cth = m c (Ws/T). P-TO263-7-3 package. weight ρ in g/cm3 and the speci- The package dimensions are fic thermal capacity c in Ws/g • K. shown in Figure 7.

Parameters for the Chip Symbol Value Dimension

Area AD 5 mm² µ Thickness dD 360 m • of silicon LSi 150 W/m K

Thermal resistance of chip RthD 0.48 K/W ρ Specific weight of silicon Si 2.33 g/cm³

Mass of chip mD 4.2 mg • Spec, thermal capacity of Si cSi approx. 0.7 Ws/g K

Thermal capacity of chip CthD approx. 3 mWs/K τ Thermal time constant of chip D approx. 1.5 ms Parameters for the Heat Slug Symbol Value Dimension

Area (effective area of 64 mm²) AHS 14 mm²

Thickness dHS 1.27 mm • Thermal conductivity of cooper LCu 384 W/m K

Thermal resistance of heat slug RthHS 0.24 K/W ρ Specific weight of cooper Cu 8.93 g/cm³

Mass of heat slug mHS 0.8 g • Spec, thermal capacity of Cu cCu 0.385 Ws/g K

Thermal capacity of heat slug CthHS 310 mWs/K τ Thermal time constant of heat slug HS 70 ms

Table 2 Parametric Data of the P-TO263-7-3

10 Infineon Technologies AG The die bond and molding The time constance of the die RC section which is being fed by components have been omitted bond is smaller than that of the a current pulse generator. from this discussion because they chip by two orders of magnitude The following relationship applies:

• • t/R • C do not significantly influence the and can, thus, be neglected. V(t) = R I (1 - e ) calculation of Rthj-c. The thermal resistance RthM of and for the increase in tempera- For reference, these data are the molding is even three orders ture: / • • t Rth • Cth listed here: of magnitude bigger than that of T(t) = Rth P (1 - e )

C RthDB = 0.01 to 0.1 K/W; the chip and that of the heat slug, and, being in parallel, can be This heating-up and cooling-down C C = 0.1 to 0.5 mWs/K; thDB neglected also. process is presented qualitatively τ C DB = 1 to 50 ms; Pulse operation and the associat- in Figure 8 (valid for tp >> 2 ms ed chip temperature responses only). C RthM = 100 K/W; also deserve examination. The chip temperature goes up C CthM = 0.64 Ws/K and In accordance with the analogy to and down between Tmin and Tmax. τ electrical systems, the chip tem- The variation depends on the C M = 64 s. perature response can be viewed magnitude of the power pulse (Die Bond = index: DB; like a voltage increase across an and its duty cycle. molding = index: M)

PV T

t

tp

Tj Tmax

Tavg

Tmin t

Figure 8 Chip Temperature Tj vs. Time, for Periodic Pulse Operation

Infineon Technologies AG 11 Thermal Resistance - Theory and Practice

This junction temperature medium-power package transients can be represented in P-DSO-14-4 for three different the form of a function if the cooling areas on the PCB. dynamic thermal impedance This function clearly shows the

Zth = (Tmax - Tmin) / PV regions of dominance of the is shown versus pulse width tp for various time constants of the different duty cycles (duty cycle = chip, the lead frame, and the

DC = tp/T) (Figure 9). PCB. A special case of this representa- The chip time constant tD lies in tion is the dynamic thermal the millisecond range, whereas impedance in single-pulse the lead frame dominates in the operation (DC = 0). Figure 10 range of several 100 ms and the shows the thermal impedance in PCB in the 100-second range. single-pulse operation for the

10 0 120

K/W K/W Footprint Zthj-c Zthj-a 100

10 -1

80 300 mm 2 D = 0.50 10 -2 60 0.20 600 mm 2 0.10 0.05 0.02 40 single pulse 0.01 10 -3

20

10 -4 0 10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 s 10 0 10-3 10-2 10-1 100 101 102 s 103 tp tp

Figure 9 Dynamic Thermal Figure 10 Thermal Impedance of the Impedance Zthj-c of a P-DSO-14-4 Package for P-TO263-7-3 Package Single-Pulse Operation

12 Infineon Technologies AG Finite Element Method (FEM) The geometric data of the package is entered into the FEM The steps of the Finite Element model to calculate the thermal Method (FEM) are explained resistance. This avoids time- below and one example is consuming measurements. provided per group. Figure 11 shows an implemented model.

P-TO252-3-1 P-DSO-14-4

Figure 11 FEM Model of Heat Sink and Thermal Enhanced Package

Infineon Technologies AG 13 Thermal Resistance - Theory and Practice

The temperatures of the individual components (chip, die- pad, molding compound, and leadframe) can be viewed individually or in combination (Figure 12).

Chip with two active areas (dice only) Mold compound without cooling P-TO252-3-1 without mold compound

tab,chip and lead frame with PV = 3 W for determining the Rthj-c

Chip and lead frame of the Lead frame of the SCT595-5-1 on a SOT223-4-2 on a PCB with 6 cm²

SOT223-4-2 package on a PCB PCB with heat sink heat sink; Rthj-a ~ 70 K/W is calculated

with heat sink at PV = 0.5 W

Figure 12 FEM Analysis Possibilities

14 Infineon Technologies AG Three different PCBs have been created for each package model. They differ in the size of the copper laminated area A (heat sink) which is linked to the heat dissipating parts of the case (die- pad in the P-TO252-3-1 or center pins in the P-DSO-14) (Figure 13).

P-DSO-14-4 P-DSO-14-4 P-DSO-14-4 -16-1 1230.375 0.375 6 cm²a/2 3 cm² Footprint only a/2 0.67 a a

1 1 1

Application-Board for Rth Measurement Rth-P-DSO-14-4 LP 1.0

P-TO252-3-1 P-TO252-3-1 P-TO252-3-1

a 123 6 cm² 3 cm² a Footprint only

a/2 a/2

IQ I Q I Q 1 1 1

Application-Board for Rth Measurement Rth-P-TO252-3-1 LP 1.1

Figure 13 PCB-Layout for FEM-Simulation P-DSO-14-4 and P-TO252-3-1

Infineon Technologies AG 15 Thermal Resistance - Theory and Practice

Determining the Static Heat value depends only slightly on the easily determine the expected Resistance active chip area. It is sufficient to Rthj-a, especially as the simulated simulate just one medium-sized values are calculated in still air. The FEM simulation calculates chip (>2 mm²). Therefore, they represent the

the thermal static resistance Rthj-a If the static thermal resistance “worst case“. In real applications (junction-ambient) and the Rthj-c Rthj-a is applied versus the PCB the values for the heat resistance (junction-case) for packages with heat sink area, a very important are much lower. At an air stream

enhanced die-pad or Rthj-pin function is obtained for the of 500 lin ft/min (linear feet per (junction to a defined pin) for application of the component. By minute) the Rthj-a of the thermal enhanced P-DSO estimating the heat sink area in a P-DSO-14-4 for example is up to packages without die-pad. This real application, the user can 15 % lower (Figure 15).

P-DSO-14-4 P-TO252-3-1 120 160 K/W 112 K/W 143.9 R Rthj-pin = 31.7 K/W R thj-a thj-a Rthj-c = 1.8 K/W 100 92 120 90 80 100 78 70 80 60 78 60 50 54.7 40 40 0 100 200 300 400 500 mm 2 600 0 100 200 300 400 500 mm 2 600 A A

Figure 14 Thermal Resistance Junction to Ambient Rthj-a vs. PCB Heat Sink Area A at zero airflow

P-DSO-14-4 P-TO252-3-1 120 160 K/W Footprint only K/W Rthj-a 110 A = 300 mm 2 Rthj-a 140 A = 600 mm 2 100 120 Footprint only 90 100 A = 300 mm 2 A = 600 mm 2 80 80

70 60

60 40 0 100 200 300 400 m/min 600 0 50 100 150 m/min 200 Airspeed Airspeed

Figure 15 Thermal Resistance Junction to Ambient Rthj-a vs. Airspeed for the P-DSO-14-4 and P-TO252-3-1 Packages

16 Infineon Technologies AG Measuring the Rthj-a in a To measure the chip temperature The calibration curve is measured Real Application: (Tj) requires a little trick: in the temperature chamber with A temperature sensor is required airflow. The power loss should be Using the measurement described on the chip which can also be read kept as low as possible to ensure below the real thermal resistance during operation. In many products the chip temperature remains can be determined. a substrate can be used at equal to the ambient temperature.

To determine the actual Rthj-a the an output (Status, Reset, etc.) to For the voltage regulator temperature difference between measure the chip temperature. TLE 4269 GM (P-DSO-14-4 Package) chip temperature Tj and ambient To do this, the forward voltage VF a calibration curve (measured at temperature Ta is required. The of the diode is measured at load the diode at the reset output, pin 7). independent current as a RO is illustrated in Figure 16. T - T equation R =j a applies. calibration curve. Due to the Figure 17 shows the thj-a P V characteristic temperature behavior corresponding measuring circuit.

The power loss PV and the ambient of the forward voltage - it has a temperature Ta can be determined negative temperature coefficient of easily in a temperature chamber or approx. -2 mV/K - the relevant chip calculated. temperature can be determined.

700 mV VF 600 500

400

300

200

100

0 0 50 100˚C 150 T

Figure 16 Calibration Curve TLE 4269 GM for IRO = -500 µA (current drawn from Pin 7; RO)

Infineon Technologies AG 17 Thermal Resistance - Theory and Practice

The Rthj-a of any application can be forward voltage VF of the diode.

determined by measuring the The appropriate Tj for every VF forward voltage of an output with value can be read from the substrate diode during operation calibration curve VF = ƒ(Tj). (Figure 17). When the switch S1 is closed and The exact heat resistance of the

the output voltage VQ = 5 V, the real application is calculated with output current is 5 A. this values in the formula 35 • T - T The power loss PV = (VI - VQ) IQ R = j a thj-a P in the chip of the voltage V regulator is now 1 W. Now, Parameters such as air flow can change the ambient temperature be changed without affecting the measuring accuracy. Ta and measure the respective

TLE 4269 GM

I 13 TPower 9 Q

RPU Ω 20 k µ IF ~ 500 A 7 RO V = 12 V TRO I CI 10 µF Substrat RF RL diode 100 kΩ 35 Ω of TRO VF ~ 0.7 V – V CQ P-DSO-14-4 3-5; 10-12 B 50 V S1 22 µF +

1. Measurement of function VF = f (Ta): 2. Measurement of thermal resistance junction to ambient Rthj-a: S1 open; we get IQ = 0 mA S1 closed; we get IQ = VQ / RQ and PV = VI * II ~ 0 mW and PV = (VI - VQ) * IQ ~ 1 W PV = Power losses Ta ~ Tj Tj then can be found by measuring VF at given Ta from function VF vs. Ta Ta = Ambient temperature then we get Rthj-a = (Ta - Tj) / 1 W Tj = Junction temperature

Figure 17 Measuring Circuit with TLE 4269GM

18 Infineon Technologies AG Determining the Dynamic performed, it is easy to obtain the – P-TO252-3-1 (D-Pack) Heat Resistance graph Zthj-a = ƒ(tp) (dynamic – 3 cm² heat sink thermal impedance as a function – Power loss PV = 10 W The FEM analysis is used also for of the pulse width tp). – Pulse width tp = 200 ms dynamic processes. For the P-TO252-3-1 (D-Pack) and – Ambient temperature

As described above, the dynamic the P-DSO-14-4 the thermal Ta = 85 °C. thermal impedance is defined as impedances for the above- From the middle curve (Figure 18), the ratio of the temperature mentioned PCB configurations are the Zthj-a of approximately 3.5 K/W ∆ difference T = Tj - Ta (chip tem- specified (Figure 18). at tp = 200 ms gives a tempera- ∆ perature - start temperature) after The peak temperatures can be ture rise T = PV x Zthj-a of 35 K the time tp to the power loss. calculated easily from these and finally a peak temperature

If a transient FEM simulation is curves: Tjmax of 85 °C+35 °C = 120 °C.

P-DSO-14-4 P-TO252-3-1 120 160 K/W K/W Zthj-a 100 Zthj-a Footprint 120 80 300 mm 2 600 mm 2 100 60 80 Footprint 60 300 mm 2 40 600 mm 2 40 20 20

0 0 -3 -2 -1 0 1 2 3 10-3 10-2 10-1 100 101 102 s 103 10 10 10 10 10 10 s 10 tp tp

Figure 18 Thermal Impedance Junction to Ambient Zthj-a vs. Single Pulse Time tp

Infineon Technologies AG 19 Thermal Resistance - Theory and Practice

Summary

For each case listed in Table 1, On the right side is the diagram P-DSO-20-10 with P-DSO-36-10 in a „Package and Thermal for the dynamic heat resistance the appendix).

Information“ data sheet is Zthj-a, with three graphs for the The PCBs are usually installed in provided in the appendix.Each various PCB heat sinks depending closed plastic cases. The most

data sheet shows the footprint on the single pulse duration tp. favorable heat path then usually and case dimensions. The various This information is a valuable aid forms at plug contacts to the versions of the PCBs used for the for SMD Power applications. It is cables because a supply wire simulation are shown. It shows intentionally limited to PCBs with an adequate cross section is the heat distribution diagrams and laminated on one side because it ideal as a heat conductor. the result diagrams of the FEM represents the cost optimum. For The future of chip placement simulation. The left side shows double sided PCBs or multilayers requires mechatronic solutions the diagram of the static thermal a simple attempt with where the PCB can be replaced

resistance Rthj-a depending on the conductance cross sections can by chip-connector-supply wire PCB heat sink area A. It includes be made to determine the change configurations. the related thermal resistance in the PCB thermal resistance

Rthj-c (junction-case) or Rthj-pin. (compare thermal data sheet of

20 Infineon Technologies AG Package and Thermal Information Appendix

P-DSO-8-1 22

P-DSO-14-4 23

P-DSO-16-1 24

P-DSO-20-1 25

P-DSO-20-6 26

P-DSO-24-3 27

P-DSO-28-6 28

P-DSO-20-10 29

P-DSO-36-10 30

SCT595-5-1 31

SOT223-4-2 32

P-TO252-3-1 33

P-TO263-5-1 34

Infineon Technologies AG 21 P-DSO-8-1 Footprint/Dimensions

. 0.35 x 45˚ x a 2 .

1 6 0 . 1) m 0 - 0 4 . - -0.2 0 5 5 + 2 4 7 . . . 9 0 1 1 1 Package e A L B . .

0 x a

P-DSO-8-1 1.27 5.69 1.31 0.65 m 0.4 +0.8 8 L 1.27 0.1 6 ±0.2 0.35 +0.15 2) 0.2 8x

e 8 5

B A 1 4 1) Reflow soldering 5 -0.2 Index Marking Dimensions in mm

PC-Board Application-Boards for Rth - Measurement

P-DSO-8-1 P-DSO-8-1 P-DSO-8-1

a/2 1 2 3 6 cm² 3 cm² a/2 Footprint only a a 5 5 7 7 7 7 6 6 3 3 . . . . 0 0 0 0

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 0.5 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 369 K A = 300 mm²; Ta = 298 K; Tmax = 380 K Footprint only; Ta = 298 K; Tmax = 390 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 190 185 200 K/W R = 71.8 K/W K/W R thj-pin2 Z Footprint thj-a thj-a 2 170 160 300 mm 164 600 mm 2 160 140 120 150 100 140 142 80 130 60 120 40 110 20 100 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 22 InfineonTechnologiesTechnologies AG AG Package and Thermal Information P-DSO-14-4 Footprint/Dimensions

. 0.35 x 45˚ x a 2

. 6

1 1) 0

. 0 m - .

4 0 -0.2 0 -

5 5 + 4 7 2 . . . 9 1 1 Package e A L B 0 1 . 0 . x

P-DSO-14-4 1.27 5.69 1.31 0.65 a

1.27 m

L 8 0.1 0.35 +0.15 2) 0.4 +0.8 0.2 14x GND GND 6 ±0.2 14 8 e

B A 1 7 8.75 1) Reflow soldering -0.2 Index Marking Dimensions in mm

Application-Boards for Rth - Measurement PC-Board

P-DSO-14-4 P-DSO-14-4 P-DSO-14-4 -16-1 1 0.375 2 3 0.375 6 cm² a/2 3 cm² Footprint only a/2 7 6 . 0 a a

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow) Finite Element Method

A = 600 mm²; Ta = 298.1 K; Tmax = 377.7 K A = 300 mm²; Ta = 298 K; Tmax = 389.8 K Footprint only; Ta = 298 K; Tmax = 410.1 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 120 120 K/W 112 K/W Rthj-pin4 = 31.7 K/W Rthj-a Zthj-a 100 100 Footprint 92 80 300 mm 2 90 600 mm 2 80 60 78 70 40 60 20 50 40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp InfineonInfineonTechnologiesTechnologies AG 23 P-DSO-16-1 Footprint/Dimensions

. 0.35 x 45˚ x a 2 . 6 1 1) 0 . m

- 0

4 . 0 -0.2 - 0 5 5 + 4 7 2 . . . 9 1 1 0 1 Package e A L B . 0 . x

P-DSO-16-1 1.27 5.69 1.31 0.65 a

1.27 m

L 8 +0.15 2) 0.1 0.4 +0.8 0.35 0.2 16x 6 ±0.2 16 9 e

B A 1 8 1) 10 -0.2 Reflow soldering Index Marking Dimensions in mm

PC-Board Application-Board for Rth - Measurement

P-DSO-14-4 -16-1 3 Footprint only

1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow)

Footprint only; Ta = 298 K; Tmax = 419.1 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 130 140 121 K/W R = 48.2 K/W K/W Rthj-a thj-pin4 Zthj-a Footprint 110 100 100 90 80 80 60 70 40 60 50 20 40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 24 InfineonTechnologiesTechnologies AG AG Package and Thermal Information P-DSO-20-1 Footprint/Dimensions

. 0.35 x 45˚ x 2 a . 1 0 . 1) m -

0 9 7.6 - -0.2 0 5

5 . 0 2 4 6 .

. + . 0 2 2 3 2 . .

Package e A L B 0 x a m

P-DSO-20-1 1.27 9.73 1.67 0.65 1.27 +0.8 ˚

0.4 8 0.35 +0.15 2) L 0.2 20x 0.1 10.3 ±0.3 20 11 e B A 1 12.8 1) 10 Reflow soldering -0.2 Index Marking Dimensions in mm

Application-Board for Rth - Measurement PC-Board

P-DSO-20-1 -20-6 -24-3 3 -28-6 Footprint only

1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow) Finite Element Method

Footprint only; Ta = 298 K; Tmax = 407 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 120 120 109 K/W R = 43.6 K/W K/W Rthj-a thj-pin5 Zthj-a 100 Footprint 80 90 80 60 70 40 60 20 50 40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp InfineonInfineonTechnologiesTechnologies AG 25 P-DSO-20-6 Footprint/Dimensions

. 0.35 x 45˚ x 2 a . 1 0 . 1) m -

0 9 7.6 - -0.2 0 5

5 . 0 2 4 6 .

. + . 0 2 2 3 2 . .

Package e A L B 0 x a m

P-DSO-20-6 1.27 9.73 1.67 0.65 1.27 +0.8 ˚

0.4 8 0.35 +0.15 2) L 0.2 20x 0.1 10.3 ±0.3 GND GND 20 11 e B A 1 12.8 1) 10 Reflow soldering -0.2 Index Marking Dimensions in mm

PC-Board Application-Boards for Rth - Measurement

P-DSO-20-6 P-DSO-20-6 P-DSO-20-1 -24-3 -24-3 -20-6 -28-6 -28-6 -24-3 1 a 2 3 -28-6 6 cm² 0.375 3 cm² 0.375 Footprint only 3 3 . . 0 0 2 / 2 / a a a

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 372 K A = 300 mm²; Ta = 298 K; Tmax = 379 K Footprint only; Ta = 298 K; Tmax = 397 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 110 120 K/W 100 R = 22.9 K/W K/W Rthj-a thj-pin5 Zthj-a 90 Footprint 81 80 300 mm 2 2 80 600 mm 60 74 70 40 60

50 20

40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 26 Infineon Technologies AG Package and Thermal Information P-DSO-24-3 Footprint/Dimensions

. 0.35 x 45˚ x 2 a . 1

0 1) 9 . m - 0

0 7.6 .

- -0.2

5 0 5 + 2 4 6 . . . 0

2 3 2 2 . Package e A L B 0 . x a

+0.8 m P-DSO-24-3 1.27 9.73 1.67 0.65 1.27 0.4 ˚ 8 L 0.35 +0.15 2) 10.3 ±0.3 0.2 24x 0.1 GND GND 24 13 e

B A

1 1) 12 Reflow soldering 15.6 -0.4 Index Marking Dimensions in mm

Application-Boards for Rth - Measurement PC-Board

P-DSO-20-6 P-DSO-20-6 P-DSO-20-1 -24-3 -24-3 -20-6 -28-6 -28-6 -24-3 1 a 2 3 -28-6 6 cm² 0.375 3 cm² 0.375 Footprint only 3 3 . . 0 0 2 / 2 / a a a

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow) Finite Element Method

A = 600 mm²; Ta = 298 K; Tmax = 358 K A = 300 mm²; Ta = 298 K; Tmax = 365 K Footprint only; Ta = 298 K; Tmax = 374 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 80 90 K/W 76.4 K/W 75 Rthj-pin6 = 20.5 K/W Rthj-a Zthj-a 70 70 67.4 Footprint 60 300 mm 2 65 2 60.5 50 600 mm 60 40 55 30 50 20 45 10 40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp Infineon Technologies AG 27 P-DSO-28-6 Footprint/Dimensions

. 0.35 x 45˚ x 2 a . 1 0

. 1) 9 m -

0 7.6 0 - -0.2 . 5 5 0 2 4 + 6 . . . 0 2 2 3 2 . Package e A L B 0 . x a

+0.8 m P-DSO-28-6 1.27 9.73 1.67 0.65 1.27 0.4 ˚ 8 L 0.35 +0.15 2) 10.3 ±0.3 0.2 28x 0.1 GND GND 28 15 e

B A

1 1) 14 Reflow soldering 18.1-0.4 Index Marking Dimensions in mm

PC-Board Application-Boards for Rth - Measurement

P-DSO-20-6 P-DSO-20-6 P-DSO-20-1 -24-3 -24-3 -20-6 -28-6 -28-6 -24-3 1 a 2 3 -28-6 6 cm² 0.375 3 cm² 0.375 Footprint only 3 3 . . 0 0 2 / 2 / a a a

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 349 K A = 300 mm²; Ta = 298 K; Tmax = 354 K Footprint only; Ta = 298 K; Tmax = 359 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 65 70 K/W 61.4 Rthj-pin7 = 20.1 K/W K/W Rthj-a Zthj-a 60 Footprint 2 56 50 300 mm 600 mm 2 55 40 51 50 30 20 45 10

40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 28 Infineon Technologies AG Package and Thermal Information P-DSO-20-10 . 1 x . 1) Footprint/Dimensions 0 ±0.15 a 11 5 ±

1 7 . 1.2 m B 5 0 2 -0.3 0 . 0 + 2 5 2.8 0 . . . + 0 - 3 3 0 5 2 . 3 0 ˚ . 3 1 Package e A L B ± ˚

15.74 ±0.1 5 P-DSO-20-10 1.27 13.48 1.83 0.68 (Heatsink) 1.27 0.1 6.3 Heatsink L 0.95 ±0.15 0.4 +0.13 0.25 M A 20x 14.2 ±0.3 0.25 M B GND

e 20 11

B A 1 10 Index Reflow soldering Marking 1 x 45˚ 15.9 ±0.15 1) Dimensions in mm A

Application-Boards for Rth - Measurement PC-Board

P-DSO-20-10 P-DSO-20-10 P-DSO-20-10 a 0.375 1 2 a 3 2 6 cm² / 3 cm² Footprint only a 2 / 5 a 7 3 . 0 3 3 . . 0 0

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 3 W; zero airflow) Finite Element Method

A = 600 mm²; Ta = 298 K; Tmax = 406 K A = 300 mm²; Ta = 298 K; Tmax = 421 K Footprint only; Ta = 298 K; Tmax = 463 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 60 60 K/W K/W R 55 Z 50 thj-a 55 Rthj-c = 2.4 K/W thj-a Footprint 50 40 300mm 2 600 mm 2 45 30 41 40 20 36 35 10

30 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp Infineon Technologies AG 29 P-DSO-36-10 .

1 1) x Footprint/Dimensions . ±0.15

0 11 a ± B

1 7 m .

±0.1 5 0 2

1.1 0 2.8 . 0 2 5 0 . + . . + 0 - 0 3 3 5 2 . 3 0 ˚ . 3 1 Package e A L B ± ˚

15.74 ±0.1 5 P-DSO-36-10 0.65 13.48 1.83 0.45 0.65 (Heatsink) 0.1 6.3 Heatsink L 0.25 +0.13 0.95 ±0.15 0.25 M A 36x GND 14.2 ±0.3 0.25 B 36 19 e B A 1 18 Index Reflow soldering Marking 1 x 45˚ 15.9 ±0.15 1) Dimensions in mm A

PC-Board Application-Boards for Rth - Measurement

P-DSO-36-10 P-DSO-36-10

FR4; 47 x 50 x 1.5 mm; 70 µ Cu FR4; 47 x 50 x 1.5 mm; 70 µ Cu A = 600 mm²; 24.5 x 24.5 mm A = 300 mm²; 16 x 19 mm

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 3.5 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 398 K A = 300 mm²; Ta = 298 K; Tmax = 427 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 60 60 K/W R = 2 K/W K/W Rthj-a thj-c Zthj-a 50 50 40 45 300 mm 2 40 30 2 36.8 600 mm 35 20 30 28.6 10 25 20 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 30 InfineonTechnologiesTechnologies AG AG Package and Thermal Information SCT595-5-1 Footprint/Dimensions 2.9±0.2 1.4 B (2.2) +0.1 1.1 max 1.2-0.05 (0.3) 0.1 max A 9 9 GND . . +0.2 2 1 5 4

acc. to x 1 a .

DIN 6784 0 m ±

x x 6 6 . a a . 1 2 m m ˚ ˚ 0 1 2 3 0

0.5 1 0.3 +0.1 1 GND 0.8 -0.05 +0.1 +0.1 0.15-0.06 0.6 -0.05 0.95 0.25 M B 0.95 0.20 M A Reflow soldering 1.9 Dimensions in mm

Application-Boards for Rth - Measurement PC-Board

SCT595 SCT595 SCT595

1 2 3 6 cm² a 3 cm² Footprint only 0.375 a 0.375 3 . 3 0 . 0 2 / 2 / a a D D D H H H N N I Q I Q N I Q N N N I G G G I 1 1 I 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 17.32 mm A = 300 mm²; a = 12.247 mm Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 0.2 W; zero airflow) Finite Element Method

A = 600 mm²; Ta = 298 K; Tmax = 315 K A = 300 mm²; Ta = 298 K; Tmax = 318 K Footprint only; Ta = 298 K; Tmax = 334 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 200 200 K/W K/W R 178.7 Rthj-pin5 = 25.9 K/W Z thj-a thj-a 160 140 Footprint 160 300 mm 2 120 600 mm 2 140 100 80 120 60 98.5 100 40 87 20 80 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp InfineonInfineonTechnologiesTechnologies AG 31 SOT223-4-2 Footprint/Dimensions 6.5±0.2 1.6 ±0.1 B 3±0.1 0.1 max 3.5 B GND

4 x 4 . +0.2 a 1 m ˚

acc. to 5 2 3 . . 1 0 0

DIN 6784 ± ± 5 7 . 3 8 1.2 . 4 n 1.1 i m 5

1 2 3 . 0 4 . 2.3 0. 1 0.7±0.1 28±0.04 4.6 Reflow soldering 0.25 M A 0.25 M B Dimensions in mm

PC-Board Application-Boards for Rth - Measurement

SOT223 SOT223 SOT223 a/2 1 2 a/2 3 6 cm² 3 cm² Footprint only a a

0.3 0.3

I Q GND I Q GND I Q GND 1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 24.49 mm A = 300 mm²; a = 17.32 mm Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 0.5 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 332 K A = 300 mm²; Ta = 298 K; Tmax = 339 K Footprint only; Ta = 298 K; Tmax = 380 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 180 180 K/W K/W 164.3 R = 16.5 K/W Rthj-a thj-pin4 Zthj-a 140 140 120 Footprint 300 mm 2 100 2 120 600 mm 80 100 60 81.2 40 80 68 20 60 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 32 InfineonTechnologiesTechnologies AG AG Package and Thermal Information P-TO252-3-1 Footprint/Dimensions +0.15 6.5 -0.10 +0.05 2.3 -0.10 A 5.4 ±0.1 B 0.9 +0.08 5.8 1 -0.04 . 0 ± 1 5 ) 2 1 . 7 . 0 5 0 1 4 . - . . ± GND 0 4 6 2 ( ± 8 6 2 . . 2 . 9 . 0 0 . 2 6 1 9 n i

1 3 m 1 5 . 1.2 0.15 max 0 0...0.15 3x +0.08 per side ±0.1 0.5 5.76 0.75 -0.04 2.28 1±0.1 Reflow soldering 4.57 0.25 M A B 0.1 Dimensions in mm

Application-Boards for Rth - Measurement PC-Board

P-TO252-3-1 P-TO252-3-1 P-TO252-3-1

a 1 2 3 6 cm² 3 cm² a Footprint only

a/2 a/2

I Q I Q I Q 1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 24.49 mm A = 300 mm²; a = 17.32 mm Footprint only

≥ FEM Simulation (chip area 2 mm²; Pv = 1 W; zero airflow) Finite Element Method

A = 600 mm²; Ta = 298 K; Tmax = 353 K A = 300 mm²; Ta = 298 K; Tmax = 376 K Footprint only; Ta = 298 K; Tmax = 442 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 160 160 K/W 143.9 R = 1.8 K/W K/W Rthj-a thj-c Zthj-a 120 120 100 100 80 Footprint 60 300 mm 2 80 600 mm 2 78 40 60 20 54.7 40 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp InfineonInfineonTechnologiesTechnologies AG 33 P-TO263-5-1 Footprint/Dimensions 4.4 ±0.1 10 ±0.2 1.27±0.1 A B 1) ±0.1 3 8.5 0.1 .

0 0.05 ±

1 GND 2

) ±0.1

. 2.4 6 1 0 . 1 8 . ± 8 9 . 0 . ) 1 5 0 7 5 2 1 . 3 1 . ( 9 0 5 . ± 0 7 ± . 7 2 9.4 4.6 1 5 . 4 16.15 5x0.8 ±0.1 0.5 ±0.1 4x1.7 Reflow soldering 8˚max. 0.25 M A B 0.1 B Dimensions in mm

PC-Board Application-Boards for Rth - Measurement

P-TO263-5-1 P-TO263-5-1 P-TO263-5-1 a/2 1 2 3 6 cm² 3 cm² a/2 Footprint only a a

1 1 1

FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn FR4; 80 x 80 x 1.5 mm; 35 µ Cu, 5 µ Sn A = 600 mm²; a = 24.49 mm A = 300 mm²; a = 17.32 mm Footprint only

≥ Finite Element Method FEM Simulation (chip area 2 mm²; Pv = 3 W; zero airflow)

A = 600 mm²; Ta = 298 K; Tmax = 417 K A = 300 mm²; Ta = 298 K; Tmax = 455 K Footprint only; Ta = 298 K; Tmax = 533 K

Diagrams

Thermal Resistance Junction to Ambient Rthj-a vs. Thermal Impedance Junction to Ambient Zthj-a vs. PCB Heat Sink Area A (zero airflow) Single Pulse Time tp (zero airflow) 85 90 K/W 78.4 K/W Rthj-c = 1.3 K/W Rthj-a Zthj-a 75 70 70 60 65 50 Footprint 60 300 mm 2 40 2 55 52.4 600 mm 50 30 45 20 40 10 39 35 0 0 100 200 300 400 500 mm 2 600 10-3 10-2 10-1 100 101 102 s 103 A tp 34 InfineonTechnologiesTechnologies AG AG Infineon Technologies AG’s sales offices worldwide – partly represented by AG

OA OD OIND ONL OSGP Siemens AG Österreich Infineon Technologies AG Siemens Ltd. Siemens Electronic Components Infineon Technologies Asia Erdberger Lände 26 Halbleiter Distribution Components Division Benelux Pacific, Pte. Ltd. A-1031 Wien Richard-Strauss-Straße 76 No. 84 Keonics Electronic City Postbus 16068 168 Kallang Way T (+43) 1-17 07-3 56 11 D-81679 München Hosur Road NL-2500 BB Den Haag 349 253 Fax (+43) 1-17 07-5 59 73 T (+49) 89-92 21 40 86 Bangalore 561 229 T (+31) 70-3 33 20 65 T (+65) 8 40 06 10 Fax (+49) 89-92 21 20 71 T (+91) 80-8 52 11 22 Fax (+31) 70-3 33 28 15 Fax (+65) 7 42 62 39 Fax (+91) 80-8 52 11 80 Email: [email protected] OAUS Siemens Ltd. ODK Siemens Ltd. OUSA 885 Mountain Highway Siemens A/S CMP Div, 5th Floor ONZ Infineon Technologies Bayswater, Victoria 3153 Borupvang 3 4A Ring Road, IP Estate Siemens Auckland Corporation T (+61) 3-97 21 21 11 DK-2750 Ballerup New Delhi 110 002 300 Great South Road 1730 North First Street Fax (+61) 3-97 21 72 75 T (+45) 44 77-44 77 T (+91) 11-3 31 99 12 Greenland San Jose, CA 95112 Fax (+45) 44 77-40 17 Fax (+91) 11-3 31 96 04 Auckland T (+1) 4 08-5 01 60 00 T (+64) 9-5 20 30 33 Fax (+1) 4 08-5 01 24 24 OB Siemens Ltd. Fax (+64) 9-5 20 15 56 OE Siemens Electronic Components CMP Div, 4th Floor Siemens Components, Inc. Benelux Siemens S.A. 130, Pandurang Budhkar Marg, Optoelectronics Division OP Charleroisesteenweg 116/ Dpto. Componentes Worli 19000 Homestead Road Chaussée de Charleroi 116 Ronda de Europa, 5 Siemens S.A. Mumbai 400 018 Cupertino, CA 95014 an Componentes Electronicos B-1060 Brussel/Bruxelles E-28760 Tres Cantos-Madrid T (+91) 22-4 96 21 99 T (+1) 4 08-2 57 79 10 T (+32) 2-5 36 69 05 T (+34) 91-5 14 71 51 Fax (+91) 22-4 96 22 01 R. Irmaos Siemens, 1 Fax (+1) 4 08-7 25 34 39 Fax (+32) 2-5 36 28 57 Fax (+34) 91-5 14 70 13 Alfragide Email: [email protected] P-2720-093 Amadora Siemens Components, Inc. OIRL T (+351) 1-4 17 85 90 Special Products Division OF Siemens Ltd. Fax (+351) 1-4 17 80 83 186 Wood Avenue South OBR Infineon Technologies France, Electronic Components Division Iselin, NJ 08830-2770 Siemens Ltda. 39/47, Bd. Ornano 8, Raglan Road T (+1) 7 32-9 06 43 00 Semiconductores OPK F-93527 Saint-Denis CEDEX 2 IRL-Dublin 4 Fax (+1) 7 32-6 32 28 30 Avenida Mutinga, 3800-Pirituba (+33) 1-49 22 31 00 Engineering T T (+3 53) 1-2 16 23 42 05110-901 São Paulo-SP Fax (+33) 1-49 22 28 01 Fax (+3 53) 1-2 16 23 49 Co.Ltd. T (+55) 11-39 08 25 64 PO Box 1129, Islamabad 44000 OVRC Fax (+55) 11-39 08 27 28 23 West Jinnah Ave Infineon Technologies OFIN OIL Islamabad Hong Kong Ltd. Siemens Components Nisko Ltd. T (+92) 51-21 22 00 Beijing Office OCDN Scandinavia 2A,Habarzel St. Fax (+92) 51-21 16 10 Room 2106, Building A Infineon Technologies Corporation P.O.Box 60 P.O. Box 58151 Vantone New World Plaza 320 March Road, Suite 604 FIN-02601 Espoo (Helsinki) 61580 Tel Aviv – Isreal No. 2 Fu Cheng Men Wai Da Jie T (+3 58) 10-5 11 51 51 OPL Canada, Ontario K2K 2E2 T (+9 72) 3-7 65 73 00 100037 Beijing (+1) 6 13-5 91 63 86 Fax (+3 58) 10-5 11 24 95 Siemens SP. z.o.o. T Fax (+9 72) 3-7 65 73 33 T (+86) 10-68 57 90 -06, -07 Fax (+1) 6 13-5 91 63 89 Email: ul. Zupnicza 11 Fax (+86) 10-68 57 90 08 [email protected] PL-03-821 Warszawa OJ T (+48) 22-8 70 91 50 OCH Infineon Technologies Siemens Components K.K. Fax (+48) 22-8 70 91 59 Siemens Schweiz AG OGB Hong Kong Ltd. Talanawa Park Tower 12F & 17F Chengdu Office Bauelemente Infineon Technologies 3-20-14, Higashi-Gotanda, OROK Room 14J1, Jinyang Mansion Freilagerstrasse 40 Siemens House Shinagawa-ku Oldbury Siemens Ltd. 58 Tidu Street CH-8047 Zürich Tokyo (+41) 1-4 95 30 65 Asia Tower, 10th Floor Chengdu, T GB-Bracknell, Berkshire T (+81) 3-54 49 64 11 Fax (+41) 1-4 95 50 50 RG 12 8FZ 726 Yeoksam-dong, Kang-nam Ku Sichuan Province 610 016 Fax (+81) 3-54 49 64 01 (+86) 28-6 61 54 46 / 79 51 T (+44) 13 44-39 66 18 CPO Box 3001 T Fax (+86) 28-6 61 01 59 Fax (+44) 13 44-39 66 32 Seoul 135-080 D O OMAL T (+82) 2-5 27 77 00 Infineon Technologies Infineon Technologies AG Infineon Technologies AG Fax (+82) 2-5 27 77 79 Völklinger Str. 2 OH Hong Kong Ltd. Sdn Bhd Shanghai Office D-40219 Düsseldorf Simacomp Kft. Bayan Lepas Free Industrial Zone 1 T (+49) 2 11-3 99 29 30 Lajos u. 103 ORUS Room 1101, Lucky Target Square 11900 Penang No. 500 Chengdu Road North Fax (+49) 2 11-3 99 14 81 H-1036 Budapest (+60) 4-6 44 99 75 INTECH T Shanghai 200003 T (+36) 1-4 57 16 90 Fax (+60) 4-6 41 48 72 ul. Smolnaya, 24/1203 Infineon Technologies AG Fax (+36) 1-4 57 16 92 RUS-125 445 Moskva T (+86) 21-63 61 26 18/19 Werner-von-Siemens-Platz 1 T (+7) 0 95-4 51 97 37 Fax (+86) 21-63 61 11 67 D-30880 Laatzen (Hannover) ON Fax (+7) 0 95-4 51 86 08 OHK T (+49) 5 11-8 77 22 22 Siemens Components Infineon Technologies Fax (+49) 5 11-8 77 15 20 Infineon Technologies Scandinavia Hong Kong Ltd. OS Hong Kong Ltd. Østre Aker vei 24 Shenzhen Office Infineon Technologies AG Suite 302, Level 3, Postboks 10, Veitvet Siemens Components Scandinavia Room 1502, Block A Festival Walk, Österögatan 1, Box 46 Tian An International Building Von-der-Tann-Straße 30 N-0518 Oslo D-90439 Nürnberg 80 Tat Chee Avenue, T (+47) 22-63 30 00 S-16493 Kista Renim South Road T (+49) 9 11-6 54 76 99 Yam Yat Tsuen, Fax (+47) 22-68 49 13 T (+46) 8-7 03 35 00 Shenzhen 518 005 Fax (+49) 9 11-6 54 76 24 Kowloon Tong Email: Fax (+46) 8-7 03 35 01 T (+86) 7 55-2 28 91 04 Hong Kong [email protected] Email: Fax (+86) 7 55-2 28 02 17 Infineon Technologies AG T (+8 52) 28 32 05 00 [email protected] Weissacher Straße 11 Fax (+8 52) 28 27 97 62 OZA D-70499 Stuttgart ORC (+49) 7 11-137 33 14 Siemens Ltd. T OI Fax (+49) 7 11-137 24 48 Infineon Technologies Components Division Siemens S.p.A. Asia Pacific Pte. Ltd. P.O.B. 3438 Semiconductor Sales Taiwan Branch Halfway House 1685 Via Piero e Alberto Pirelli, 10 10F, No. 136 Nan King East Road T (+27) 11-6 52 -27 02 I-20126 Milano Section 23, Taipei Fax (+27) 11-6 52 20 42 T (+39) 02-66 76 -1 T (+8 86) 2-27 73 66 06 Fax (+39) 02-66 76 43 95 Fax (+8 86) 2-27 71 20 76

Internet-address: http://www.infineon.com 06.10.99 Total Quality Management

Qualität hat für uns eine Quality takes on an all- umfassende Bedeutung. encompassing significance Wir wollen allen Ihren at Semiconductor Group. Ansprüchen in der For us it means living up bestmöglichen Weise to each and every one of gerecht werden. Es geht your demands in the best uns also nicht nur um die possible way. So we are Produktqualität – unsere not only concerned with Anstrengungen product quality. We direct gelten gleichermaßen der our efforts equally at Lieferqualität und Logistik, quality of supply and dem Service und Support logistics, service and sowie allen sonstigen support, as well as all the Beratungs- und Betreuungs- other ways in which we leistungen. advise and attend to you. Part of this is the very Dazu gehört eine bestimmte special attitude of our Geisteshaltung unserer staff. Total Quality in Mitarbeiter. Total Quality thought and deed, im Denken und Handeln towards co-workers, gegenüber Kollegen, suppliers and you, our Lieferanten und Ihnen, customer. Our guideline is unserem Kunden. Unsere “do everything with zero Leitlinie ist, jede Aufgabe defects”, in an open mit „Null Fehlern“ zu manner that is lösen – in offener demonstrated beyond Sichtweise auch über den your immediate eigenen Arbeitsplatz workplace, and to hinaus – und uns ständig constantly improve. zu verbessern. Throughout the Unternehmensweit corporation we also think orientieren wir uns dabei in terms of auch an „top“ (Time Time Optimized Processes Optimized Processes), um (top), greater speed on Ihnen durch größere our part to give you that Schnelligkeit den decisive competitive edge. entscheidenden Give us the chance to Wettbewerbsvorsprung prove the best of zu verschaffen. performance through the Geben Sie uns die Chance, best of quality – you will hohe Leistung durch be convinced. umfassende Qualität zu beweisen. Wir werden Sie überzeugen.

Ordering No. B112-H7482-G1-X-7600 Printed in Germany Published by Infineon Technologies AG TB 01005. NB