Dysdercus Cingulatus

Total Page:16

File Type:pdf, Size:1020Kb

Dysdercus Cingulatus Prelims (F) Page i Monday, August 25, 2003 9:52 AM Biological Control of Insect Pests: Southeast Asian Prospects D.F. Waterhouse (ACIAR Consultant in Plant Protection) Australian Centre for International Agricultural Research Canberra 1998 Prelims (F) Page ii Monday, August 25, 2003 9:52 AM The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box 1571, Canberra, ACT 2601. Waterhouse, D.F. 1998, Biological Control of Insect Pests: Southeast Asian Prospects. ACIAR Monograph No. 51, 548 pp + viii, 1 fig. 16 maps. ISBN 1 86320 221 8 Design and layout by Arawang Communication Group, Canberra Cover: Nezara viridula adult, egg rafts and hatching nymphs. Printed by Brown Prior Anderson, Melbourne ii Prelims (F) Page iii Monday, August 25, 2003 9:52 AM Contents Foreword vii 1 Abstract 1 2 Estimation of biological control prospects 2 3 Introduction 3 4 Target insect pests 9 4.1 Agrius convolvuli 9 Rating 10 Origin 10 Distribution 10 Biology 10 Host plants 11 Damage 11 Natural enemies 11 Attempts at classical biological control 14 Discussion 16 4.2 Anomis flava 17 Rating 18 Origin 18 Distribution 18 Biology 18 Host plants 19 Damage 19 Natural enemies 21 Attempts at classical biological control 27 Major natural enemies 31 Discussion 31 4.3 Aphis craccivora 33 Rating 34 Origin 34 Distribution 34 Biology 34 Host plants 35 Damage 35 Natural enemies 36 Comments 44 4.4 Aphis gossypii 45 Rating 46 Origin 46 Distribution 46 Biology 46 Host plants 47 Damage 47 iii Prelims (F) Page iv Monday, August 25, 2003 9:52 AM Natural enemies 48 Attempts at biological control 60 The major parasitoid species 70 An aphid-specific predator 79 Comments 80 4.5 Cosmopolites sordidus 85 Rating 86 Origin 86 Distribution 86 Biology 87 Damage 88 Host plants 89 Natural enemies 89 Attempts at biological control 95 Biology of main natural enemies 103 Comments 104 4.6 Deanolis sublimbalis 105 Synonyms 106 Rating 106 Origin 106 Distribution 106 Biology 107 Host plants 108 Damage 109 Natural enemies 111 Comment 112 4.7 Diaphorina citri 113 Rating 114 Origin 114 Distribution 114 Biology 115 Host plants 116 Damage 116 Natural enemies 120 Attempts at biological control 127 Major natural enemies 131 Comments 133 4.8 Dysdercus cingulatus 135 Rating 136 Origin 136 Distribution 136 Biology 136 Host plants 137 Damage 137 Natural enemies 137 Comment 138 4.9 Dysmicoccus brevipes 141 Rating 142 Origin 142 Distribution 142 Taxonomy 142 iv Prelims (F) Page v Monday, August 25, 2003 9:52 AM Biology 143 Hosts 144 Damage 144 Natural enemies 145 Attempts at biological control 145 Major natural enemies 155 Comments 156 4.10 Hypothenemus hampei 157 Rating 158 Origin 158 Distribution 158 Biology 159 Host plants 163 Damage 164 Natural enemies 166 Attempts at biological control 170 Major parasite species 176 Comments 180 4.11 Leucinodes orbonalis 185 Rating 186 Origin 186 Distribution 186 Biology 187 Host plants 187 Damage 189 Natural enemies 189 Attempts at biological control 192 Major natural enemies 192 Comments 194 4.12 Nezara viridula 197 Rating 198 Origin 198 Distribution 198 Biology 199 Damage 199 Natural enemies 200 The role of pheromones and other chemical secretions 208 Attempts at biological control 209 Biology of the major species 228 Comments 233 4.13 Ophiomyia phaseoli 235 Rating 236 Origin 236 Distribution 236 Biology 237 Host plants 237 Damage 238 Natural enemies 239 Attempts at biological control 249 The more important parasitoids 251 Comment 255 v Prelims (F) Page vi Monday, August 25, 2003 9:52 AM 4.14 Phyllocnistis citrella 257 Rating 258 Origin 258 Distribution 258 Biology 259 Host plants 262 Damage 263 Natural enemies 264 Attempts at biological control 279 Major natural enemies 282 Comment 285 4.15 Planococcus citri 287 Rating 288 Origin 288 Distribution 288 Biology 289 Host plants 289 Damage 290 Natural enemies 290 Attempts at biological control 296 Biology of important natural enemies 311 Comments 315 4.16 Trichoplusia ni 317 Rating 318 Origin 318 Distribution 318 Biology 318 Host plants 319 Damage 320 Natural enemies 320 Introductions for biological control of T. ni 334 Major parasitoid species 340 Comment 345 5 References 349 6 Index of scientific names of insects 477 7 General index 531 vi Prelims (F) Page vii Monday, August 25, 2003 9:52 AM Foreword Since its inception in 1982, ACIAR has been a very strong supporter of classical biological control as a key element in the management of exotic arthropod and weed pests. When practiced with appropriate safeguards, it often provides a sustainable and environmentally friendly alternative to the growing use of pesticides, particularly when integrated, if necessary, with the use of resistant plant varieties and cultural controls. Classical biological control has been very successful in regions of the world (e.g. Australia, California, New Zealand, Oceania) where a large number of the major insect pests and weeds are exotic. This situation applies to a far lesser extent to Southeast Asia but, in a recent survey commissioned by ACIAR, Waterhouse (1993b) identified 40 major arthropod pests that merited evaluation as possible targets for biological control. Not all of these (e.g. the indigenous fruit flies) are attractive targets, but some at least are. The present volume is a companion to Biological Control of Weeds: Southeast Asian Prospects (Waterhouse 1994). It summarises what is known about the natural enemies (principally the parasitoids) of the major exotic insect pests and indicates prospects for their biological control. The aim has been to facilitate, for countries of the region, the selection of promising individual, or collaborative, priority insect pest targets. This should also provide donor agencies with a readily accessible overview of the region’s major exotic insect pest problems and with an evaluation, where possible, of prospects for their amelioration by introduction of natural enemies. This should assist in the selection, for support, of projects that are best suited to their individual terms of reference. R. Clements Director Australian Centre for International Agricultural Research vii Front matter (F) Page 1 Monday, August 25, 2003 9:13 AM Introduction 1 1 Abstract Biological control programs have been mounted in some region(s) of the world against 13 of the 16 dossier pests and substantial or partial success has been achieved in one or more countries for 8. On the basis of available information there are good to excellent prospects for reducing, in at least some parts of the region, the damage caused by the following: Leucinodes orbonalis, Nezara viridula, Ophiomyia phaseoli and Planococcus citri. There are also good reasons for believing that there will prove to be valuable natural enemies for the following: Agrius convolvuli, Anomis flava, Aphis craccivora, Aphis gossypii, Diaphorina citri, Dysmicoccus brevipes, Hypothenemus hampei, Phyllocnistis citrella and Trichoplusia ni. There seems to be little prospect for classical biological control of Dysdercus cingulatus, too little is known about Deanolis sublimbalis and the prospects for control of Cosmopolites sordidus are unclear, although its lack of pest status in Myanmar is puzzling. Front matter (F) Page 2 Monday, August 25, 2003 9:13 AM 2 Biological Control of Insect Pests: Southeast Asian Prospects 2 Estimation of biological control prospects Insect Rating Family Any Attractiveness biological as a target in control SE Asia successes Agrius convolvuli 7 Sphingidae yes medium Anomis flava 10 Noctuidae yes low to medium Aphis craccivora 15 Aphididae ? medium Aphis gossypii 19 Aphididae yes medium Cosmopolites sordidus 13 Curculionidae ? uncertain Deanolis sublimbalis 3 Pyralidae no uncertain Diaphorina citri 8 Psyllidae yes medium Dysdercus cingulatus 11 Pyrrhocoridae no v. low Dysmicoccus brevipes 10 Pseudococcidae yes medium Hypothenemus hampeii 12 Scolytidae yes medium Leucinodes orbonalis 15 Pyralidae no medium to high Nezara viridula 10 Pentatomidae yes high Ophiomyia phaseoli 14 Agromyzidae yes high Phyllocnistis citrella 16 Phyllocnistidae yes medium Planococcus citri 7 Pseudococcidae yes high Trichoplusia ni 7 Noctuidae yes medium Front matter (F) Page 3 Monday, August 25, 2003 9:13 AM Introduction 3 3 Introduction Waterhouse (1993b) published information, collected from agricultural and weed experts in the 10 countries of Southeast Asia, on the distribution and importance of their major arthropod pests in agriculture. Ratings were supplied on the basis of a very simple system +++ very widespread and very important ++ widespread and important +important only locally Ppresent, but not an important pest The advantages and limitations of this system were discussed by Waterhouse (1993b). Of 160 insect and mite pests nominated as important in Southeast Asia, a subset of 47 was rated as particularly so. The aim
Recommended publications
  • European Academic Research
    EUROPEAN ACADEMIC RESEARCH Vol. IV, Issue 6/ September 2016 Impact Factor: 3.4546 (UIF) ISSN 2286-4822 DRJI Value: 5.9 (B+) www.euacademic.org Gelatin : mini–review AMER MAHDI State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of of Food Science and Technology Faculty of Agriculture, Sana’a University Sana’a, Yemen WALEED AL-ANSI State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of of Food Science and Technology Faculty of Agriculture, Sana’a University Sana’a, Yemen ANWAR NOMAN State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Deparatment of Agricultural Engineering Faculty of Agriculture, Sana’a University Sana’a, Yemen AMMAR AL-FARGA1 State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University Wuxi, P. R. China Abstract: Gelatin or Gelatine is a type of insoluble protein produced by hydrolysis of collagen extracted from a variety of animal sources such as the skin, bones, and connective tissues. Considered gelatin is the structural mainstay and most common protein in the animal kingdom. Gelatin has been widely used in food additives and healthy food due to its high content of protein and amino acid. The gelatin have unique 1 Corresponding author: [email protected] 5154 Amer Mahdi, Waleed Al-Ansi, Anwar Noman, Ammar Al-Farga- Gelatin: mini– review hydrocolloid nature, it has enabled it to find numerous applications in the food industry.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • 9. Notes and Index.Pdf
    - NOTE rn NoI NOTES ,i I cccnt .rSarrlst i \ t:t tC. i l. cloes Preface l. J:rnres Joll, The Anarchisls,2nd etl , (C)ambridge, Nlass.: H:rn'artl llnivet'sin Press, 'i:tlike 19tt0), p viii. .r .rl istic: 2 Sinr:e the literature on this oeriod of soci:rlis( ernd cornrnunist intertrationalism is i.rlizccl immense, it is possible to rite onlr solne rcprL\r'ntJti\c titles here Julius BtaLnthal's ()eschir.hte der Internationale, 3 r'oirs (Flarlno\er: Dietz, l96l-1971 I has bccornc standarcl ' lllrl)l\ on a ccnturl of internationalisrn, though the emphasis is alrnostexclusivclr uporr politir:al . )|S [O :rnd not trade union intern:rtionalisrn. IIore sper:ifir:rllr, on the Setoncl Internatioral, sce Jarnes Joll, The Second InternatiormL, 1889-1911. rcr ed. (l-rtrrdon ancl Boston: r.hil)s, Routledge ancl Keean Paul, 197'1). On the International Federation of Trade flnions before ,11( )ln1C the rvar arrd on its post-rvar rerival. see Joh:rnn Sasst:nbach, I'inlundzuanzig Ja.lLre internationaLer Geuterksthaf tsbelDegung (Anrstcr(1arn: IrrtcrrraIionalcn C]cterlschaf tsbun- .Li aucl dcs, 1926), and Lervis Lonvin, Lobor and Inlernatiortalisrn (Ncl York: N'Iacrnillan, 1929). iltloIls, C)n the pcrst-war Labour and Socialist International, see John Ptice, Tlrc Intcrttational Labour Llouernent (London: Oxford l-iniversitl Press 19.15) On the so-callecl Trro-ancl- ;, lile, a-Half Internationzrl, scc Andr6 Donneur, Hi.stoire de I'L'nion des Pttrtis SetciaListes (tour I'Action InternationaLe (Lausanue: fl niversit6 de ClenEve, Institu t l-n ir crsi Lairc dcs FIaLrtes :;r otlet n -L,tudes Internat.ionales, 1967).
    [Show full text]
  • Noctuoidea: Erebidae: Others
    Staude et al. / Metamorphosis 27: S165–S188 S165 ____________________________________________________________________________________________________________________________ Noctuoidea: Erebidae: Others Reference/ Lepidoptera Host plant Locality rearing no. Taxon Subfamily Family Taxon Family M1148 Anoba angulilinea Anobinae Erebidae Dalbergia Fabaceae Tshukudu Game melanoxylon Reserve, Hoedspruit M998 Anoba atripuncta Anobinae Erebidae Ormocarpum Fabaceae Tshukudu Game trichocarpum Reserve, Hoedspruit Gv71 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 14HSS52 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 13HSS84 Plecoptera arctinotata Anobinae Erebidae Senegalia caffra Fabaceae Steenkoppies, farm, Magaliesburg M1020a Plecoptera flaviceps Anobinae Erebidae Dalbergia Fabaceae Casketts, farm, melanoxylon Hoedspruit M317 Bareia incidens Calpinae Erebidae Ficus lutea Moraceae Casketts, farm, (unplaced as to Hoedspruit tribe) 14HSS87 Egnasia vicaria Calpinae Erebidae Afrocanthium Rubiaceae Dlinsa Forest, (unplaced as to mundianum Eshowe tribe) 12HSS163 Exophyla multistriata Calpinae Erebidae Celtis africana Cannabaceae Golden Valley, (unplaced as to Magaliesburg tribe) M416 Exophyla multistriata Calpinae Erebidae Trema orientalis Cannabaceae Sekororo, Tzaneen (unplaced as to (Fed on Celtis tribe) africana) M743 Lacera alope Calpinae Erebidae Pterolobium Fabaceae Moholoholo Rehab (unplaced as to stellatum Centre, Hoedspruit tribe)
    [Show full text]
  • Coleoptera, Staphylinidae, Oxytelinae) Living in Floral Bracts of Columnea Medicinalis L
    Zootaxa 4394 (4): 559–566 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4394.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:83AA97F4-AC3F-41AD-A339-5A67A64AF656 Description and notes on natural history of a new species of Parosus Sharp, 1887 (Coleoptera, Staphylinidae, Oxytelinae) living in floral bracts of Columnea medicinalis L. (Gesneriaceae) MARGARITA M. LÓPEZ-GARCÍA1,2 & OSCAR H. MARÍN-GÓMEZ1,2 1Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail: [email protected], [email protected] 2 Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico Abstract A new species of the recently revised genus Parosus is described, P. amayae López-García & Marín-Gómez sp. nov., from adult and larval specimens collected in bracts of Columnea medicinalis in the Natural Reserve Río Ñambí (Southwestern Colombia). Observations on the interaction with the plant, subsocial behavior, and population density are presented and discussed. Adults and larvae apparently live together and feed on eggs and larvae of flies that develop inside the decom- posing fruits of C. medicinalis. The new species is illustrated by color habitus photos, as well as its L1 and L3 larvae, male and female genitalia are depicted by line drawings. Key words: Oxytelinae, new species, decomposing fruits, gesneriads, subsocial behavior, cloud forest, Colombia, larvae Introduction Staphylinidae is the largest animal family with more than 61,300 described species (Newton 2015) and is dominant in a great variety of ecosystems, showing several ecological interactions (Thayer 2005).
    [Show full text]
  • The Life and Work of Frank Lloyd Wright
    THE LIFE AND WORK OF FRANK LLOYD WRIGHT PART 4 Ages 42 (1909) to 47 (1914) In Italy and Wisconsin Wunderlich PhD website: http://users.etown.edu/w/wunderjt/ Architecture Portfolio 8/28/2018 PART 1: Frank Lloyd Wright Age 0-19 (1867-1886) PDF PPTX-w/audio MP4 YouTube Context: Post Civil War recession. Industrial Revolution. Farm life. Preacher/Musician-Father, Teacher-Mother. Mother’s large influential Unitarian family of Welsh farmers. Nature. Parent’s divorce. Architecture: Froebel schooling (e.g., blocks). Barns/farm-houses (PDF PPTX-w/audio MP4 YouTube). Organic Architecture roots. PART 2: Frank Lloyd Wright Age 20-33 (1887-1900) PDF PPTX-w/audio MP4 YouTube. Context: Rebuilding Chicago after the Great Fire. Wife Catherine and first five children. Architecture: Architects Joseph Silsbee and Louis Sullivan. Oak Park. Home & Studio. “Organic Architecture” begins. PART 3: Frank Lloyd Wright Age 34-41 (1901-1908) PDF PPTX-w/audio MP4 YouTube. Context: First Japan trip (PDF PPTX-w/audio MP4 YouTube). Arts & Crafts movements. Six children. Architecture: Prairie Style. Oak Park & River Forest, Unity Temple, Robie House, Larkin Building. PART 4: Frank Lloyd Wright Age 42-47 (1909-1914) PDF PPTX-w/audio MP4 YouTube THIS LECTURE Context: Runs off with Mistress. Lives in Italy (Page MP4 YouTube). Builds Taliesin on family farmland. Mistress murdered. Architecture: Wasmuth Portfolio published(Germany).Taliesin. Many operable windows for health & passive cooling. Sculptures. PART 5: Frank Lloyd Wright Age 48-62 (1915-1929) PDF PPTX-w/audio MP4 YouTube Context: WWI, Roaring 20’s. Short 2nd marriage. Lives 3 yrs in Japan, then California and Wisconsin.
    [Show full text]
  • Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass As Influenced by Management Practices
    HORTICULTURAL ENTOMOLOGY Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass as Influenced by Management Practices S. KRISTINE BRAMAN AND ANDREW F. PENDLEY Department of Entomology, University of Georgia, College of Agriculture Experiment Stations, Georgia Station, Griffin, GA 30223 J. Econ. Entomol. 86(2): 494-504 (1993) ABSTRACT Pitfall traps were used to monitor the seasonal activity of arthropod preda­ tors, parasitoids, and decomposers in replicated plots of centipedegrass turf for 3 yr (1989-1991) at two locations. During 1990 and 1991, the influence of single or combined herbicide, insecticide, and fertilizer applications on these beneficials was assessed. In total, 21 species of carabids in 13 genera and 17 species of staphylinids in 14 genera were represented in pitfall-trap collections. Nonsminthurid collembolans, ants, spiders, and parasitic Hymenoptera were adversely affected in the short term by insecticide applica­ tions targeting the twolined spittlebug, Prosapia bicincta (Say). Other taxa, notably orib­ atid Acari, increased over time in response to pesticide or fertilizer applications. Although various taxa were reduced by pesticide application during three of four sample intervals, a lack ofoverall differences in season totals suggests that the disruptive influence ofcertain chemical management practices may be less severe than expected in the landscape. KEY WORDS Arthropoda, centipedegrass, nontarget effects CENTIPEDEGRASS, Eremochloa ophiuroides Potter 1983, Arnold & Potter 1987, Potter et al. (Munro) Hack, a native of China and Southeast 1990b, Vavrek & Niemczyk 1990). Asia introduced into the United States in 1916, Studies characterizing the beneficial arthropod has become widely grown from South Carolina community and assessing effects of management to Florida and westward along the Gulf Coast practices on those invertebrates are especially states to Texas (DubIe 1989).
    [Show full text]
  • Bilimsel Araştırma Projesi (8.011Mb)
    1 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) 2 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) ÖZET* 3 AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Yapılan bu çalışma ile Amasya, Sivas ve Tokat illerinin Kelkit havzasına ait kısımlarında bulunan ve farklı böcek takımlarında parazitoit olarak yaşayan Tachinidae (Diptera) türleri, bunların tanımları ve yayılışlarının ortaya konulması amaçlanmıştır. Bunun için farklı böcek takımlarına ait türler laboratuvarda kültüre alınarak parazitoit olarak yaşayan Tachinidae türleri elde edilmiştir. Kültüre alınan Lepidoptera takımına ait türler içerisinden, Euproctis chrysorrhoea (L.), Lymantria dispar (L.), Malacosoma neustrium (L.), Smyra dentinosa Freyer, Thaumetopoea solitaria Freyer, Thaumetopoea sp. ve Vanessa sp.,'den parazitoit elde edilmiş,
    [Show full text]
  • Page 1-21.FH10
    ISSN 0375-1511 Rec. zool. Surv. India: 113(Part-4): 213-227,2013 REPORT ON THE SOIL FAUNA OF BHADRAK AND BALASORE DISTRICT, ORISSA RiNKU GoswAMi, MAYA GHOSH AND DEBDULAL SAHA Zoological Survey of India, M-Block, New Alipore, Kolkata-700053 INTRODUCTION In this study, the assessment of soil fauna in Soil is one of the basic natural resoiirces that the study areas aimed at obtaining a general supports life on Earth. It is a huge ecosystem, overview of soil fauna in the ecosystems of the which is the habitat to several living organisms. region. Perusal of published literature shows no Historically, most of the efforts on biodiversity such systematic study was conducted in these studies focused, especially on aboveground plant areas of our study zone previously. and animal species (Wardle, 2006). However, it is Soil Fauna and their Function in Soil well recognized that in most terrestrial There are many animal groups inhabiting soil ecosystems, the belowground biota supports system. It has been reported that of the total much greater diversity of organisms than does the nirmber of described species on Earth (~1,500,000), aboveground biota, because soils are the central as many as 23 per cent are soil animals (Decaens et. organising entities in terrestrial ecosystems al., 2006). Estimated nirmbers of soil species include (Coleman, and Whitman, 2005). Soil fauna is a 30,000 bacteria; 1,500,000 fungi; 60,000 algae; 10,000 highly diverse group of organisms living within protozoa; 500,000 nematodes; and 3,000 the soil and make soil alive by their activity.
    [Show full text]
  • Chapter 5. Cowpea (Vigna Unguiculata)
    5. COWPEA (VIGNA UNGUICULATA) – 211 Chapter 5. Cowpea (Vigna unguiculata) This chapter deals with the biology of cowpea (Vigna unguiculata). It contains information for use during the risk/safety regulatory assessment of genetically engineered varieties intended to be grown in the environment (biosafety). It includes elements of taxonomy, centres of origin and distribution, crop production and cultivation practices, morphological characters, reproductive biology, genetics and genome mapping, species/subspecies hybridisation and introgression, interactions with other organisms, human health considerations, common pests and pathogens, and biotechnological developments. This chapter was prepared by the OECD Working Group on the Harmonisation of Regulatory Oversight in Biotechnology, with Australia as the lead country. It was initially issued in December 2015. Updates have been made to the production data from FAOSTAT. SAFETY ASSESSMENT OF TRANSGENIC ORGANISMS IN THE ENVIRONMENT: OECD CONSENSUS DOCUMENTS, VOLUME 6 © OECD 2016 212 – 5. COWPEA (VIGNA UNGUICULATA) Introduction Cowpea (Vigna unguiculata (L.) Walp.) is grown in tropical Africa, Asia, North and South America mostly as a grain, but also as a vegetable and fodder crop. It is favoured because of its wide adaptation and tolerance to several stresses. It is an important food source and is estimated to be the major protein source for more than 200 million people in sub-Saharan Africa and is in the top ten fresh vegetables in the People’s Republic of China (hereafter “China”). In the English-speaking parts of Africa it is known as cowpea whereas in the Francophone regions of Africa, the name “niébé” is most often used. Local names for cowpea also include “seub” and “niao” in Senegal, “wake” or “bean” in Nigeria, and “luba hilu” in the Sudan.
    [Show full text]
  • Criminal Prosecution and the Rationalization of Criminal Justice
    -- Criminal Prosecution and The Rationalization of Criminal Pixstice Final Report William F. McDonald National Institute of Justice Fellow National Institute of Justice U.S. Department of Justice December, 1991 Acknowledgments This study was supported by Grant No. 88-IJ-CX-0026 from the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice to Georgetown University which made possible my participation in the NIJ Fellowship Program. It was also supported by my sabbatical grant from Georgetown University, which allowed me to conduct interviews and observations on the Italian justice system. And, it was supported by a travel grant from the Institute of Criminal Law and Procedure, Georgetown University Law Center. I would like to acknowledge my appreciation to the many people who made this entire undertaking the kind of intellectually and personally rewarding experience that one usually only dreams about. I hope that their generosity and support will be repaid to some extent by this report and by other contributions to the criminal justice literature which emerge from my thirteen months of uninterrupted exploration of the subject of this Fellowship. In particular I wish to thank James K. (Chips) Stewart, Joseph Kochanski, Bernard Auchter, Richard Stegman, Barbara Owen, Antonio Mura, Antonio Tanca, Paolo Tonini, Gordon Misner, and Samuel Dash and the anonymous NIJ reviewers who found my proposal for the Fellowship worth supporting. Points of view or opinions are those of the author and do not necessarily represent the official position of policies of the U.S. Department of Justice Georgetown University or any of the persons acknowledged above.
    [Show full text]
  • Optimization of Ethanol-Assisted Aqueous Oil Extraction from a Cicadidae Sp Farzaneh Mahmoudi-Kordi
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.24.427958; this version posted January 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Optimization of Ethanol-Assisted Aqueous Oil Extraction from a Cicadidae Sp Farzaneh Mahmoudi-Kordi . Mohammad Balvardi . Hamid-Reza Akhavan Keywords: Edible insect, Ethanol Aqueous Oil Extraction, Green Solvent, Novel Food, Homoptera Cicadidae Magicicada Abstract Edible insects have been considering as a rich resource of high-quality protein and lipid content and at the same time a low-cost nutritious resource acquiring the least expenditure during farming, breeding, rearing and harvesting. On the other hand, organic solvent consumptions in industrial areas need to be limited; being flammable by environmental hazards. That is why seeking for alternative non-toxic solvents is highly substantial. In this study ethanol-aqueous extraction method applied at three different levels to find the optimum yield of edible oil extracted of Homoptera Cicadidae Magicicada, a seasonal insect residing underground, which is consuming locally as a whole meal. These levels set using Design of expert software to variables as pH, ethanol-concentration and solvent/sample ratio and the maximum yield extracted respectively at 6, 50 and 5, by the yield of 19.5%, that is comparable to oil extracted by conventional hexane oil extraction method at 27%. Fatty acids profile of recent method and hexane extraction method analyzed using GC-MS method and the physicochemical properties of either alternative method investigated. The results were on the standard ranges.
    [Show full text]