The Letteratuito Metro

Total Page:16

File Type:pdf, Size:1020Kb

The Letteratuito Metro THELETTERATUITO US 20170326536A1 METRO ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017/ 0326536 A1 JIMOH et al. ( 43 ) Pub . Date: Nov . 16 , 2017 ( 54 ) METAL ORGANIC FRAMEWORKS AS C07C 51/ 285 (2006 .01 ) CATALYSTS AND HYDROCARBON C07C 45 /29 (2006 .01 ) OXIDATION METHODS THEREOF C07C 27 / 16 ( 2006 .01 ) B01J 35 / 10 ( 2006 .01 ) (71 ) Applicant: KING FAHD UNIVERSITY OF B01J 35 / 10 ( 2006 . 01 ) PETROLEUM AND MINERALS , B01J 35 / 10 ( 2006 .01 ) Dhahran ( SA ) CO7F 15 /02 (2006 .01 ) B01J 35 / 10 (2006 . 01 ) ( 72 ) Inventors : Abiola Azeez JIMOH , Dhahran (SA ) ; (52 ) U . S . CI. Abdul Malik Peedikakkal, Dhahran CPC .. .. .. B01J 31/ 123 (2013 .01 ) ; CO7F 15 /025 ( SA ) ( 2013 . 01 ) ; CO7F 3 / 06 (2013 . 01 ) ; CO7F 1 / 08 ( 2013 . 01 ) ; C07C 51/ 285 (2013 . 01 ) ; B01J (73 ) Assignee : KING FAHD UNIVERSITY OF 35 / 1023 ( 2013 .01 ) ; C07C 27 / 16 (2013 . 01 ) ; PETROLEUM AND MINERALS , B01J 35 / 1061 ( 2013 .01 ) ; B01J 35 / 1057 Dhahran (SA ) ( 2013. 01 ) ; B01J 35 / 1028 ( 2013 .01 ); C07C (21 ) Appl . No. : 15 /458 ,437 45/ 294 ( 2013 .01 ) (22 ) Filed : Mar . 14 , 2017 (57 ) ABSTRACT A metal organic framework comprising zinc ( II ) ions and Related U . S . Application Data second metal ions , such as iron ( II ) ions, cobalt ( II ) ions, and copper ( II ) ions as nodes or clusters and coordinated 1 , 3 , 5 ( 60 ) Provisional application No . 62/ 335 , 954 , filed on May benzenetricarboxylic acid struts or linkers between them 13 , 2016 . forming a porous coordination network in the form of polyhedral crystals that are isostructural to HKUST - 1 . Publication Classification Transmetallation processes for producing the metal organic (51 ) Int. Ci. frameworks , as well as methods for applications of the metal B01J 31 / 12 ( 2006 .01 ) organic frameworks as catalysts , specifically catalysts for CO7F 3 / 06 ( 2006 .01 ) the oxidation of cyclic hydrocarbons, such as toluene , cyclo CO7F 1 / 08 ( 2006 . 01 ) hexane , and methylcyclohexane . Patent Application Publication Nov . 16 , 2017 Sheet 1 of 34 US 2017 /0326536 Al ???????? ?? : 44X . ????? ? ?? ?? FIG . 1 Patent Application Publication Nov . 16 , 2017 Sheet 2 of 34 US 2017 /0326536 A1 in CON-1 FIG , 2 Patent Application Publication Nov . 16 , 2017 Sheet 3 of 34 US 2017 /0326536 A1 . FIG . 3A Patent Application Publication Nov . 16 , 2017 Sheet 4 of 34 US 2017 /0326536 A1 . FIG . 3B Patent Application Publication Nov . 16 , 2017 Sheet 5 of 34 US 2017 /0326536 A1 . FIG . 3C Patent Application Publication Nov . 16 , 2017 Sheet 6 of 34 US 2017 /0326536 Al · FIG. 4 Patent Application Publication Nov . 16 , 2017 Sheet 7 of 34 US 2017 /0326536 A1 FIG . 5 Patent Application Publication Nov . 16 , 2017 Sheet 8 of 34 US 2017 /0326536 A1 . :77 ::: .:: . FIG . 6 Patent Application Publication Nov . 16 , 2017 Sheet 9 of 34 US 2017 /0326536 A1 . Bo. 90. FIG . 7 Patent Application Publication Nov . 16 , 2017 Sheet 10 of 34 US 2017 /0326536 A1 . FIG . 8 Patent Application Publication Nov . 16, 2017 Sheet 11 of 34 US 2017/ 0326536 A1 Mate ??? ?????? 1FIC ) Patent Application Publication Nov. 16, 2017 Sheet 12 of 34 US 2017/ 0326536 A1 ) ? ( ART2| ???E . Patent Application Publicati0ll _ N0V. 16 , 2017 Sheet 13 0f 34 US 2017/ 0326536 Al . ? ? ? ? ? ? ? ? ? . ???????f , ? ? ? vit : ????0 'x£ - ) ? ? ? F { G . 11 Patent Application Publication Nov . 16 , 2017 Sheet 14 of 34 US 2017 /0326536 A1 DME Zn (NO3 ), , OH , O m FIG . 12 Patent Application Publicati0ll _ N0V. 16 , 2017 Sheet 15 of 34 US 2017/ 0326536 Al ? ? : ??????? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ' . v?c.???.?????????????????????????????????? . 28 ??????? .????? ? ????????.? ?? ? ? ? ? ?? ? that ? ??????:8%3 ?-., x ? ?|??? ? .xi ? ? ? ?? ????? ? ? ?? ? ? ? ? ; ? ? ? ?? ? ? ? ?? ? ? ? ?? ? ? .… ? ? ? ? ? . ? ? ? ? ? ? ? ? ? ? ?? ? ?? ? ? N ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?????? ? ? ?? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? . Hà ???????????? ? ? ? ? ?? ?? ????xy? » $ ? ? ? ? ?? ? ?? ?? ? ? ? ? ? ? ? ? ? ? ? ? t?i % A8 % 97 ???? ???? ? ? ????? & XX : ; ' .. ? ? ?? ? ? ? ? ? ? ? ? ? ? Cai ?. ? ? ? ? ? ? ? ? ? ? ?? ? 183 .. .. ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ;, ? . .. .:Ma ? ?? ?? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? . .… . 1' . .' . - : : : : : : - ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ?. ;« , .- ; . * *- * - . * . ????? ? ? ? ? ? ? . ? ? ? ? ? ? ? ?? ? ?? ? ? ? ? ?? ?? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? . 2826 . ? ? ? ?? ? ? ? ?? ? ?? ?? ? ? ? ? ? ? ???????????????????????????? ?? ? ??????????????????????? ??? ??? ?? ????? ?? ???? ?? ????? ?? ?? ?? ?? ?? ?? ????? ???? ????? ?????????????? ?????????? RIC. 13 Patent Application Publication Nov . 16 , 2017 Sheet 16 of 34 US 2017 /0326536 A1 Yoooooooooooooooooooooooooooooooo ooo mmmmmmmmmmmmmmmmmmmmmmmm Kasmittance * 380 . 393 w 3433 .53 aren 32 * mm 2931. 3 20 *** Va* x* tscm * ) X . * . * * . * * * . 10 .30 . w20 . * * ** *290 AC ** ** ** * * * * :. 1373 ,25 W .. * * * * * Attila * * * * * * * $ 2 . 38 1308. 14 2930 936 . 70 * w - 729 15www * * * * - 162 . 03 .1 wwwwwwwwwwwwsiviiiiiiiiiiiiiiiiiiiiiwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwiiiiiiiiiiwwwwwwwwwwwwwwwwwwwwwwwwwwwwwiiiiiiiiiiiiwwiviviviviisssiivi * 8822 ** * * * ** * * ** * * * * ** * 1 .. .. - . - . - . FIG . 14 Patent Application Publication Nov . 16, 2017 Sheet 17 of 34 US 2017/ 0326536 A1 ???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? ? 3 ?? . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ? ? ? ? ? ? ?? ? ? ? ? ? ?. ???? :: ?? : : : ???: ?????? ? ??? . )34: 2 ??:??? ?????????? ? ???? ::: :: : :::: : : ?? ?? { } ?? ?????. ???? . ? ????? ??? ???? ?????? ? ? 283?? ? ?? ? ?? ? ? ? : 33 ??????? ?? ???? ???? ?? ? 53 ??? ' ' .' * ???? ? ?? ? : : 35 ?? .. ??? ? ?? ?? ?????? ? 3 ? ?? ?? ? ? ??? 3 * ??????? } } *. : ???? ??? ???? ??? ??? ?? ?????? .??? 8 ??? & 3 ????????????????????????????????????????????????????????????????????????????????????? ????????? ?? ?? ?????????? ???? ???? ???? ( ??23 ?? ??? ?? ??? ????? ???? ??? ?????? ????? ?? ???? ?????? ????? FIG . 15 Patent Application Publicati0ll _ N0V. 16 , 2017 Sheet 18 0f 34 US 2017/ 0326536 Al . ? ? ? ? ? ? ? ? ? ? ? ? ? . ?. ?????? 203 ? . …. …? . …. … . …. … . …. …. … .… . …. … . .… . …. … ? … . .… … … .… . … . … . …. … .… . … .… . .… .. .… .. ? . .… . .… . … .? … … .… . … .. .… . …. … . … …. … ?. .… .… . .… .… . … . …? …. … .… . … …. … . .… . ."; . .'- . * .* .. * .: * * * * * * * * * ?* * * * * * ?* * * * ** ? ? ? ???? ??? ?? °:;X ? ? ? Vi } . ? ? ? ?.:????? . ? ? ?????????.?? ? t : r: ' fx - ? . .?*:-R ? ? ? . ? ? . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ????? ? ? . ?? ? 331 % ; 3812 ? : £3842 X3329 . 1243. 4g 28.YX4}:??????446 ? ? ? ? ? ? ' 23 ; . 3f3 % 83 ? ? ? ? ? 28 ? . .. … . … . .. …. …. … .. …. …. .. …. .. NIG. 16 Patent Application Publicati0ll _ N0V. 16 , 2017 Sheet 19 Of 34 US 2017/ 0326536 Al ???????????? ???????????????? ? ? ? ? ? X ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ?? ?? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ?? ? ? ?? ? ? ? ? ?? ? . ? ? ? ? ? ?. ????????????? ? ? ;XX? intrinxit ? ? ? ? 3 ? % ??? ? ? ? ? 8 ? ? ? ? . ? ? . ' . ? 2 ?????????? ? ? 881 .. .: *????? :: : ? ::: :: ? ? ? ? ?.? ? ??????&?xix,3 ? ? ?? ? ?? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . ? .XX % 569 ? ?????????????????????????????????????? 3444 ?? ? ? ?? ? ? ? ? ? ?? ? 2 14????????? $$ $ $ $ ? ? ? ?? 82 ?? ? ? ? ? ? ? ? ? ?? ?? ? ? ? ?? ? ? . ? 354 ?? ? ?? ? ? x243 ,f ? ? ? .18 , 8 . 5 ? ? ? ? ? ? ? »;f ? ? eerineerineeriieieee????????????? ? ??6 ??| ? 862 ? ? 99 % 8 ???& & ? ? ????? 9 % . ? ? ? ? ? 428 . ?NIG . 17 Patent Application Publication Nov . 16, 2017 Sheet 20 of 34 US 2017/ 0326536 A1 ??????????? ?????? - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -???? - - - - - - - - - - - - - - - - - - - - - -????? ???????????????????????????????????????????????????????????????? ? ? : ?????? ?? ?????? ??????? ??? ??? ??????????? ?? ???? ??? ?? ????' . ????? ????? . ?????? ??? ?????? ??: ??? ????? ?? ??? ?????????????????????????????? ?????? ????? ??? ::: : : : : 2344 ????? ??? ? ?? ??????? ? ???? ??? ? ????? ? ? ???. * ?? ... ? ?? ???????????????????????????????????????????????????????????????? ?? ????????????? ??? ?? . ???? 33 . ?????????????????? . ????????? ??? . ? ????? ????? : ?????: : : :: :: : ??:: : ? : : ?: :: : . ??? 48 ??? 3 ?? ?? ?? ????? ???? ? 1 8 - ????????????????????? ???? 00:0 ??? ???? 2 . ???? ? 3 * * ?? ? . ???? ??:????????????????? ?? ?? ???? ? . ??? * * ???? ?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? FI6G . 18 Patent Application Publication Nov . 16 , 2017 Sheet 21 of 34 US 2017 /0326536 A1 D2 - 11 .82 um FIG . 19 Patent Application Publication Nov . 16 , 2017 Sheet 22 of 34 US 2017 /0326536 A1 . SHWE FIG . 20 Patent Application Publication Nov . 16 , 2017 Sheet 23 of 34 US 2017 /0326536 A1 .. .. .. .. .. www wwwwwww www w wwwwwwwwwwwwwww FIG . 21 Patent Application Publication Nov . 16 , 2017 Sheet 24 of 34 US 2017 /0326536 A1 . " , .-;' ." W AS FIG . 22 Patent Application Publication Nov . 16 , 2017 Sheet 25 of 34 US 2017 /0326536 A1 ica. 1 00799999 :. AS . Syoss # HXOST : LUMO S M . K . S slaSIN * * * X08KUSTELE * 1 . www wwwwwwwwwwww www * . :. 2 -
Recommended publications
  • A-PDF Split DEMO : Purchase from to Remove the Watermark
    A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark Figure 7.5 (a) Transition state for E2H-syn elimination. (b) Transition state for E2H-anti elimination. (c) Transition state for E,C elimination. tion state similar to that shown in Figure 7.5~is expected, since base attacks the molecule backside to the leaving group but frontside to the /3 hydrogen. Let us now turn to the experimental results to see if these predictions are borne out in fact. It has long been known that E2H reactions normally give preferentially anti elimination. For example, reaction of meso-stilbene dibromide with potassium ethoxide gives cis-bromostilbene (Reaction 7.39), whereas reaction of the D,L-dibromide gives the trans product (Reaction 7.40).lo2 A multitude of other examples exist-see, for example, note 64 (p. 355) and note 82 (p. 362). E2H reactions do, however, give syn elimination when: (1) an H-X di- hedral angle of 0" is achievable but one of 180" is not or, put another way, H and X can become syn-periplanar but not trans-periplanar ; (2) a syn hydrogen is much more reactive than the anti ones; (3) syn elimination is favored for steric reasons; and (4) an anionic base that remains coordinated with its cation, that, in turn, is coordinated with the leaving group, is used as catalyst. The very great importance of category 4 has only begun to be fully realized in the early 1970s. lo2 P. Pfeiffer, 2. Physik. Chem. Leibrig, 48, 40 (1904). 1,2-Elimination Reactions 371 An example of category 1 is found in the observation by Brown and Liu that eliminations from the rigid ring system 44, induced by the sodium salt of 2- cyclohexylcyclohexanol in triglyme, produces norborene (98 percent) but no 2-de~teronorbornene.~~~The dihedral angle between D and tosylate is O", but Crown ether present: No Yes that between H and tosylate is 120".
    [Show full text]
  • Nomenclature Cyclic Aliphatic Hydrocarbons Are Named By
    An alicyclic compound is an organic compound that is both aliphatic and cyclic. They contain one or more all-carbon rings which may be either saturated or unsaturated, but do not have aromatic character. Alicyclic compounds may have one or more aliphatic side chains attached. The simplest alicyclic compounds are the 1. monocyclic cycloalkanes: cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohepta ne, cyclooctane, and so on. 2. Bicyclic alkanes include bicycloundecane, decalin, and housane. 3. Polycyclic alkanes include cubane, basketane, and tetrahedrane. Spiro compounds have two or more rings that are connected through only one carbon atom. Nomenclature Cyclic aliphatic hydrocarbons are named by prefixing cyclo- to the name of the corresponding open-chain hydrocarbon having the same number of carbons as the ring. For example: Cyclopropane Cyclobutane Cyclopentane Cyclopentene Substituents on the ring- alkyl, groups, halogens- are named and their positions indicated by numbers. Chlorocyclopropane 1,1- Dimethylyclopentane 1,3-Dimethylcyclohexane CH3 CH3 Cl H3C CH3 In simple cycloalkenes and cycloalkynes the double and triply bonded carbons are considered to occupy positions 1 and 2. For example: 3-Ethylcyclopentene 1,3-Cyclohexadiene H3C For convenience, aliphatic rings are often represented by simple geometric figures: a triangle for cyclopropane, a square for cyclobutane, a pentagon for cyclopentane, a hexagon for cyclohexane and so on. It is understood that two hydrogens are located at each corner of the figure unless some other group is indicated. For example H3C cyclopentane 3-Ethylcyclopentene 1,3-Cyclopentadiene CH3 CH3 Cl CH Cyclohexane 3 1,3-Dimethylcyclohexane 2- Chloro-1-methylcyclohexane As usual alcohols are given the ending –ol, which takes priority over –ene and appears last in the name.
    [Show full text]
  • The Smallest Quantum Vortex
    “The 2D Symmetry of Nature” T.M. Lach April 11, 2005 The structures of nature and the strong nuclear force The Proton the smallest Quantum Vortex Over the years many new discoveries have taught us that nature works its miracles with very simple structures. Going back 100 years we see this simplicity in structures like the Benzene molecule, Polycyclic Aromatic Hydrocarbons (PAH), the Hydrogen atom, DNA, snowflakes and crystal lattices. (1) In recent years many new discoveries, like the discovery of Quarks, have reinforced this belief. Ninety years ago, Niels Bohr’s model of the structure of the hydrogen atom (March 6 th 1913) revolutionized science since it brought together a few simple principles that allowed us to understand the nature of why atoms have quantized energy levels. Thus began the new era of Quantum Theory and Quantum Mechanics. Many before Bohr had assumed that the electrons were circling the nucleus. (2) Nicholson earlier had assumed that the angular momentum of the electron was quantized, for 30 years others had tried to explain the Balmer series of the hydrogen spectrum, but Bohr tied it all together into a coherent picture of the hydrogen atom. Bohr had to assume that the circling electrons did not lose energy to radiation and thereby spiral into the nucleus, a big assumption at the time. Ten years later in 1923 DeBroglie proposed the wave nature of particles, which explained why the circling electrons could maintain stable quantized orbits and so began the quantum nature of the universe, with a little help from Plank, Einstein, Shrodinger, Sommerfeld and many others.
    [Show full text]
  • New Applications of Cyclobutadiene Cycloadditions: Diversity and Target Oriented Synthesis
    New Applications of Cyclobutadiene Cycloadditions: Diversity and Target Oriented Synthesis Author: Jason Joseph Marineau Persistent link: http://hdl.handle.net/2345/1741 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2010 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry NEW APPLICATIONS OF CYCLOBUTADIENE CYCLOADDITIONS: DIVERSITY AND TARGET ORIENTED SYNTHESIS a dissertation by JASON JOSEPH MARINEAU submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2010 © Copyright by JASON JOSEPH MARINEAU 2010 New Applications of Cyclobutadiene Cycloadditions: Diversity and Target Oriented Synthesis Jason J. Marineau Thesis Advisor: Professor Marc. L. Snapper Abstract Cyclobutadiene cycloadditions provide rapid access to rigid polycyclic systems with high strain energy and unusual molecular geometries. Further functionalization of these systems allows entry into unexplored chemical space. A tricarbonylcyclobutadiene iron complex on solid support enables exploration of these cycloadditions in a parallel format amenable to diversity oriented synthesis. Modeling of the cycloaddition transition states with density functional calculations provides a theoretical basis for analysis of the regioselectivity observed in generation of these substituted bicyclo[2.2.0]hexene derivatives. The high strain energy accessible in cyclobutadiene cycloadducts and their derivatives renders them useful synthons for access to medium-ring natural products through ring expansion. Torilin, a guaiane sesquiterpene isolated from extracts of the fruits of Torilis japonica, exhibits a range of biological activities including testosterone 5 -reductase inhibition, hKv1.5 channel blocking, hepatoprotective, anti-inflammatory and anti-cancer effects.
    [Show full text]
  • Here Science-Based Cost- Effective Pathways Forward?
    Sponsors Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan PIRE-ECCI Program, UC Santa Barbara, USA Max-Planck-Gesellschaft, Germany National Science Council, Taiwan Organizing committee Dr. Kuei-Hsien Chen (IAMS, Academia Sinica, Taiwan) Dr. Susannah Scott (University of California - Santa Barbara, USA) Dr. Alec Wodtke (University of Göttingen & Max-Planck-Gesellschaft, Germany) Table of Contents General Information .............................................................................................. 1 Program for Sustainable Energy Workshop ....................................................... 3 I01 Dr. Alec M. Wodtke Beam-surface Scattering as a Probe of Chemical Reaction Dynamics at Interfaces ........................................................................................................... 7 I02 Dr. Kopin Liu Imaging the steric effects in polyatomic reactions ............................................. 9 I03 Dr. Chi-Kung Ni Energy Transfer of Highly Vibrationally Excited Molecules and Supercollisions ................................................................................................. 11 I04 Dr. Eckart Hasselbrink Energy Conversion from Catalytic Reactions to Hot Electrons in Thin Metal Heterostructures ............................................................................................... 13 I05 Dr. Jim Jr-Min Lin ClOOCl and Ozone Hole — A Catalytic Cycle that We Don’t Like ............... 15 I06 Dr. Trevor W. Hayton Nitric Oxide Reduction Mediated by a Nickel Complex
    [Show full text]
  • The X1 Method for Accurate and Efficient Prediction of Heats of Formation
    THE JOURNAL OF CHEMICAL PHYSICS 127, 214105 ͑2007͒ The X1 method for accurate and efficient prediction of heats of formation ͒ Jianming Wu and Xin Xua State Key Laboratory of Physical Chemistry of Solid Surfaces and Center for Theoretical Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China ͑Received 31 July 2007; accepted 25 September 2007; published online 5 December 2007͒ We propose the X1 method which combines the density functional theory method with a neural network ͑NN͒ correction for an accurate yet efficient prediction of heats of formation. It calculates the final energy by using B3LYP/6-311+G͑3df,2p͒ at the B3LYP/6-311+G͑d,p͒ optimized geometry to obtain the B3LYP standard heats of formation at 298 K with the unscaled zero-point energy and thermal corrections at the latter basis set. The NN parameters cover 15 elements of H, Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S, and Cl. The performance of X1 is close to the Gn theories, giving a mean absolute deviation of 1.43 kcal/mol for the G3/99 set of 223 molecules up to 10 nonhydrogen atoms and 1.48 kcal/mol for the X1/07 set of 393 molecules up to 32 nonhydrogen atoms. © 2007 American Institute of Physics. ͓DOI: 10.1063/1.2800018͔ I. INTRODUCTION the B3LYP method to calculate heats of formation of neutral organic molecules. Their results are promising. Calibrated ͑⌬ ␪͒ The accurate prediction of heats of formation Hf is with their own compilation of 180 organic molecules for the one of the central topics in computational chemistry.
    [Show full text]
  • Nomenclature – Naming of Organic Compounds
    12/05/2020 Nomenclature –Naming of Organic Compounds 1 ‘Trivial’ Names… Aspirin Cubane Housane Basketane Olympicene 2 1 12/05/2020 IUPAC International Union of Pure and Applied Chemistry Pentacyclo[4.2.0.02,5.03,8.04,7]octane 3 Naming Organic Compounds Chains meth 1 C eth 2 C C prop 3 C C C but 4 CCCC pent 5 C C C C C hex 6 C C C C C C hept 7 C C C C C C C oct 8 C C C C C C C C non 9 C C C C C C C C C 4 2 12/05/2020 Chains – Numbering Positions of Substituents Cl C C C C C C C 2‐chloro… 1234567 Cl C C C C C C C 3‐chloro… 7 6 5 4 3 2 1 5 Single and Multiple Carbon‐Carbon Bonds in Chains C C C C C C Single carbon‐ Contains a Contains a an carbon bonds en carbon‐carbon yn carbon‐carbon only double bond triple bond C C C C C C C …‐1‐ene 1234567 C C C C C C C …‐2‐ene 1 234567 C C C C C C C …‐3‐ene 7 6 5 4 3 2 1 6 3 12/05/2020 Branches to Carbon Chains H H C CH3 methyl H Common H H branches H C C CH CH ethyl on chains: 3 2 H H H H H H C C C CH3 CH2CH2 propyl H H H 7 Position (3‐) Branch (methyl) Longest chain HHCH HHHH Length of longest chain (7 = hept) 3 Only single C‐C bonds (ane) H C C C C C C C H 1234567 3‐methylheptane HHHHHHH HHHHH H C C C C C H 3 4 5 6 HHHH 3‐methylhexane H C 2 H Longest chain H C1 H H 2‐methylhex‐2‐ene 8 4 12/05/2020 For each of the alkanes below, identify and highlight the longest unbroken chain.
    [Show full text]
  • Cyclophane. Do MM Calculations of Each of These
    10 52. Shown to the right are [2.2.2](1,3,5)-cyclophane and [2.2.2.2](1,2,3,5)-cyclophane. Do MM calculations of each of these as well as on all of the other two-carbon bridged structures: (1,2,3)-, (1,2,4)-, (1,2,3,4)-, (1,2,4,5)-, (1,2,3,4,5)-, and (1,2,3,4,5,6)-cyclophane; the latter is known as "superphane." Compare the computed angles and distances with those measured by X-ray crystallography (see the cited article). [Sekine, Y.; Boekelheide, V. J. Am. Chem. Soc. 1991, 103, 1777 and references cited therein; also Gleiter, R.; Kratz, D. Acc. Chem. Res. 1993, 26, 311.] 53. Shown to the right is [3.3](1,3)-cyclophane. There are at least five reasonable conformations for this compound (see the cited article). Use molecular mechanics to calculate the energy and geometry of each of these five conformations; assess which factors are responsible for the energy differences among the conformations. [Biali, S. E. J. Chem. Educ. 1990, 67, 1039.] 54. Use molecular mechanics to calculate the energies and geometries of a series of tetrasubstituted alkenes where R is H, Me, Et, iPr, or tBu. Compare your answers with those in Chart I and Table III of the first-cited reference. (Don't bother trying to reproduce the rotational barriers of Chart II because these are in doubt, as indicated by the second-cited reference.) [Clennan, E. L.; Chen, X.; Koola, J. J. J. Am. Chem. Soc. 1990, 112, 5193; Orfanopoulos, M.; Stratakis, M.; Elemes, Y.; Jensen, F.
    [Show full text]
  • Synthesis of Cyclobutenes and Bicyclo (2.1.0) Pentanes Through Platinum and Ruthenium- Catalyzed Reactions Zhenjie Ni
    Synthesis of Cyclobutenes and Bicyclo (2.1.0) pentanes Through Platinum and Ruthenium- catalyzed Reactions Zhenjie Ni To cite this version: Zhenjie Ni. Synthesis of Cyclobutenes and Bicyclo (2.1.0) pentanes Through Platinum and Ruthenium- catalyzed Reactions. Organic chemistry. Ecole Centrale Marseille, 2014. English. NNT : 2014ECDM0004. tel-01494845 HAL Id: tel-01494845 https://tel.archives-ouvertes.fr/tel-01494845 Submitted on 24 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ECOLE CENTRALE MARSEILLE Institut des Sciences Moléculaires de Marseille (UMR 7313) THESE DE DOCTORAT Pour obtenir le garde de: DOCTEUR DE L’ECOLE CENTRALE MARSEILLE Discipline: Sciences Chimiques Ecole Doctotale des Sciences Chimiques ED 250 SYNTHESIS OF CYCLOBUTENES AND BICYCLO[2.1.0]PENTANES THROUGH PLATINUM AND RUTHENIUM-CATALYZED REACTIONS Présentée par Zhenjie NI Directeurs de thèse: Dr. Alphonse TENAGLIA et Dr. Laurent GIORDANO JURY Dr. Elisabet Duñach Université de Nice-Sophia Antipolis Rapporteur Pr. Jean-Marc Campagne Institut Charles Gerhardt, Montpellier Rapporteur Dr. Yves Gimbert Université Joseph Fourier, Grenoble Examinateur Dr. Alphonse Tenaglia Aix-Marseille Université Directeur de thèse Dr. Laurent Giordano Ecole Centrale Marseille Directeur de thèse Acknowledgements First and foremost I would like to extend my deepest gratitude to my thesis advisors, Dr.
    [Show full text]
  • Cucurbiturils: from Synthesis to High-Affinity Binding and Catalysis
    Chemical Society Reviews Cucurbiturils: From Synthesis to High -Affinity Binding and Catalysis Journal: Chemical Society Reviews Manuscript ID: CS-REV-08-2014-000273.R1 Article Type: Review Article Date Submitted by the Author: 24-Sep-2014 Complete List of Authors: Nau, Werner; Jacobs University, School of Engineering and Science Assaf, Khaleel; Jacobs University Bremen, Page 1 of 49 Chemical Society Reviews Table of contents entry Major developments in the synthesis of cucurbiturils and applications related to their high-affinity binding and catalysis have recently taken place. Chemical Society Reviews Page 2 of 49 Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis Khaleel I. Assaf and Werner M. Nau Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany 1 Page 3 of 49 Chemical Society Reviews Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis Khaleel I. Assaf and Werner M. Nau Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany Abstract. In the wide area of supramolecular chemistry, cucurbit[n]urils (CB n) present themselves as a young family of molecular containers, able to form stable complexes with various guests, including drug molecules, amino acids and peptides, saccharides, dyes, hydrocarbons, perfluorinated hydrocarbons, and even high molecular weight guests such as proteins ( e.g. , human insulin). Since the discovery of the first CBn, CB6, the field has seen tremendous growth with respect to the synthesis of new homologues and derivatives, the discovery of record binding affinities of guest molecules in their hydrophobic cavity, and associated applications ranging from sensing to drug delivery. In this review, we discuss in detail the fundamental properties of CB n homologues and their cyclic derivatives with a focus on their synthesis and their applications in catalysis.
    [Show full text]
  • Host-Guest Complexes of Cucurbit[7]Uril with Cationic Drugs
    HOST-GUEST COMPLEXES OF CUCURBIT[7]URIL WITH CATIONIC DRUGS AND AMINO ACID DERIVATIVES by Mona A. Gamal-Eldin A thesis submitted to the Department of Chemistry In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada September 2013 Copyright © Mona A. Gamal-Eldin, 2013 Abstract The host-guest chemistry between cucurbit[7]uril (CB[7]) and cationic organic guests of medicinal and biological interest are described in this thesis. In the first part, three cationic steroidal neuromuscular blockers (SNMBs) were studied, along with guests that model their monocationic N-alkyl-N-methylheterocyclic (morpholinium, pyrrolidinium and piperidinium) terminal groups of the SNMBs, and dicationic guests in which the two N-methylheterocyclic rings are linked by a decamethylene chain, modelling a variety of NMBs. Other cationic drugs related to acetylcholine processes in neuromuscular blockage were also studied. In the second part, the amino acids lysine, and its mono-, di- and trimethylated and acetylated N derivatives, and arginine, and mono- and (symmetric and asymmetric) dimethylarginine, were investigated as guests, along with analogs of arginine. The nature and strength of the complexation between CB[7] and these guests in aqueous solution were determined by 1H NMR spectroscopy and ESI mass spectrometry. 6 9 -1 The CB[7] showed high binding affinity (KCB[7] = 10 -10 M ) towards the N-alkyl-N- methylheterocyclic cations with a trend of piperidinium > pyrrolidinium > morpholinium, which reflects the relative hydrophobicities of the guests. The CB[7] forms 1:1 and 2:1 host-guest complexes with dicationic model guests, with the CB[7] initially encapsulating the decamethylene chain.
    [Show full text]
  • Chem 51A Chapter 4 2014
    Lecture Notes Chem 51A S. King Chapter 4 Alkanes I. Alkanes – An Introduction Alkanes are aliphatic hydrocarbons having only C−H and C−C σ-bonds. They can be cyclic or acyclic. • Acyclic alkanes have the molecular formula CnH2n+2 (where n = an integer.) They are also called saturated hydrocarbons because they have the maximum number of hydrogen atoms per carbon. • Cyclic alkanes contain carbon atoms joined into a ring. They have molecular formula CnH2n. (Notice: 2 less hydrogens than saturated alkanes – Why? A. Unbranched Alkanes Alkanes with unbranched carbon chains are also known as normal alkanes or n- alkanes. The first four n-alkanes: H H H H H H H H H H H C H H C C H H C C C H H C C C C H H H H H H H H H H H • This is an example of a family of compounds known as homologous series (each member differs from the next by the addition of one methylene group (CH2). The first 12 n-alkanes are listed in the handout Essential Nomenclature. 71 Look at the various representations of propane: H H H H H H H C3H8 CH3CH2CH3 H C C C H C C H C H H H H H H H CH 3 H CH3 C H H H CH3 H H B. Branched Alkanes As the number of carbons of an alkane increase beyond three, the number of possible structures increases. An alkane with molecular formula C4H10, for example has two different ways to connect atoms together: CH3 CH2 CH2 CH3 CH3 CH CH3 CH3 These are examples of constitutional isomers: Compounds that have the same molecular formula but different connectivity.
    [Show full text]