Schneider) (Neuroptera: Chrysopidae) on Three Species of Cassava Mealybugs (Hemiptera: Pseudococcidae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results .............................................................................................................. -
Foraging on and Consumption of Two Species of Papaya Pest Mites
BIOLOGICAL CONTROLÑPARASITOIDS AND PREDATORS Foraging on and Consumption of Two Species of Papaya Pest Mites, Tetranychus kanzawai and Panonychus citri (Acari: Tetranychidae), by Mallada basalis (Neuroptera: Chrysopidae) LING LAN CHENG,1,2 JAMES R. NECHOLS,1 DAVID C. MARGOLIES,1 JAMES F. CAMPBELL,1,3 4 5 5 PING SHIH YANG, CHIEN CHUNG CHEN, AND CHIU TUNG LU Environ. Entomol. 38(3): 715Ð722 (2009) ABSTRACT Tetranychus kanzawai Kishida and Panonychus citri (McGregor) are two major acarine pests of the principal papaya variety in Taiwan, and they often co-occur in the same papaya screen- houses. This study measured prey acceptability, foraging schedule, short-term consumption rate, and handling time of larvae of a domesticated line of the green lacewing, Mallada basalis (Walker), in no-choice tests with different life stages of these two mite pests. After a period of prey deprivation, all three larval instars of M. basalis exhibited a high rate of acceptance of all life stages of both T. kanzawai and P. citri. In 2-h trials, second- and third-instar predators foraged actively most of the time, whereas Þrst instars spent Ϸ40% of the time at rest. Consumption increased and prey handling time decreased as predator life stage advanced and prey stage decreased. Third-instar lacewings consumed an average of 311.4 T. kanzawai eggs (handling time: 6.7 s/egg) and 68.2 adults (handling time: 58.8 s/adult), whereas Þrst instars consumed 19.6 eggs (handling time: 23.6 s/egg) and 4.0 adults (handling time: 633.4 s/adult). M. basalis generally consumed more P. -
04 12501P Com.Pdf
APHIS’ Analysis and Response to Comments Received on Petition 04-125-01p and the EA A total of nineteen comments were submitted during the designated 60 day comment period. Eight comments submitted were in favor of deregulation of MON 88017. Four of these eight submissions were from state corn grower associations. All four state corn grower associations cited corn rootworm (CRW) as a significant pest in their respective states, and embraced any technology that helps to improve corn productivity. A university professional wrote in support of MON 88017 because it provides root protection equivalent to the granular insecticide FORCE 3G (pyrethroid type insecticide) in heavily CRW-infested soil. Another university professional wrote in support of MON 88017 and also noted the efficacy of rootworm control compared to conventional insecticide treatment. She also discussed the tangible risk to non-target species and to humans with conventional insecticides and noted that many corn producers can recount a personal experience of insecticide poisoning often due to the handling of soil insecticide. She stated that MON 88017 will play a continuing role in decreasing the use of broad-spectrum organophosphates and pyrethroid insecticides. Another university professional wrote in support of MON 88017 citing it as a “valuable pest management tactic” that not only reduces soil insecticide load, but will also decrease herbicides that leach into the ground water because of decreased use of both herbicides with high residual activity and toxic insecticides such as certain organophosates during crop growth. APHIS agrees with the above comments. A veterinarian wrote in favor of MON 88017 and also responded to issues in comments in opposition to deregulation of MON 88017. -
Dysdercus Cingulatus
Prelims (F) Page i Monday, August 25, 2003 9:52 AM Biological Control of Insect Pests: Southeast Asian Prospects D.F. Waterhouse (ACIAR Consultant in Plant Protection) Australian Centre for International Agricultural Research Canberra 1998 Prelims (F) Page ii Monday, August 25, 2003 9:52 AM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box 1571, Canberra, ACT 2601. Waterhouse, D.F. 1998, Biological Control of Insect Pests: Southeast Asian Prospects. ACIAR Monograph No. 51, 548 pp + viii, 1 fig. 16 maps. ISBN 1 86320 221 8 Design and layout by Arawang Communication Group, Canberra Cover: Nezara viridula adult, egg rafts and hatching nymphs. Printed by Brown Prior Anderson, Melbourne ii Prelims (F) Page iii Monday, August 25, 2003 9:52 AM Contents Foreword vii 1 Abstract 1 2 Estimation of biological control -
Using the Green Lacewing Mallada Basalis (Walker) (Neuroptera: Chrysopidae) to Control Tetranychus Kanzawai Kishida (Acari: Tetranychidae) on Papaya in a Screenhouse
台灣農業研究 (J. Taiwan Agric. Res.) 63(2):91–104 (2014) DOI: 10.6156/JTAR/2014.06302.01 Using the Green Lacewing Mallada basalis (Walker) (Neuroptera: Chrysopidae) to Control Tetranychus kanzawai Kishida (Acari: Tetranychidae) on Papaya in a Screenhouse Chien-Chung Chen1,*, Ling-Lan Cheng2, Yaw-Jen Dong3, Chiu-Tung Lu3, Wen-Jer Wu4, and John S. Yaninek5 Abstract Chen, C. C., L. L. Cheng, Y. J. Dong, C. T. Lu, W. J. Wu, and J. S. Yaninek. 2014. Using the green lacewing Mallada basalis (Walker) (Neuroptera: Chrysopidae) to control Tetranychus kanzawai Kishida (Acari: Tetranychidae) on papaya in a screenhouse. J. Taiwan Agric. Res. 63(2):91–104. Mallada basalis (Walker) is a generalist predator commonly found in agricultural fields in Tai- wan, and is commercially available as a biological control product. A number of field investigations have indicated the potential of M. basalis as a biological control agent against several arthropod pest species; however, none have been carried out on pests of papayas. Likewise, there is no information on the fate of lacewing populations following their release in the field. This study investigated the feasibility of using M. basalis to control the primary acarine pest, Tetranychus kanzawai Kishida, on papaya in a screenhouse. The main objectives included determining optimal lacewing release rates, post-release population dynamics, and efficacy in controlling mites on papaya. Lacewings released at a rate of 200 eggs per plant during the summer reduced T. kanzawai populations by 95% on average. Mite populations were lower during the winter and required half the summer lacewing release rate to achieve the same level of control. -
Development and Reproduction of Mallada Basalis (Neuroptera: Chrysopidae) on Artificial Diets
Development and reproduction of Mallada basalis (Neuroptera: Chrysopidae) on artificial diets Jingwen Ye1,2,3,4, Jianqing Dai2,3,4, Jun Li2,3,4, Zhigang Li2,3,4, Yongyue Lu1, Shichou Han2,3,4,*, and Ling Zeng1,* Abstract The green lacewing, Mallada basalis (Walker) (Neuroptera: Chrysopidae), has a broad prey range and effective searching abilities. Because rearing procedures based on natural or factitious foods for the larvae of this economically important predator are often time consuming and/or expensive, the main objective of our study was to develop an artificial diet suitable for mass rearing. We analyzed the development, survival, longevity, and re- production ofM. basalis (F1 generation) fed 3 artificial diets. These diets were formulated based on those Chrysoperlaof sinica Tjeder and Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae). All 3 of the diets contained chicken egg, beer yeast powder, sucrose, trehalose, vitamin C, and potas- sium sorbate. The first artificial diet (AD1) also contained honey and distilled water. AD2 also included pupal hemolymph of the Chinese oak silk moth (Antheraea pernyi Guérin-Méneville; Lepidoptera: Saturniidae), and AD3 also included whole A. pernyi pupae, which had been blended into all of the ingredients. The 2nd instars reared on AD3 required 2.91 d to develop to 3rd instars, which was significantly less time than the 3.69 d required on AD2. However, 3rd instars reared on AD1 required 4.48 d to develop to the pupal stage, which was significantly shorter than 3rd instars on AD2 and AD3 at 6.92 and 5.68 d, respectively. The development time of pupae in the AD3 treatment was 8.18 d, which was significantly shorter than that of pupae in the AD1 and AD2 treatments at 9.05 and 10.00 d, respectively. -
National Program 304 – Crop Protection and Quarantine
APPENDIX 1 National Program 304 – Crop Protection and Quarantine ACCOMPLISHMENT REPORT 2007 – 2012 Current Research Projects in National Program 304* SYSTEMATICS 1245-22000-262-00D SYSTEMATICS OF FLIES OF AGRICULTURAL AND ENVIRONMENTAL IMPORTANCE; Allen Norrbom (P), Sonja Jean Scheffer, and Norman E. Woodley; Beltsville, Maryland. 1245-22000-263-00D SYSTEMATICS OF BEETLES IMPORTANT TO AGRICULTURE, LANDSCAPE PLANTS, AND BIOLOGICAL CONTROL; Steven W. Lingafelter (P), Alexander Konstantinov, and Natalie Vandenberg; Washington, D.C. 1245-22000-264-00D SYSTEMATICS OF LEPIDOPTERA: INVASIVE SPECIES, PESTS, AND BIOLOGICAL CONTROL AGENTS; John W. Brown (P), Maria A. Solis, and Michael G. Pogue; Washington, D.C. 1245-22000-265-00D SYSTEMATICS OF PARASITIC AND HERBIVOROUS WASPS OF AGRICULTURAL IMPORTANCE; Robert R. Kula (P), Matthew Buffington, and Michael W. Gates; Washington, D.C. 1245-22000-266-00D MITE SYSTEMATICS AND ARTHROPOD DIAGNOSTICS WITH EMPHASIS ON INVASIVE SPECIES; Ronald Ochoa (P); Washington, D.C. 1245-22000-267-00D SYSTEMATICS OF HEMIPTERA AND RELATED GROUPS: PLANT PESTS, PREDATORS, AND DISEASE VECTORS; Thomas J. Henry (P), Stuart H. McKamey, and Gary L. Miller; Washington, D.C. INSECTS 0101-88888-040-00D OFFICE OF PEST MANAGEMENT; Sheryl Kunickis (P); Washington, D.C. 0212-22000-024-00D DISCOVERY, BIOLOGY AND ECOLOGY OF NATURAL ENEMIES OF INSECT PESTS OF CROP AND URBAN AND NATURAL ECOSYSTEMS; Livy H. Williams III (P) and Kim Hoelmer; Montpellier, France. * Because of the nature of their research, many NP 304 projects contribute to multiple Problem Statements, so for the sake of clarity they have been grouped by focus area. For the sake of consistency, projects are listed and organized in Appendix 1 and 2 according to the ARS project number used to track projects in the Agency’s internal database. -
Biology of Spirama Retorta (Lepidoptera: Noctuidae), a New Pest of Acacia Mangium in Peninsular Malaysia
Journal of Tropical Forest Science 10(2): 167-175 (1997) BIOLOGY OF SPIRAMA RETORTA (LEPIDOPTERA: NOCTUIDAE), A NEW PEST OF ACACIA MANGIUM IN PENINSULAR MALAYSIA Ahmad Said Sajap, Yaacob Abd. Waha Aidab& h Marsidi Department of Forest Management, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Received October 1994__________________________________________________ SAJAP, A.S., YAACOB, A.W AIDAH& . 1997M , . Biolog f Spiramayo retorta (Lepidoptera: Noctuidae), a new pest of Acacia mangium in Peninsular Malaysia. An outbreak of Spirama retorta (Lepidoptera: Noctuidae), affecting 800 ha of a one-year- old Acacia mangium plantation, occurred in May to October 1992 in Gunung Besaut Forest Reserve, Perak, Peninsular Malaysia. In the laboratory, more than 60% of larvae reared on A. mangium leaves reached adult stage. Development from egg to adult took 42 days through seven instars requiring 27 days. The moth was medium - sized, having red abdomen and an eyespot on its forewing. The female (x = 64.4 mm), bigger than the male, had greyish-orange forewings with prominent eyespots. e male( d Th darha 58.x= ) k brow8mm o almost n t black forewings with less conspicuous eyespots. The life table parameters recorded from laboratory popula- tion were: the net reproductive rate (Ro) of 203.2, the mean generation time (Tc) of 43.3 days intrinsie th , c ratdoubline increasf th eo d an g edays1 6 tim(r0. 5. mf f .e)o o Results from biweekly sampling showed that the infestation, indicated by the numbe f treeo r s with larvae, variebeginnine th t studye da th fro % f go m, 30 ros o et fourte more th th n ei f h o thawee % dropped d n60 en kan e th leso dt t a s tha% n10 fourteenth week. -
Behavioral Origin of Tremulation, and Possible Stridulation, in Green Lacewings (Neuroptera: Chrysopidae)
BEHAVIORAL ORIGIN OF TREMULATION, AND POSSIBLE STRIDULATION, IN GREEN LACEWINGS (NEUROPTERA: CHRYSOPIDAE) BY PETER DUELLI AND JAMES B. JOHNSON University of California, Berkeley, Division of Biological Control 1050 San Pablo Ave. Albany, CA 94706 USA Introduction Abdominal vibration or "jerking" in connection with courtship behavior has been described for several green lacewing species (e.g. Smith 1922; Toschi 1965; Tauber 1969; Sheldon and MacLeod 1974) and explored in detail by Henry (1979, 1980a, b, c). In Chrysoperla carnea (Stephens) isolated individuals produce long, patterned sequences of discrete short bursts of rhythmic vibration of the abdomen in the vertical plane. The wings may also vibrate. Sexually receptive pairs establish duets of reciprocal abdominal jerking. Actual drumming of the abdomen on the substrate does not occur. It had been assumed that abdominal vibration produces high-frequency sounds by stridulation (Adams 1962, Riek 1967, Eichele and Villiger 1974, Henry 1979) and acoustical communica- tion was discussed in connection with the tympanal ultrasound receptor organ described by Miller (1970, 1971). Courtship and copulation take place on the vegetation, usually on the underside of leaves. Henry (1980a, c) in his work with Chrysoperla spp. tlemon- strated that communication is performed via low-frequency sub- strate vibration and not by airborne sound. Males were able to establish duets with females within a range of 15 cm. According to Henry (1980a, b, c), differences in the vibration patterns of Chry- Published with the approval of the Director of the Idaho Agricultural Experiment Station as Research Paper No. 81613. 2Present address: Zoologisches Institut, Universitit Basel, Rheinsprung 9, 4051 Basel Switzerland. -
1 Publications Issued and Manuscripts Approved
1 PUBLICATIONS ISSUED AND MANUSCRIPTS APPROVED Acebes, A.L., Messing, R.H. 2012. Comparative susceptibility to hyperparasitism of Binodoxys communis and Aphidius colemani, primary aphid parasitoids introduced to Hawaii. Biological Control http://dx.doi.org/10.1016/j.biocontrol.2012.09.003. Albuquerque, G. S., Tauber, C. A., & Tauber, M. J. 2012. Green lacewings (Neuroptera: Chrysopidae): predatory life-styles. Pages 593-631. In A. R. Panizzi and J. R. P. Parra (eds.), Insect Bioecology and Nutrition for Integrated Pest Management. CRC Press. Andreas, J., E. M. Coombs, J. Milan, G. L. Piper, and M. Schwarzlaender. 2012. Biological control, pp. 1-7. In E. Peachey, D. Ball, A. Hulting, T. Miller, D. Morishita, and P. Hutchinson (eds.), Pacific Northwest Weed Management Handbook. Ext. Serv., Oregon State Univ., Corvallis. Asiimwe, P., L. Brown, T. Vandervoet, P. Ellsworth, & S. Naranjo. 2011. Big-eyed bugs have a big appetite for pests. Field Crop IPM Shorts, Cooperative Extension, University of Arizona, Tucson. 8/2011. (Spanish version 6/2012) Brown, L., T. Vandervoet, P. Ellsworth & S. Naranjo. 2011. Assassin bugs top the food web. Field Crop IPM Shorts, Cooperative Extension, University of Arizona, Tucson. 8/2011. (Spanish version 6/2012) Callaway, R.M., Schaffner, U., Thelen, G.C., Khamraev, A., Juginisov, T. and Maron, J.L. 2012. Impact of Acroptilon repens on co-occurring native plants is greater in the invader’s non- native range. Biological Invasions. Online first, DOI 10.1007/s10530-011-0145-1 Caspi-Fluger, A., N. Mozes-Daube, M. Inbar, N. Katzir, V. Portnoy, E. Belausov, M.S. Hunter, and E. Zchori-Fein 2012. -
The 58Th Annual Meeting Entomological Society of America the 58Th Annual Meeting Entomological Society of America
TheThe 58th58th AnnualAnnual MeetingMeeting ofof thethe EntomologicalEntomological SocietySociety ofof AmericaAmerica December 12-15, 2010 Town and Country Convention Center San Diego, CA Social Events .................................................................................... 11 The Stridulators ............................................................................... 11 Student Activities ........................................................................12 Linnaean Games .............................................................................. 12 Student Competition for the President’s Prize ............................... 12 Student Debate ............................................................................... 12 Student Awards ............................................................................... 12 Student Reception ........................................................................... 12 Student Volunteers ......................................................................... 12 Awards and Honors .....................................................................12 Honorary Membership .................................................................... 12 ENTOMOLOGY 2010 ESA Fellows...................................................................................... 12 Founders’ Memorial Award ............................................................ 12 58th Annual Meeting ESA Professional Awards ................................................................. 13 Editors’