Neuroptera (Lacewings) T
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico. -
Processing Tomato Enterprise Management Plan Tomato Potato Psyllid Processing Tomato Enterprise Management Plan
Processing tomato Enterprise management plan Tomato potato psyllid Processing tomato enterprise management plan CONTENTS INTRODUCTION 1 UNDERSTANDING PEST AND PATHOGEN BIOLOGY AND THEIR IDENTIFICATION 2 IDENTIFYING RISK PATHWAYS 5 APPLYING CONTROL AND MANAGEMENT OPTIONS 6 BIOSECURITY AWARENESS AND IMPLEMENTATION 12 MOVEMENT OF FRUIT TO PROCESSING FACILITY 13 PERMIT 14 APPENDIX 1 — Preliminary results 15 APPENDIX 2 — Biological control results 19 APPENDIX 3 — Chemical control results 23 MY NOTES 27 Tomato potato psyllid Processing tomato enterprise management plan 1 INTRODUCTION Tomato potato psyllid (TPP) is supporting ongoing efforts to renew and a serious pest of Processing maintain market access, as well as underpin tomatoes. TPP is the vector certification and assurance schemes. of the bacterium Candidatus Our aim is to build on current best practice Liberibacter solanacearum* to include the management of TPP, without (CLso) which is associated with creating unnecessary additional work. a range of symptoms that affect the production and economic THIS PLAN INCLUDES FIVE KEY performance of your crop. COMPONENTS: TPP WAS FIRST DETECTED TPP was first detected on mainland Australia UNDERSTANDING PEST AND in Western Australia (WA) in February 2017. ON MAINLAND AUSTRALIA PATHOGEN BIOLOGY AND THEIR This prompted a comprehensive biosecurity IN WESTERN AUSTRALIA IN response to minimise the impact of TPP on IDENTIFICATION FEBRUARY 2017. Australian businesses. After national agreement TPP could not be IDENTIFYING RISK PATHWAYS * As at October 2018, surveillance eradicated, efforts focussed on developing the confirms that CLso is not present science, biosecurity and business systems to in WA improve the capacity of growers and industry to manage TPP. APPLYING CONTROL AND An essential component of transition to MANAGEMENT OPTIONS management is the development and implementation of enterprise management plans for affected industries. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Green Lacewings Family Chrysopidae
Beneficial Insects Class Insecta, Insects Order Neuroptera, Lacewings, mantids and others Neuroptera means “nerve wings” and refers to the hundreds of veins in their wings. The order Neuroptera is comprised of several small families. Larvae and adults are usually predaceous. Some families are uncommon while others are present more in the south and west. All neuropterans have chewing mouthparts. Green lacewings Family Chrysopidae Description and life history: Adults are green, 15–20 mm long, and slender. They have large, clear membranous wings with green veins and margins, which they hold over their body like a roof. Most have long hair-like antennae and golden eyes. Oval, white eggs are laid singly on a stalk approximately 8 mm long. Larvae are small, gray, and slender, and have large sickle-shaped mouthparts with which to puncture prey. When they reach approximately 10 mm, they spin a silken cocoon and pupate on the underside of a leaf. There are one to ten generations per year. Prey species: Green lacewing adults require high-energy foods such as honeydew and pollen. Larvae prey on aphids and other small, soft-bodied insects, and are nicknamed “aphid-lions.” Some adults are also preda- Green lacewing cocoons containing pupa. (357) ceous. Eggs, larvae, and adults are commercially avail- Photo: John Davidson able and may be purchased from insectaries. These common insects feed in fields, orchards, and gardens. They are commercially available. Chrysoperla carnea, green lacewing adult. (356) Photo: David Laughlin Green lacewing eggs on stalks. (359) Photo: John Davidson Green lacewing larva. (358) Photo: John Davidson IPM of Midwest Landscapes 278. -
Neuroptera, Myrmeleontidae)
Zootaxa 3835 (3): 364–370 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3835.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:55CF6CD3-B628-40F3-92F2-DFA48D6966A7 The larva of Tricholeon relictus Hölzel & Monserrat, 2002 a synanthropic antlion (Neuroptera, Myrmeleontidae) FERNANDO ACEVEDO1, DAVIDE BADANO2 & VÍCTOR J. MONSERRAT1 1Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense de Madrid, C/Jose Antonio Novais, 2, 28040 Madrid, Spain. E-mail: [email protected]; [email protected] 2Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche (ISE–CNR), Traversa la Crucca 3, Regione Baldinca, I–07100 Li Punti SS, Italy & Sezione di Entomologia e Patologia Vegetale, Dipartimento di Agraria, Università degli Studi, via Enrico De Nicola, I–07100 Sassari SS, Italy; presently at Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche (IBAF-CNR), Via Salaria km 29,3000, I-0015 Monterotondo Scalo RM, Italy & Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana", Strada Mantova 29, I-46045 Marmirolo (MN), Italy, E-mail: [email protected] Abstract The larva of Tricholeon relictus, a Spanish endemic antlion of Afrotropical affinities, is described and illustrated for the first time also providing a comparison with the only other European member of the tribe Dendroleontini, Dendroleon pan- therinus. The larva of this species is synanthropic but probably originally lived in cave-like habitats. Key words: larval morphology, Neuropterida, Myrmeleontiformia, Mediterranean, Iberian peninsula Introduction The tribe Dendroleontini Banks, 1899 includes 35 genera of antlions distributed in Eurasia, Africa and Australia, where its maximum diversity is attained, but comprising very few species in North America (Stange 2004). -
Pidae, Osmylin
NATHAN BANKS. 201 SYNOPSES AND DESCRIPTIONS OF EXOTIC NEUROPTERA. Included below, with the descriptions of various new genera and species, are synopses of the genera of Panos- pidae, Osmylinae, Hemerobiinae, Mantispidae, South Ameri- can Myrmeleonidae and a new classification of the Perlidae ; most of the synoptic work is a result of a study of several European collections. The types of all the new species described in this paper are in the author's collection. PERLIDAE. Twice I have published classifications of the American Perlidae. After seeing several genera (hitherto unknown to me) in European museums I have prepared a new ar- rangement, which, however, differs little from the others as far as American species are concerned, but places in the same scheme the various exotic genera. For the principal character I would use the shape of the anterior part of the head. 1. Clypeus practically invisible, or only projecting from beneath the raised margin of the front of the head ; tarsi with the last joint very much longer than the first and second together, the first joint barely, if any longer, than the width of the tibia at tip; coxae I widely separate; setae present; no series of cross-veins in the cubito-anal space..... PERLINAE. Clypeus visible in continuation of the general surface of the head, and separated by a suture from the head ; tarsi with the last joint but little or not longer than the first and second together, the first joint longer than the width of the tibiae at tip, last joint of palpi as large as others ....................... -
(Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca. -
And Their Potential Preys in the Sudano Guinean Zone of Cameroon
Journal of Entomology and Zoology Studies 2016; 4(1): 198-202 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Diversity of pit building antlions (Neuroptera: JEZS 2016; 4(1): 198-202 © 2016 JEZS Myrmeleontidae) and their potential preys in the Received: 26-11-2015 Accepted: 31-12-2015 sudano Guinean zone of Cameroon Leonard Simon Tinkeu Ngamo Department of Biological Leonard Simon Tinkeu Ngamo, Jean Maogé, Koda Thomas Sciences, Faculty of Science, University of Ngaoundéré, Abstract Cameroon. In Ngaoundere, within the sudano Guinean highlands, during dry season, some xerophilous insects are Jean Maogé abundant. These insect may play a role as bio indicator to characterize the global warming. The present Department of Biological investigation in among preliminary steps to identify insects adapted to survive in dry season and some Sciences, Faculty of Science, environmental factors impacting their presence. Using pit builder ant lions as model, the present research University of Ngaoundéré, pointed out that 4 pit builder ant lions species occurred in the studied area: Myrmeleon quinquemaculatus Cameroon. (Hagen, 1853), Myrmeleon obscurus (Rambur, 1842), Hagenomyia tristis (Walker, 1853) and Myrmeleon sp. The most abundant specie was H. tristis representing 60.34% of the adults emerging from larvae Koda Thomas collected and reared. These larvae are abundant when the weather is hot and dry and also when the day Department of Biological length increases. Use of pit fall trap to investigate potential prey of these sit and wait predators released Sciences, Faculty of Science, that among the terrestrial fauna, the ant Myrmicaria opaciventris (Emery, 1893) is the main potential University of Ngaoundéré, prey of ant lion larvae representing 40% of the overall preys trapped. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Common Kansas Spiders
A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas. -
Schneider) (Neuroptera: Chrysopidae) on Three Species of Cassava Mealybugs (Hemiptera: Pseudococcidae
Agriculture and Natural Resources 50 (2016) 460e464 Contents lists available at ScienceDirect Agriculture and Natural Resources journal homepage: http://www.journals.elsevier.com/agriculture-and- natural-resources/ Original Article Larval preference and performance of the green lacewing, Plesiochrysa ramburi (Schneider) (Neuroptera: Chrysopidae) on three species of cassava mealybugs (Hemiptera: Pseudococcidae) * Charida Sattayawong, Sopon Uraichuen, Wiwat Suasa-ard Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand article info abstract Article history: The green lacewing, Plesiochrysa ramburi (Schneider) (Neuroptera: Chrysopidae), is a dominant preda- Received 21 January 2016 tory insect in cassava fields. The suitability of different cassava mealybug species as prey for Pl. ramburi is Accepted 19 July 2016 important information for mass rearing in the laboratory. Phenacoccus manihoti Matile-Ferrero, Phena- Available online 3 January 2017 coccus madeirensis Green and Pseudococcus jackbeardsleyi (Gimpel & Miller) were compared to determine their potential as prey for Pl. ramburi larvae by testing the green lacewing's preference and performance. Keywords: Non-choice tests showed that Pl. ramburi larva could feed on all three cassava mealybug species. Choice Integrated pest management tests showed that the 1st and 2nd instars of Pl. ramburi preferred Ph. manihoti and the 3rd instars Mass rearing Prey suitability preferred Ph. madeirensis. However, life table parameters showed that the highest net reproduction Reproductive rate number (19.1967) and gross reproductive rate (46.0156, females/female/generation) occurred when Pl. Pseudococcus jackbeardsleyi ramburi fed on Ps. jackbeardsleyi. This indicates that Ps. jackbeardsleyi is the most suitable diet for the mass rearing of Pl. -
12 July 2004 Volume XII No. 7 First Camp Is Behind Us and We Are
12 July 2004 Volume XII No. 7 First camp is behind us and we are frantically getting prepared for the second. It’s going to be great if we can work it in between the rain showers. Dr. John reported that we collected 1080 insects from 14 Orders during first camp. Those are the ones pinned and placed in boxes. I’m sure there are even more that weren’t processed before finish of camp. Most of the campers learned a lesson or two during the week and all of us learned that butterflies do fly in the rain. It was a fun week! We’ve also finished the first round of contests for 2004 in Mississippi. Some of the Arkansas, Louisiana and Tennessee 4-Hers still have some of those activities to anticipate. 4-Hers should endeavor to get collections ready and show them at every opportunity. It helps to let folks know what you are about. The Mississippi 4-H Linnaean Superbowl is in Jackson on July 17 at the Equestrian Center. There are 8 teams preparing for the contest and we look forward to a great tournament on Saturday. Check our 4-H Entomology WEB page for all the winners. We are still eagerly awaiting the National Bee Essay Contest results and a new topic for 2005. Our Mississippi winner this year was Nicole Boles from Kosciusko. We paid prize money for the top 10 essayists in Mississippi. It’s good practice! Featured Insect Order – Neuroptera Family – Mantispidae common name The mantispid flies • Mantid like in appearance, hence the common names and family name Mantispidae.