Thermal-Electrical Analogy: Thermal Network
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application Note AN-1057
Application Note AN-1057 Heatsink Characteristics Table of Contents Page Introduction.........................................................................................................1 Maximization of Thermal Management .............................................................1 Heat Transfer Basics ..........................................................................................1 Terms and Definitions ........................................................................................2 Modes of Heat Transfer ......................................................................................2 Conduction..........................................................................................................2 Convection ..........................................................................................................5 Radiation .............................................................................................................9 Removing Heat from a Semiconductor...........................................................11 Selecting the Correct Heatsink........................................................................11 In many electronic applications, temperature becomes an important factor when designing a system. Switching and conduction losses can heat up the silicon of the device above its maximum Junction Temperature (Tjmax) and cause performance failure, breakdown and worst case, fire. Therefore the temperature of the device must be calculated not to exceed the Tjmax. To design a good -
A Centrality Measure for Electrical Networks
Carnegie Mellon Electricity Industry Center Working Paper CEIC-07 www.cmu.edu/electricity 1 A Centrality Measure for Electrical Networks Paul Hines and Seth Blumsack types of failures. Many classifications of network structures Abstract—We derive a measure of “electrical centrality” for have been studied in the field of complex systems, statistical AC power networks, which describes the structure of the mechanics, and social networking [5,6], as shown in Figure 2, network as a function of its electrical topology rather than its but the two most fruitful and relevant have been the random physical topology. We compare our centrality measure to network model of Erdös and Renyi [7] and the “small world” conventional measures of network structure using the IEEE 300- bus network. We find that when measured electrically, power model inspired by the analyses in [8] and [9]. In the random networks appear to have a scale-free network structure. Thus, network model, nodes and edges are connected randomly. The unlike previous studies of the structure of power grids, we find small-world network is defined largely by relatively short that power networks have a number of highly-connected “hub” average path lengths between node pairs, even for very large buses. This result, and the structure of power networks in networks. One particularly important class of small-world general, is likely to have important implications for the reliability networks is the so-called “scale-free” network [10, 11], which and security of power networks. is characterized by a more heterogeneous connectivity. In a Index Terms—Scale-Free Networks, Connectivity, Cascading scale-free network, most nodes are connected to only a few Failures, Network Structure others, but a few nodes (known as hubs) are highly connected to the rest of the network. -
Electrical Impedance Tomography
INSTITUTE OF PHYSICS PUBLISHING INVERSE PROBLEMS Inverse Problems 18 (2002) R99–R136 PII: S0266-5611(02)95228-7 TOPICAL REVIEW Electrical impedance tomography Liliana Borcea Computational and Applied Mathematics, MS 134, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA E-mail: [email protected] Received 16 May 2002, in final form 4 September 2002 Published 25 October 2002 Online at stacks.iop.org/IP/18/R99 Abstract We review theoretical and numerical studies of the inverse problem of electrical impedance tomographywhich seeks the electrical conductivity and permittivity inside a body, given simultaneous measurements of electrical currents and potentials at the boundary. (Some figures in this article are in colour only in the electronic version) 1. Introduction Electrical properties such as the electrical conductivity σ and the electric permittivity , determine the behaviour of materials under the influence of external electric fields. For example, conductive materials have a high electrical conductivity and both direct and alternating currents flow easily through them. Dielectric materials have a large electric permittivity and they allow passage of only alternating electric currents. Let us consider a bounded, simply connected set ⊂ Rd ,ford 2and, at frequency ω, let γ be the complex admittivity function √ γ(x,ω)= σ(x) +iω(x), where i = −1. (1.1) The electrical impedance is the inverse of γ(x) and it measures the ratio between the electric field and the electric current at location x ∈ .Electrical impedance tomography (EIT) is the inverse problem of determining the impedance in the interior of ,givensimultaneous measurements of direct or alternating electric currents and voltages at the boundary ∂. -
Nonreciprocal Wavefront Engineering with Time-Modulated Gradient Metasurfaces J
Nonreciprocal Wavefront Engineering with Time-Modulated Gradient Metasurfaces J. W. Zang1,2, D. Correas-Serrano1, J. T. S. Do1, X. Liu1, A. Alvarez-Melcon1,3, J. S. Gomez-Diaz1* 1Department of Electrical and Computer Engineering, University of California Davis One Shields Avenue, Kemper Hall 2039, Davis, CA 95616, USA. 2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China 3 Universidad Politécnica de Cartagena, 30202 Cartagena, Spain *E-mail: [email protected] We propose a paradigm to realize nonreciprocal wavefront engineering using time-modulated gradient metasurfaces. The essential building block of these surfaces is a subwavelength unit-cell whose reflection coefficient oscillates at low frequency. We demonstrate theoretically and experimentally that such modulation permits tailoring the phase and amplitude of any desired nonlinear harmonic and determines the behavior of all other emerging fields. By appropriately adjusting the phase-delay applied to the modulation of each unit-cell, we realize time-modulated gradient metasurfaces that provide efficient conversion between two desired frequencies and enable nonreciprocity by (i) imposing drastically different phase-gradients during the up/down conversion processes; and (ii) exploiting the interplay between the generation of certain nonlinear surface and propagative waves. To demonstrate the performance and broad reach of the proposed platform, we design and analyze metasurfaces able to implement various functionalities, including beam steering and focusing, while exhibiting strong and angle-insensitive nonreciprocal responses. Our findings open a new direction in the field of gradient metasurfaces, in which wavefront control and magnetic-free nonreciprocity are locally merged to manipulate the scattered fields. 1. Introduction Gradient metasurfaces have enabled the control of electromagnetic waves in ways unreachable with conventional materials, giving rise to arbitrary wavefront shaping in both near- and far-fields [1-6]. -
How Air Velocity Affects the Thermal Performance of Heat Sinks: a Comparison of Straight Fin, Pin Fin and Maxiflowtm Architectures
How Air Velocity Affects The Thermal Performance of Heat Sinks: A Comparison of Straight Fin, Pin Fin and maxiFLOWTM Architectures Introduction A device’s temperature affects its op- erational performance and lifetime. To Air, Ta achieve a desired device temperature, Heat sink the heat dissipated by the device must be transferred along some path to the Rhs environment [1]. The most common method for transferring this heat is by finned metal devices, otherwise known Rsp as heat sinks. Base Resistance to heat transfer is called TIM thermal resistance. The thermal resis- RTIM tance of a heat sink decreases with . Component case, Tc Q Component more heat transfer area. However, be- cause device and equipment sizes are decreasing, heat sink sizes are also Figure 1. Exploded View of a Straight Fin Heat Sink with Corresponding Thermal Resis- tance Diagram. growing smaller. On the other hand, . device heat dissipation is increasing. heat sink selection criteria. Q RTIM, as shown in Equation 2. Therefore, designing a heat transfer The heat transfer rate of a heat sink, , . path in a limited space that minimizes depends on the difference between the Q = (Thot - Tcold)/Rt = (Tc - Ta)/Rt (1) thermal resistance is critical to the ef- component case temperature, Tc, and fective design of electronic equipment. the air temperature, Ta, along with the where total thermal resistance, Rt. This rela- This article discusses the effects of air tionship is shown in Equation 1. For Rt = RTIM + Rsp + Rhs (2) flow velocity on the experimentally de- a basic heat sink design, as shown in termined thermal resistance of different Figure 1, the total thermal resistance Therefore, to compare different heat heat sink designs. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Electric Currents in Infinite Networks
Electric currents in infinite networks Peter G. Doyle Version dated 25 October 1988 GNU FDL∗ 1 Introduction. In this survey, we will present the basic facts about conduction in infinite networks. This survey is based on the work of Flanders [5, 6], Zemanian [17], and Thomassen [14], who developed the theory of infinite networks from scratch. Here we will show how to get a more complete theory by paralleling the well-developed theory of conduction on open Riemann surfaces. Like Flanders and Thomassen, we will take as a test case for the theory the problem of determining the resistance across an edge of a d-dimensional grid of 1 ohm resistors. (See Figure 1.) We will use our borrowed network theory to unify, clarify and extend their work. 2 The engineers and the grid. Engineers have long known how to compute the resistance across an edge of a d-dimensional grid of 1 ohm resistors using only the principles of symmetry and superposition: Given two adjacent vertices p and q, the resistance across the edge from p to q is the voltage drop along the edge when a 1 amp current is injected at p and withdrawn at q. Whether or not p and q are adjacent, the unit current flow from p to q can be written as the superposition of the unit ∗Copyright (C) 1988 Peter G. Doyle. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, as pub- lished by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. -
Is the Thermal Resistance Coefficient of High-Power Leds Constant? Lalith Jayasinghe, Tianming Dong, and Nadarajah Narendran
Is the Thermal Resistance Coefficient of High-power LEDs Constant? Lalith Jayasinghe, Tianming Dong, and Nadarajah Narendran Lighting Research Center Rensselaer Polytechnic Institute, Troy, NY 12180 www.lrc.rpi.edu Jayasinghe, L., T. Dong, and N. Narendran. 2007. Is the thermal resistance coefficient of high-power LEDs constant? Seventh International Conference on Solid State Lighting, Proceedings of SPIE 6669: 666911. Copyright 2007 Society of Photo-Optical Instrumentation Engineers. This paper was published in the Seventh International Conference on Solid State Lighting, Proceedings of SPIE and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. Is the Thermal Resistance Coefficient of High-power LEDs Constant? Lalith Jayasinghe*, Tianming Dong, and Nadarajah Narendran Lighting Research Center, Rensselaer Polytechnic Institute 21 Union St., Troy, New York, 12180 USA ABSTRACT In this paper, we discuss the variations of thermal resistance coefficient from junction to board (RӨjb) for high-power light-emitting diodes (LEDs) as a result of changes in power dissipation and ambient temperature. Three-watt white and blue LED packages from the same manufacturer were tested for RӨjb at different input power levels and ambient temperatures. Experimental results show that RӨjb increases with increased input power for both LED packages, which can be attributed to current crowding mostly and some to the conductivity changes of GaN and TIM materials caused by heat rise. -
Modelling of Anisotropic Electrical Conduction in Layered Structures 3D-Printed with Fused Deposition Modelling
sensors Article Modelling of Anisotropic Electrical Conduction in Layered Structures 3D-Printed with Fused Deposition Modelling Alexander Dijkshoorn 1,* , Martijn Schouten 1 , Stefano Stramigioli 1,2 and Gijs Krijnen 1 1 Robotics and Mechatronics Group (RAM), University of Twente, 7500 AE Enschede, The Netherlands; [email protected] (M.S.); [email protected] (S.S.); [email protected] (G.K.) 2 Biomechatronics and Energy-Efficient Robotics Lab, ITMO University, 197101 Saint Petersburg, Russia * Correspondence: [email protected] Abstract: 3D-printing conductive structures have recently been receiving increased attention, es- pecially in the field of 3D-printed sensors. However, the printing processes introduce anisotropic electrical properties due to the infill and bonding conditions. Insights into the electrical conduction that results from the anisotropic electrical properties are currently limited. Therefore, this research focuses on analytically modeling the electrical conduction. The electrical properties are described as an electrical network with bulk and contact properties in and between neighbouring printed track elements or traxels. The model studies both meandering and open-ended traxels through the application of the corresponding boundary conditions. The model equations are solved as an eigenvalue problem, yielding the voltage, current density, and power dissipation density for every position in every traxel. A simplified analytical example and Finite Element Method simulations verify the model, which depict good correspondence. The main errors found are due to the limitations of the model with regards to 2D-conduction in traxels and neglecting the resistance of meandering Citation: Dijkshoorn, A.; Schouten, ends. Three dimensionless numbers are introduced for the verification and analysis: the anisotropy M.; Stramigioli, S.; Krijnen, G. -
S-Parameter Techniques – HP Application Note 95-1
H Test & Measurement Application Note 95-1 S-Parameter Techniques Contents 1. Foreword and Introduction 2. Two-Port Network Theory 3. Using S-Parameters 4. Network Calculations with Scattering Parameters 5. Amplifier Design using Scattering Parameters 6. Measurement of S-Parameters 7. Narrow-Band Amplifier Design 8. Broadband Amplifier Design 9. Stability Considerations and the Design of Reflection Amplifiers and Oscillators Appendix A. Additional Reading on S-Parameters Appendix B. Scattering Parameter Relationships Appendix C. The Software Revolution Relevant Products, Education and Information Contacting Hewlett-Packard © Copyright Hewlett-Packard Company, 1997. 3000 Hanover Street, Palo Alto California, USA. H Test & Measurement Application Note 95-1 S-Parameter Techniques Foreword HEWLETT-PACKARD JOURNAL This application note is based on an article written for the February 1967 issue of the Hewlett-Packard Journal, yet its content remains important today. S-parameters are an Cover: A NEW MICROWAVE INSTRUMENT SWEEP essential part of high-frequency design, though much else MEASURES GAIN, PHASE IMPEDANCE WITH SCOPE OR METER READOUT; page 2 See Also:THE MICROWAVE ANALYZER IN THE has changed during the past 30 years. During that time, FUTURE; page 11 S-PARAMETERS THEORY AND HP has continuously forged ahead to help create today's APPLICATIONS; page 13 leading test and measurement environment. We continuously apply our capabilities in measurement, communication, and computation to produce innovations that help you to improve your business results. In wireless communications, for example, we estimate that 85 percent of the world’s GSM (Groupe Speciale Mobile) telephones are tested with HP instruments. Our accomplishments 30 years hence may exceed our boldest conjectures. -
Arxiv:1311.4868V1 [Cond-Mat.Mes-Hall] 19 Nov 2013
Anisotropic magneto-thermal transport and Spin-Seebeck effect J.-E. Wegrowe∗ and H.-J. Drouhin Ecole Polytechnique, LSI, CNRS and CEA/DSM/IRAMIS, Palaiseau F-91128, France D. Lacour Institut Jean Lamour, UMR CNRS 7198, Universit´eH. Poincarr´e,F -5406 Vandoeuvre les Nancy, France (Dated: August 21, 2021) Abstract The angular dependence of the thermal transport in insulating or conducting ferromagnets is derived on the basis of the Onsager reciprocity relations applied to a magnetic system. It is shown that the angular dependence of the temperature gradient takes the same form as that of the anisotropic magnetoresistance, including anomalous and planar Hall contributions. The measured thermocouple generated between the extremities of the non-magnetic electrode in thermal contact to the ferromagnet follows this same angular dependence. The sign and amplitude of the magneto- voltaic signal is controlled by the difference of the Seebeck coefficients of the thermocouple. PACS numbers: 85.80.Lp, 85.75.-d, 72.20.Pa arXiv:1311.4868v1 [cond-mat.mes-hall] 19 Nov 2013 ∗Electronic address: [email protected] 1 Exploiting the properties of heat currents in magnetic systems for data processing and storage is a decisive challenge for the future of electronic devices and sensors. Recent research efforts, in line with spintronics developments, focus more specifically on the properties of the spin degrees of freedom associated to the electric charges and heat currents [1]. Important series of experiments - the so-called spin-pumping and spin-Seebeck measurements - have been performed in this context [2{12]: a magneto-voltaic signal is observed at zero electric current on electrodes that are in thermal contact with a ferromagnet. -
Principles of HVDC Transmission
Principles of HVDC Transmission Course No: E04-036 Credit: 4 PDH Velimir Lackovic, Char. Eng. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] PRINCIPLES OF HVDC TRANSMISSION The question that is frequently discussed is: “Why does anyone want to use D.C. transmission?” One reply is that electric losses are lower, but this is not true. Amount of losses is determined by the rating and size of chosen conductors. Both D.C. and A.C. conductors, either as transmission circuits or submarine cables can generate lower power losses but at increased cost since the bigger cross-sectional conductors will typically lead to lower power losses but will unfortunately cost more. When power converters are utilized for D.C. electrical transmission in preference to A.C. electrical transmission, it is commonly impacted by one of the causes: An overhead D.C. line with associated overhead line towers can be made as less pricey per unit of length than the same A.C. transmission line made to transfer the equivalent amount of electric power. Nevertheless the D.C. converter stations at transmission line terminal ends are more expensive than the stations at terminals of an A.C. transmission line. Therefore there is a breakeven length above which the overall price of D.C. electrical transmission is lower than its A.C. electrical transmission option. The D.C. electrical transmission line can have a lower visual impact than the same A.C. transmission line, producing lower environmental effect. There are additional environmental advantages to a D.C.