Biological Control of Arthropods of Medical and Veterinary Importance

Total Page:16

File Type:pdf, Size:1020Kb

Biological Control of Arthropods of Medical and Veterinary Importance Forest HealthTechnology Enterprise Team Technology transfer • Biological control Proceedings of the Third International Symposium on Biological Control of Arthropods Christchurch, New Zealand February 8-13, 2009 Edited by Peter G. Mason, David R. Gillespie & Charles Vincent Agriculture and Agri-Food Canada FHTET-2008-06 December 2008 United States Forest Health Technology Enterprise Team Forest Department of Morgantown, West Virginia Service Agriculture Papers were submitted in an electronic format, and were edited to achieve a uniform format and typeface. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside of the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable. Any references to pesticides appearing in these papers does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by state and federal laws. Applicable regulations must be obtained from the appropriate regulatory agency prior to their use. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife if they are not handled and applied properly. Use all pesticides selectively and carefully. Follow recommended practices given on the label for use and disposal of pesticides and pesticide containers. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The correct citation of this work is: Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.). 2008. Proceedings of the Third International Symposium on Biological Control of Arthropods. Christchurch, New Zealand, 8-13 February 2009, United States Department of Agriculture, Forest Service, Morgantown, WV, FHTET-2008-06, December 2008, 636 p. Proceedings of the THIRD INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Christchurch, New Zealand February 8-13, 2009 Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.) USDA Forest Service Publication FHTET-2008-06 3rd INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Christchurch, New Zealand, February 8-13, 2009 PREFACE The Third International Symposium on the Biological Control of Arthropods held in Christchurch, New Zealand builds upon the foundation laid at the first meeting in Hawaii in January 2002 and the second, which was in Davos, Switzerland in 2005. The intent of the ISBCA is to create a meeting for practitioners, a forum for information exchange, an event to build cohesion among the research community, and to foster discussions of issues affecting biological control work, particularly concerning the use of parasitoids and predators as biological control agents. Biological control has never been more important globally than it is now. Invasive organisms are a major threat to natural and engineered ecosystems with biosecurity measures to mitigate and manage such incursions costing US$ billions each year. Global warming is likely to produce new pests and change the efficacy of biological control agents. Also, much of current worldwide pesticide use is wasted, insect resistance to insecticides is increasing and with increasingly-discriminating consumers in many countries, pesticide residues in food are increasingly not tolerated, nor are the external costs of pesticide use (damage to human health and the environment). Nearly two billion people worldwide are under-nourished and the prospects for the quality of life of a predicted world population growing to nine billion in a few decades are not good. Biological control is an ecosystems service (ES) or nature’s service and is driven by biodiversity. The latter is declining globally at the fastest rate in the history of humanity and with that decline ES are being lost. “Substitution agriculture”, with its dependence on mineral oil for fuel, pesticides and fertilisers is being practised increasingly worldwide to replace lost ES but that is not a sustainable solution. It is vital that we understand more fully the relationship between ES, specifically biological control, and biodiversity, and this is the subject of much current ecological research. Future biological control research must be informed by that scientific debate to minimise the risk of failures in or unexpected consequences of release of biocontrol agents and to understand the ecological mechanisms behind success and failure. It is hoped that this conference has made a significant contribution to moving the science of biological control in those directions for the 21st century. Steve Wratten, Bio-Protection Research Centre, Lincoln University III ACKNOWLEDGEMENTS We are very grateful to the following for their help in organising ISBCA III: SCIENTIFIC SESSION ORGANIZING COMMITTEE MEMBERS Session 1: Mark Hoddle (University of California Riverside, California, U.S.A.), and Roy Van Driesche (University of Massachusetts Amherst, Massachusetts, U.S.A), Session 2: Jeff Bale (University of Birmingham, Edgbaston, Birmingham, U.K.), Session 3: Nick Mills (University of California Berkeley, California, U.S.A.), and John Kean (AgResearch Limited, Christchurch, New Zealand), Session 4: Tara Dawne Gariepy (University of Hawaii at Manoa, Hawaii, U.S.A.) and Michael Traugott (University of Innsbruck, Austria), Session 5: Jörg Romeis (Agroscope Reckenholz- Tänikon Research Station ART, Zurich, Switzerland) and Tony Shelton (Cornell University Geneva, New York, U.S.A.), Session 6: Tanya Zaviezo (Universidad Catolica de Chile, Santiago, Chile) and Bob Pfannenstiel (United States Department of Agriculture-Agriculture Research Service, BIRU, Weslaco, Texas, U.S.A.), Session 8: Geoff Gurr (Charles Sturt University, Orange, Australia), Mary Gardiner (The Ohio State University, Wooster, Ohio, U.S.A) and Doug Landis (Michigan State University, East Lansing, Michigan, U.S.A.), Session 9: David Gillespie (Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada) and Juan Antonio Sanchez (IMIDA, Murcia, Spain), Session 10: Gerben Messelink (Wageningen UR Greenhouse Horticulture, Bleiswijk, The Netherlands) and Leigh Pilkington (NSW Department of Primary Industries, Australia), Session 11: Eric Palevsky (Newe- Ya'ar Research Center, Ramat Yishay, Israel) and Alberto Urbaneja (Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain), Session 12: Peter Mason (Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada) and George Heimpel (University of Minnesota, St. Paul, Minnesota, U.S.A), Session 13: Felix Wäckers (Lancaster University, Lancaster, U.K.) and Marco D’Alessandro (University of Neuchâtel, Neuchâtel, Switzerland), Session 14: Bill Snyder (Washington State University, Pullman, Washington, U.S.A) and Micky Eubanks (Auburn University, Auburn, Alabama, U.S.A.), Session 15: James Hagler, (United States Department of Agriculture-Agriculture Research Service, Maricopa, Arizona, U.S.A.) and Sarah Mansfield (University of Sydney, New South Wales, Australia), Session 16: Mike Furlong (University of Queensland, St Lucia, Queensland, Australia) and Ulli Kuhlmann (CABI Europe - Switzerland, Delémont, Switzerland). SCIENTIFIC COMMITTEE Members of the Scientific Committee are thanked for providing input into session themes. The Committee: Felix Wäckers, Ulli Kuhlmann, Manuele Tamò (IITA Benin, Cotonou, Benin), Priyadarsanan Dharma Rajan (Ashoka Trust for Research in Ecology and the Environment (ATREE), Bangalore, India), Steve Wratten (Lincoln University, Lincoln, New Zealand), Mark Hoddle and Tania Zaviezo. REGIONAL ORGANIZERS We thank Regional Organizers for coordinating ISBCA III advertising, soliciting interest in the conference, and for helping with local inquiries about ISBCA III. Regional Coordinators included: Felix Wäckers, Ulli Kuhlmann, Stefan Toepfer IV (CABI, Hodmezovasarhely, Hungary), Jean-Claude Malausa (INRA, Centre de Recherche de Sophia Antipolis, Valbonne, France), Barbara Ekbom (Swedish University of Agricultural Sciences, Uppsala, Sweden), Malika Bounfour (Techniques et de la Répression des Fraudes, Rabat, Morocco), Christian Borgemeister (ICIPE- African Insect Science for Food and Health, Nairobi, Kenya), Manuele Tamò, Rami Kfir (Agricultural Research Council, Pretoria, South Africa), Mazen A. Ateyyat (Al- Balqa' Applied University, Al-Salt, Jordan), Priyadarsanan Dharma Rajan, Banpot Napompeth (Kasetsart University, Bangkok, Thailand), Fang-Hao Wan (Chinese Academy of Agricultural Sciences, Beijing, China), Geoff Gurr, Steve Wratten,
Recommended publications
  • Revision Der Gattung Zabrus Clairv. 1-55 ©Wiener Coleopterologenverein (WCV), Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Koleopterologische Rundschau Jahr/Year: 1931 Band/Volume: 17_1931 Autor(en)/Author(s): Ganglbauer Ludwig Artikel/Article: Revision der Gattung Zabrus Clairv. 1-55 ©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at Revision der Gattung Zabrus Clairv. Von L. GANGLBAUER f in Wien. Vorbemerkung der Schriftleitung. Am 5. Juni 1912, vor nun fast zwei Jahrzehnten, ist zu Rekawinkel bei Wien einer der bedeutendsten deutschen Koleopterologen einem langwährenden, schweren Leiden erlegen: Ludwig Gangibauer. Am 1. Oktober 1856 zu Wien geboren, großväterlicherseits einem ober- österreichischen Bauerngeschlechte entstammend, hatte er am Schottengymnasium und an der Universität Wien studiert, war kurze Zeit im Lehrfach am Wiener Akademischen Gymnasium tätig gewesen und hatte im Jahre 1880 das Ziel seiner Sehnsucht, eine Assistentenstelle am k. k. zoologischen Hofkabinett, dem nach- maligen k. k. naturhistorischen Hofmuseum in WieD, erlangt, Dort war er 1885 Kustos-Adjunkt, 1893 Kustos (der koleopterologischen Abteilung), 1904 nach Prof. Friedrich Brauer Leiter, 1906 Direktor der zoologischen Abteilung des Museums geworden. Einen Wendepunkt fand seine wissenschaftliche Veröffentlichungstätigkeit, als gegen Ende der Achtzijrerjahre des verflossenen Jahrhunderts die Verlags- buchhandlung Gerold in Wien eine Neuauflage des berühmten Werkes von Ludwig Redtenbacher, der „Fauna austriaca, Die Käfer", plante und sich an Ganglbauer mit dem Antrage wandte, die Bearbeitung zu übernehmen. Nach längeren, vergeblichen Versuchen, seine Forderungen an eine kritisch-phylogenetisch geordnete Systematik mit der Form der Redt e nb a cher sehen Bestimmungs- tabellen in Einklang zu bringen, schuf Ganglbauer in seinen „Käfern von Mittel- europa" ein selbständiges Werk, von dem leider nur dreieinhalb ansehnliche Bände erschienen sind.
    [Show full text]
  • Crop Colonization by Pests and Specialist Enemies
    insects Article Dispersal in Host–Parasitoid Interactions: Crop Colonization by Pests and Specialist Enemies Edward W. Evans Department of Biology, Utah State University, Logan, UT 84322-5305, USA; [email protected]; Tel.: +01-435-797-2552 Received: 7 September 2018; Accepted: 2 October 2018; Published: 5 October 2018 Abstract: Interactions of insect pests and their natural enemies increasingly are being considered from a metapopulation perspective, with focus on movements of individuals among habitat patches (e.g., individual crop fields). Biological control may be undercut in short-lived crops as natural enemies lag behind the pests in colonizing newly created habitat. This hypothesis was tested by assessing parasitism of cereal leaf beetle (Oulema melanopus) and alfalfa weevil (Hypera postica) larvae at varying distances along transects into newly planted fields of small grains and alfalfa in northern Utah. The rate of parasitism of cereal leaf beetles and alfalfa weevils by their host-specific parasitoids (Tetrastichus julis (Eulophidae) and Bathyplectes curculionis (Ichneumonidae), respectively) was determined for earliest maturing first generation host larvae. Rates of parasitism did not vary significantly with increasing distance into a newly planted field (up to 250–700 m in individual experiments) from the nearest source field from which pest and parasitoid adults may have immigrated. These results indicate strong, rapid dispersal of the parasitoids in pursuing their prey into new habitat. Thus, across the fragmented agricultural landscape of northern Utah, neither the cereal leaf beetle nor the alfalfa weevil initially gained substantial spatial refuge from parasitism by more strongly dispersing than their natural enemies into newly created habitat.
    [Show full text]
  • Plant Genetics and Biotechnology in Biodiversity
    diversity Plant Genetics and Biotechnology in Biodiversity Edited by Rosa Rao and Giandomenico Corrado Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Plant Genetics and Biotechnology in Biodiversity Plant Genetics and Biotechnology in Biodiversity Special Issue Editors Rosa Rao Giandomenico Corrado MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rosa Rao Giandomenico Corrado Universita` degli Studi di Napoli Universita` degli Studi di Napoli “Federico II” “Federico II” Italy Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) from 2017 to 2018 (available at: http://www.mdpi.com/journal/diversity/special issues/plant genetics biotechnology) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03842-003-3 (Pbk) ISBN 978-3-03842-004-0 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Dynamique De La Population De Lacécidomyie Du Riz, Orseolia
    BURKINA FASO Unité-Progrès-JusticeUnité- Progrès-Justice MINISTERE DE L'ENSEIGNEMENT SU))ERJEUR,SU]>ERJEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE L'INNOVATION (MESRSI) UNIVERSITE NAZI BONI (UNB) INSTITUT DE DEVELOPPEMENT RURAL (lDR)(IDR) Memoire de fin de cycle En vile de l-ohtelltiolll'obtention du DIPLOME D'INGENIEUR DU DEVELOPPEMENT RURAL OPTION: AGRONOMIE Thème: l'Ï.rnn~rl:le de la lSeo,Ra ryzlVJ Présenté par Kossi LArEVI Directeur de mémoire: Pr Irénée SOMDA Co-Directeurs de mémoire: Mme Delphine OUATTARA : Dr Fernand SANKARA N: 2018/ AGRO Septembre 2018 Table des matières Pages DEDICACE i REMERCIEMENTS ii LISTES DES SIGLES ET ABREVIATIONS ivjy LISTE DES TABLEAUX .. -_ vy LISTE DES FrGURES '_.. vi LISTE DES PHOTOS ET PLANCHES vii RESUME viîi ABSTRACT ix INTRODUCTION 1 CHAPITRE 1: RIZ ET RIZICULTURE AU BURKINA FASO 5 1.1. Importance de la riziculture au Burkina Faso 5 1.2. Types de riziculture au Burkina Faso _ 6 1.2.1. Riziculture plupluvialeviale stricteslricte 6 1.2.2. Riziculture de bas-t(')ndbas-t()nd 7 1.2.3. Riziculture irriguée avecavec ma it rise totale de l'eau 7 1.3. Contraintes au développement de la riziculture au Burkina Faso 7 1.3.1.13.1. Contraintes socio -économiques 7 I.J.2. Contraintes abiotiques 7 1.3.3. Contraintes biotiques 8 CHAPITRE 2: PRINCIPAUX fNSECTESINSECTES RARAVAGEURSVAGEURS DU RIZ AU BURKJNA FASO 111 1 2. l . Lépidoptères foreurs de tiges 11 2.1.1. Foreur rayé: Chilo zacconiuszacconÎus Bleszynski 11 2.1.2. Foreur blanc: Maliarpha separalella Rag Illl 2. 1).3.
    [Show full text]
  • Structure of Arthropod Communities in Bt Maize and Conventional Maize – …
    JOURNAL FÜR KULTURPFLANZEN, 63 (12). S. 401–410, 2011, ISSN 1867-0911 VERLAG EUGEN ULMER KG, STUTTGART Originalarbeit Bernd Freier1, Christel Richter2, Veronika Beuthner2, Giana Schmidt2, Christa Volkmar3 Structure of arthropod communities in Bt maize and conventional maize – results of redundancy analyses of long-term field data from the Oderbruch region in Germany Die Struktur von Arthropodengesellschaften in Bt-Mais und konventionellem Mais – Ergebnisse von Redundanzanalysen von mehrjährigen Felddaten aus dem Oderbruch 401 Abstract both communities (1.5% and 1.2%, respectively). The results correspond with those of other studies. They show The arthropod biodiversity was investigated in half-fields the enormous dynamics of arthropod communities on planted with Bt maize (BT) and non-insecticide treated maize plants and on the ground and the relatively low conventional maize (CV) and in one-third fields planted effect of maize variant. with BT and CV plus either isogenic (IS) or insecti- cide-treated conventional maize (IN) in the Oderbruch Key words: Arthropods, spiders, carabids, community region in the state of Brandenburg, Germany, an impor- composition, Bt maize, biodiversity, redundancy analysis tant outbreak area of the European corn borer, Ostrinia nubilalis (Hübner), from 2000 to 2008. Three different arthropod communities – plant dwelling arthropods Zusammenfassung (PDA), epigeic spiders (ES) and ground-dwelling cara- bids (GDC) – were enumerated by counting arthropods Im Oderbruch, ein wichtiges Befallsgebiet des Maiszüns- on maize plants during flowering (PDA, 2000 to 2007) or lers (Ostrinia nubilalis (HÜBNER)), wurde in den Jahren by pitfall trapping four weeks after the beginning of flow- 2000 bis 2008 die Biodiversität der Arthropoden in hal- ering (ES and GDC, 2000 to 2008).
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Hymenoptera: Braconidae) Reared from Hypercompe Cunigunda (Lepidoptera: Erebidae) in Brazil
    Revista Brasileira de Entomologia 64(1):e201982, 2020 www.rbentomologia.com Diolcogaster choi sp. nov. from Brazil, a new gregarious microgastrine parasitoid wasp (Hymenoptera: Braconidae) reared from Hypercompe cunigunda (Lepidoptera: Erebidae) in Brazil Geraldo Salgado-Neto1* , Ísis Meri Medri2, José L. Fernández-Triana3, James Bryan Whitfield4 1Universidade Federal de Santa Maria, Departamento de Defesa Fitossanitária, Pós-graduação em Agronomia, Santa Maria, RS, Brasil. 2Universidade de Brasília, Departamento de Ecologia, Doutorado em Ecologia, Brasília, D F, Brasil. 3Canadian National Collection of Insects, Arachnids, and Nematodes, Ottawa, Ontario, Canada. 4University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, USA. urn:lsid:zoobank.org:pub:28F860D2-5CDB-4D55-82BC-C41CFE1ADD0E ARTICLE INFO ABSTRACT Article history: A new species of Diolcogaster (Hymenoptera: Braconidae) is described and illustrated. Additionally, its position Received 23 August 2019 within the recently published key to New World species of the xanthaspis species-group (to which the described Accepted 17 December 2019 Diolcogaster belongs) is provided. The gregarious larval parasitoid Diolcogaster choi sp. nov. was collected in Available online 17 February 2020 Maringá, Paraná State, Brazil. This natural enemy was recovered from a caterpillar of Hypercompe cunigunda (Stoll, Associate Editor: Bernardo Santos 1781) (Lepidoptera: Erebidae) that was feeding on plant of passionflower, Passiflora edulis Sims (Passifloraceae). The fauna of the xanthaspis group in the New World now includes five species, including the new species from Brazil described in this paper. Diolcogaster choi sp. nov. differs anatomically, and is morphologically diagnosed, Keywords: from all other known member of the xanthaspis group of the genus Diolcogaster, to which it belongs. The species Caterpillar also differs in recorded host, and its DNA barcode appears to be distinctive among described Diolcogaster.
    [Show full text]
  • Development of Multiple Pest Resistant Crop Cultivars
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 1994 Development of Multiple Pest Resistant Crop Cultivars Elvis A. Heinrichs University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Heinrichs, Elvis A., "Development of Multiple Pest Resistant Crop Cultivars" (1994). Faculty Publications: Department of Entomology. 920. https://digitalcommons.unl.edu/entomologyfacpub/920 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Development of Multiple Pest Resistant Crop Cultivarsl E. A. Heinrichs West Africa Rice Development Association 01 BP 2551, Bouake, Cote d'!voire, West Africa J. Agric. Entoroo!. 11(3): 225-253 (July 1994) ABSTRACT Insects are one, among a number, of biotic and abiotic constraints that limit the production of food crops. Entomologists can playa key role in increasing food production through the development of insect­ resistant crop cultivars. Resistant cultivars are sought as a major tactic in the development of IPM strategies and have been shown to be compatible with biological, chemical and cultural control tactics. There has been significant progress in the breeding and commercial utilization of multiple pest resistant crop cultivars having resistance to insects, diseases and nematodes. The most notable examples are rice cultivars which are grown on millions of hectares in Asia. Multiple pest resistant crop cultivars have high yield stability when grown in pest-infested environments.
    [Show full text]
  • Schneider) (Neuroptera: Chrysopidae) on Three Species of Cassava Mealybugs (Hemiptera: Pseudococcidae
    Agriculture and Natural Resources 50 (2016) 460e464 Contents lists available at ScienceDirect Agriculture and Natural Resources journal homepage: http://www.journals.elsevier.com/agriculture-and- natural-resources/ Original Article Larval preference and performance of the green lacewing, Plesiochrysa ramburi (Schneider) (Neuroptera: Chrysopidae) on three species of cassava mealybugs (Hemiptera: Pseudococcidae) * Charida Sattayawong, Sopon Uraichuen, Wiwat Suasa-ard Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand article info abstract Article history: The green lacewing, Plesiochrysa ramburi (Schneider) (Neuroptera: Chrysopidae), is a dominant preda- Received 21 January 2016 tory insect in cassava fields. The suitability of different cassava mealybug species as prey for Pl. ramburi is Accepted 19 July 2016 important information for mass rearing in the laboratory. Phenacoccus manihoti Matile-Ferrero, Phena- Available online 3 January 2017 coccus madeirensis Green and Pseudococcus jackbeardsleyi (Gimpel & Miller) were compared to determine their potential as prey for Pl. ramburi larvae by testing the green lacewing's preference and performance. Keywords: Non-choice tests showed that Pl. ramburi larva could feed on all three cassava mealybug species. Choice Integrated pest management tests showed that the 1st and 2nd instars of Pl. ramburi preferred Ph. manihoti and the 3rd instars Mass rearing Prey suitability preferred Ph. madeirensis. However, life table parameters showed that the highest net reproduction Reproductive rate number (19.1967) and gross reproductive rate (46.0156, females/female/generation) occurred when Pl. Pseudococcus jackbeardsleyi ramburi fed on Ps. jackbeardsleyi. This indicates that Ps. jackbeardsleyi is the most suitable diet for the mass rearing of Pl.
    [Show full text]
  • The Female Genitalia of the Genus Zabrus (Coleoptera: Carabidae: Zabrini). I. the General Structure and the Subgenera Zabrus, Eu
    Eur. J. Entorno!. 100: 115-121, 2003 ISSN 1210-5759 The female genitalia of the genusZabrus (Coleóptera: Carabidae: Zabrini). I. The general structure and the subgeneraZabrus , Euryzabrus, Platyzabrus and Epomidozabrus. Vic e n t e M. ORTUÑO, Jo sé SERRANO, An t o n io ANDÚJAR and Jo s é L. LENCINA Departamento de Zoología, Facultad de Veterinaria, Universidad de Murcia. Campus de Espinardo. Aptdo. 4021. 30071 Murcia, Spain; e-mail:[email protected] Key words. Female genitalia,Zabrus, Carabidae, Coleóptera Abstract.The systematics of the genusZabrus Clairville, 1806 is currently based on morphological characters that show a high degree of parallelism. The aim of this study is to find new characters in the female genitalia, which give a better understanding of the phylogeny of the genus and result in a new classification based on monophyletic taxa (subgenera and species groups). For this pur­ pose slides of the whole female reproductive tract were studied under light microscopy and the gonocoxa IX under scanning micro­ scopy. The study of species belonging to eight subgeneraZabrus, of and of twelve subgenera of its sister taxonAmara, shows that Zabrus is characterised by the lack of a spermatheca. This apomorphy is reported for the first time in carabids, and corroborates the monophyly of the genus in comparison Amara.to A villous canal that is intimatelyjoined to the distal bursa copulatrix was found in both genera and in species of related tribes. This feature could be an apomorphy of the Harpalidae sensu Deuve (1988). However, only inZabrus does the villous canal end in a long falciform head, which is probably another autapomorphy of the genus.
    [Show full text]
  • Current Status and Potential of Conservation Biological Control for Agriculture in the Developing World ⇑ Kris A.G
    Biological Control 65 (2013) 152–167 Contents lists available at SciVerse ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Review Current status and potential of conservation biological control for agriculture in the developing world ⇑ Kris A.G. Wyckhuys a, , Yanhui Lu b, Helda Morales c, Luis L. Vazquez d, Jesusa C. Legaspi e, Panagiotis A. Eliopoulos f, Luis M. Hernandez g a CIAT, Hanoi, Viet Nam b State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China c El Colegio de la Frontera Sur ECOSUR, San Cristóbal de Las Casas, Mexico d Instituto de Investigaciones de Sanidad Vegetal INISAV, La Habana, Cuba e United States Department of Agriculture, Agricultural Research Service, CMAVE/Florida A&M University-Center for Biological Control, Tallahassee, FL, USA f Technological Educational Institute of Larissa, Larissa, Greece g Universidad Nacional de Colombia, Palmira, Colombia highlights graphical abstract " A total of 390 literature records from 53 different crops and 53 nations were found. " Most research focused on habitat management and changes in disturbance regimes. " No CBC records were found for several key staple crops and cash crops. " 70% of pests with high incidence of insecticide resistance have been overlooked. " Many nations have high insecticide use and import, but little CBC research attention. article info abstract Article history: Conservation biological control (CBC), often described as the field of biological control with the greatest Received 9 July 2012 potential for use in developing world agriculture, has received only marginal, scattered research attention Accepted 28 November 2012 outside Western Europe or North America.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]