Plant Genetics and Biotechnology in Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Plant Genetics and Biotechnology in Biodiversity diversity Plant Genetics and Biotechnology in Biodiversity Edited by Rosa Rao and Giandomenico Corrado Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Plant Genetics and Biotechnology in Biodiversity Plant Genetics and Biotechnology in Biodiversity Special Issue Editors Rosa Rao Giandomenico Corrado MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rosa Rao Giandomenico Corrado Universita` degli Studi di Napoli Universita` degli Studi di Napoli “Federico II” “Federico II” Italy Italy Editorial Office MDPI St. Alban-Anlage 66 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) from 2017 to 2018 (available at: http://www.mdpi.com/journal/diversity/special issues/plant genetics biotechnology) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03842-003-3 (Pbk) ISBN 978-3-03842-004-0 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Contents About the Special Issue Editors ..................................... vii Preface to ”Plant Genetics and Biotechnology in Biodiversity” ................... ix Giandomenico Corrado and Rosa Rao Special Issue: Plant Genetics and Biotechnology in Biodiversity Reprinted from: Diversity 2018, 10, 19, doi: 10.3390/d10020019 .................... 1 Giandomenico Corrado and Rosa Rao Towards the Genomic Basis of Local Adaptation in Landraces Reprinted from: Diversity 2017, 9, 51, doi: 10.3390/d9040051 ..................... 4 Nunzio D’Agostino and Pasquale Tripodi NGS-Based Genotyping, High-Throughput Phenotyping and Genome-Wide Association Studies Laid the Foundations for Next-Generation Breeding in Horticultural Crops Reprinted from: Diversity 2017, 9, 38, doi: 10.3390/d9030038 ..................... 16 Andrea Sonnino International Instruments for Conservation and Sustainable Use of Plant Genetic Resources for Food and Agriculture: An Historical Appraisal Reprinted from: Diversity 2017, 9, 50, doi: 10.3390/d9040050 ..................... 36 Pedro Carbonell, Aranzazu Alonso, Adri´an Grau, Juan Francisco Salinas, Santiago Garc´ıa-Mart´ınez and Juan Jos´e Ruiz Twenty Years of Tomato Breeding at EPSO-UMH: Transfer Resistance from Wild Types to Local Landraces—From the First Molecular Markers to Genotyping by Sequencing (GBS) Reprinted from: Diversity 2018, 10, 12, doi: 10.3390/d10010012 .................... 55 Carla Ceoloni, Ljiljana Kuzmanovi´c, Roberto Ruggeri, Francesco Rossini, Paola Forte, Alessia Cuccurullo and Alessandra Bitti Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities Reprinted from: Diversity 2017, 9, 55, doi: 10.3390/d9040055 ..................... 66 Valeria Terzi, Giorgio Tumino, Donata Pagani, Fulvia Rizza, Roberta Ghizzoni, Caterina Morcia and Antonio Michele Stanca Barley Developmental Mutants: The High Road to Understand the Cereal Spike Morphology Reprinted from: Diversity 2017, 9, 21, doi: 10.3390/d9020021 ..................... 87 Maria Manuela Veloso, Maria Cristina Sim˜oes-Costa, Lu´ıs C. Carneiro, Joana B. Guimar˜aes, C´elia Mateus, Pedro Fevereiro and Cˆandido Pinto-Ricardo Olive Tree (Olea europaea L.) Diversity in Traditional Small Farms of Ficalho, Portugal Reprinted from: Diversity 2018, 10, 5, doi: 10.3390/d10010005 .....................103 Andrea Porceddu and Salvatore Camiolo Patterns of Spontaneous Nucleotide Substitutions in Grape Processed Pseudogenes Reprinted from: Diversity 2017, 9, 45, doi: 10.3390/d9040045 .....................116 Fabio Palumbo, Giulio Galla, Liliam Mart´ınez-Bello and Gianni Barcaccia Venetian Local Corn (Zea mays L.) Germplasm: Disclosing the Genetic Anatomy of Old Landraces Suited for Typical Cornmeal Mush Production Reprinted from: Diversity 2017, 9, 32, doi: 10.3390/d9030032 .....................130 v Raafat El-Namaky, Mamadou M. Bare Coulibaly, Maji Alhassan, Karim Traore, Francis Nwilene, Ibnou Dieng, Rodomiro Ortiz and Baboucarr Manneh Putting Plant Genetic Diversity and Variability at Work for Breeding: Hybrid Rice Suitability in West Africa Reprinted from: Diversity 2017, 9, 27, doi: 10.3390/d9030027 .....................145 Domenica Nigro, Stefania Fortunato, Stefania Lucia Giove, Giacomo Mangini, Ines Yacoubi, Rosanna Simeone, Antonio Blanco and Agata Gadaleta Allelic Variants of Glutamine Synthetase and Glutamate Synthase Genes in a Collection of Durum Wheat and Association with Grain Protein Content Reprinted from: Diversity 2017, 9, 52, doi: 10.3390/d9040052 .....................157 Caroline L. Gross, Mohammad Fatemi, Mic Julien, Hannah McPherson and Rieks Van Klinken The Phylogeny and Biogeography of Phyla nodiflora (Verbenaceae) Reveals Native and Invasive Lineages throughout the World Reprinted from: Diversity 2017, 9, 20, doi: 10.3390/d9020020 .....................167 Mario Augusto Pagnotta and Arshiya Noorani The Contribution of Professor Gian Tommasso Scarascia Mugnozza to the Conservation and Sustainable Use of Biodiversity Reprinted from: Diversity 2018, 10, 4, doi: 10.3390/d10010004 .....................190 vi About the Special Issue Editors Rosa Rao is Full Professor of Plant Genetics at the University of Naples “Federico II” (Italy). Her research interests include the molecular characterization of crop biodiversity, along with food authentication and multidimensional approaches for studying defences against plant enemies. Giandomenico Corrado (MSc, PhD) is currently Researcher at the University of Naples “Federico II” (Italy). He got his PhD at the University of Leeds (UK). His research activities include the molecular characterization of genetic diversity in landraces, with emphasis on the elucidation of defence mechanisms against biotic stress. vii Preface to ”Plant Genetics and Biotechnology in Biodiversity” To increase both sustainability and productivity in agriculture, crop science, from pre-breeding to production management, needs to make better use of genetic diversity. For instance, adapted and exotic genetic resources can greatly contribute to generate varieties with enhanced adaptation to different climatic conditions and with improved plasticity in response to stressful factors. These features are central to reducing vulnerability to stress and supporting more diversified and sustainable agro-ecological systems. Scientific and technical advances allow the generation of large quantities of genotypic and phenotypic data at a fraction of the cost required decades ago. Similarly, novel biotechnological approaches are revolutionizing the way we can edit or delete specific sequences of the plant genome. The impact of these innovations is wide-ranging and includes the possibility to improve our understanding and exploitation of plant genetic resources for food and agriculture (PGRFA). These new technologies are expected to transform the study of PGRFA into a more technologically intensive, information-rich science, in which the integration and interpretation of different kinds of data will be central to fully unlock the potential of genetic diversity for agriculture. Considering that the number of research articles on these topics is rapidly increasing, this Special Issue (SI) was designed to collect perspectives and experimental studies that cover contemporary advances in plant genetics and biotechnology for plant diversity in agriculture. While the usefulness of molecular tools to describe genetic polymorphisms and the importance of generic resources in agriculture has been largely covered in the literature, we felt the need to highlight how the management, description, and use of agricultural diversity is changing in the backdrop of molecular genetics and biotechnology. To this aim, we included both reviews, which summarize the current state of understanding, and experimental articles, which provide empirical cases on the description and exploitation of different kinds of plant genetic diversity. The SI was then organized into three parts. The first includes three thematic reviews on the scientific, technological, and legal advances in plant diversity and agriculture. The second part consists of three contributions on specific examples of the exploitation of different sources of genetic diversity (i.e., landraces, mutant populations, and wild-gene pools) in crops (i.e., tomato, barley, and wheat, respectively). The third part is made of six research articles on the study of molecular and/or phenotypic diversity to address basic or applied questions in trees (olive and grape), as well as herbaceous crops (maize, rice, and wheat) and wild species. In collecting the contributions, we were pleased to note that the variety of topics reflects well the wide-ranging changes made possible by recent progress in plant molecular genetics and biotechnology. This SI was also launched to honour the memory of Prof.
Recommended publications
  • Gene Use Restriction Technologies for Transgenic Plant Bioconfinement
    Plant Biotechnology Journal (2013) 11, pp. 649–658 doi: 10.1111/pbi.12084 Review article Gene use restriction technologies for transgenic plant bioconfinement Yi Sang, Reginald J. Millwood and C. Neal Stewart Jr* Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA Received 1 February 2013; Summary revised 3 April 2013; The advances of modern plant technologies, especially genetically modified crops, are considered accepted 9 April 2013. to be a substantial benefit to agriculture and society. However, so-called transgene escape *Correspondence (fax 1-865-974-6487; remains and is of environmental and regulatory concern. Genetic use restriction technologies email [email protected]) (GURTs) provide a possible solution to prevent transgene dispersal. Although GURTs were originally developed as a way for intellectual property protection (IPP), we believe their maximum benefit could be in the prevention of gene flow, that is, bioconfinement. This review describes the underlying signal transduction and components necessary to implement any GURT system. Keywords: transgenic plants, Furthermore, we review the similarities and differences between IPP- and bioconfinement- transgene escape, male sterility, oriented GURTs, discuss the GURTs’ design for impeding transgene escape and summarize embryo sterility, transgene deletion, recent advances. Lastly, we go beyond the state of the science to speculate on regulatory and gene flow. ecological effects of implementing GURTs for bioconfinement. Introduction proposed (Daniell, 2002; Gressel, 1999; Moon et al., 2011), including strategies for male sterility (Mariani et al., 1990), Transgenic crops have become an integral part of modern maternal inheritance (Daniell et al., 1998; Iamtham and Day, agriculture and have been increasingly adopted worldwide (James, 2000; Ruf et al., 2001), transgenic mitigation (Al-Ahmad et al., 2011).
    [Show full text]
  • Historiographies of Plant Breeding and Agriculture LSE Research Online URL for This Paper: Version: Accepted Version
    Historiographies of Plant Breeding and Agriculture LSE Research Online URL for this paper: http://eprints.lse.ac.uk/101334/ Version: Accepted Version Book Section: Berry, Dominic J. (2019) Historiographies of Plant Breeding and Agriculture. In: Dietrich, Michael, Borrello, Mark and Harman, Oren, (eds.) Handbook of the Historiography of Biology. Springer. ISBN 9783319901183 (In Press) Reuse Items deposited in LSE Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the LSE Research Online record for the item. [email protected] https://eprints.lse.ac.uk/ Historiographies of Plant Breeding and Agriculture Dominic J. Berry London School of Economics There are unique opportunities that plant breeding and agriculture offer the historian of biology, and unique ways in which the historian of biology can inform the history of plant breeding and agriculture (Harwood, 2006. Phillips and Kingsland, 2015). There are also of course questions and challenges that the study of agricultural sites share with the study of other biological sites, such as those in medicine (Wilmot 2007. Woods et al. 2018), the environment (Agar and Ward 2018), and non-agricultural industries (Bud 1993). Indeed, in some instances the agricultural, medical, environmental, and biologically industrial will be one and the same. This is to say nothing of what agricultural sites share in common with histories of science beyond biology, but that is a broader discussion I can only mention in passing (Parolini 2015).
    [Show full text]
  • Crop Genetic Resources Bulletin Number 2 an Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold
    A Report from the Economic Research Service United States Department www.ers.usda.gov of Agriculture Economic Information Crop Genetic Resources Bulletin Number 2 An Economic Appraisal May 2005 Kelly Day Rubenstein, Paul Heisey, Robbin Shoemaker, John Sullivan, and George Frisvold Abstract: Crop genetic resources are the basis of agricultural production, and significant economic benefits have resulted from their conservation and use. However, crop genetic resources are largely public goods, so private incentives for genetic resource conservation may fall short of achieving public objectives. Within the U.S. germplasm system, certain crop collec- tions lack sufficient diversity to reduce vulnerability to pests and diseases. Many such genetic resources lie outside the United States. This report examines the role of genetic resources, genetic diversity, and efforts to value genetic resources. The report also evaluates economic and institutional fac- tors influencing the flow of genetic resources, including international agree- ments, and their significance for agricultural research and development in the United States. Keywords: Genetic resources, genetic diversity, germplasm, R&D, interna- tional transfer of genetic resources, in situ conservation, ex situ conserva- tion, gene banks, intellectual property. Acknowledgments: The authors wish to thank Allan Stoner, Henry Shands, and Peter Bretting for their thoughtful reviews and their valuable comments. Thanks for reviews above and beyond the call of duty belong to June Blalock, whose patience and insight were critical to the production of this report. We also thank Joe Cooper who reviewed portions of the manuscripts. Keith Wiebe provided helpful guidance in the development of the final draft. We thank Dale Simms for his excellent editorial work and Susan DeGeorge for her help with graphics and layout.
    [Show full text]
  • An Overview: Innovation in Plant Breeding
    An Overview: Innovation in Plant Breeding Modern plant breeding blends traditional ways of developing crops with the latest in science and technology to achieve improved crops – enabling more choices for both farmers and consumers, and producing crops that can better cope with evolving pests, diseases and a changing climate. The Basics What: The simplest definition of plant breeding is crossing two plants Most of the fruits, vegetables, and to produce offspring that share the best characteristics of the two grains that we eat today are the parent plants. Breeders make crosses then select which offspring to advance in the pipeline based on their desired characteristics. result of generations of plant breeding. About 5,000 years ago, Why: Even the earliest farmers understood that, in order to survive, watermelons were only they needed plant varieties specifically adapted to their environmental conditions and cultivated to produce the best foods to nourish their 2 inches in diameter livestock and communities. and had a bitter taste, vastly How: Through generations of research and discovery, plant breeding has advanced beyond selecting a parent plant simply based on its different from appearance. It now includes an in-depth understanding of plants’ the large, genetic makeup, enabling breeders to better predict which plants will sweet-tasting have the highest probability of success in the field and the grocery fruit we enjoy store before making a cross. today. The Background The earliest farmers were plant breeders who understood the value of identifying crops that showed beneficial characteristics to plant in future seasons. Later, they learned they could cross two plants to develop an even better plant.
    [Show full text]
  • Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-By-Case Decision-Making
    sustainability Review Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making Paul Vincelli Department of Plant Pathology, 207 Plant Science Building, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA; [email protected] Academic Editor: Sean Clark Received: 22 March 2016; Accepted: 13 May 2016; Published: 20 May 2016 Abstract: Genetic engineering (GE) offers an expanding array of strategies for enhancing disease resistance of crop plants in sustainable ways, including the potential for reduced pesticide usage. Certain GE applications involve transgenesis, in some cases creating a metabolic pathway novel to the GE crop. In other cases, only cisgenessis is employed. In yet other cases, engineered genetic changes can be so minimal as to be indistinguishable from natural mutations. Thus, GE crops vary substantially and should be evaluated for risks, benefits, and social considerations on a case-by-case basis. Deployment of GE traits should be with an eye towards long-term sustainability; several options are discussed. Selected risks and concerns of GE are also considered, along with genome editing, a technology that greatly expands the capacity of molecular biologists to make more precise and targeted genetic edits. While GE is merely a suite of tools to supplement other breeding techniques, if wisely used, certain GE tools and applications can contribute to sustainability goals. Keywords: biotechnology; GMO (genetically modified organism) 1. Introduction and Background Disease management practices can contribute to sustainability by protecting crop yields, maintaining and improving profitability for crop producers, reducing losses along the distribution chain, and reducing the negative environmental impacts of diseases and their management.
    [Show full text]
  • Mendelism, Plant Breeding and Experimental Cultures: Agriculture and the Development of Genetics in France Christophe Bonneuil
    Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil To cite this version: Christophe Bonneuil. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France. Journal of the History of Biology, Springer Verlag, 2006, vol. 39 (n° 2 (juill. 2006)), pp.281-308. hal-00175990 HAL Id: hal-00175990 https://hal.archives-ouvertes.fr/hal-00175990 Submitted on 3 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mendelism, plant breeding and experimental cultures: Agriculture and the development of genetics in France Christophe Bonneuil Centre Koyré d’Histoire des Sciences et des Techniques, CNRS, Paris and INRA-TSV 57 rue Cuvier. MNHN. 75005 Paris. France Journal of the History of Biology, vol. 39, no. 2 (juill. 2006), 281-308. This is an early version; please refer to the original publication for quotations, photos, and original pagination Abstract The article reevaluates the reception of Mendelism in France, and more generally considers the complex relationship between Mendelism and plant breeding in the first half on the twentieth century. It shows on the one side that agricultural research and higher education institutions have played a key role in the development and institutionalization of genetics in France, whereas university biologists remained reluctant to accept this approach on heredity.
    [Show full text]
  • PLANT GENETICS Tunable Plastic Development Plant Development Is Highly Plastic; That Is, It Can Be Extensively Adjusted to Different Environments
    RESEARCH HIGHLIGHTS IN BRIEF PLANT GENETICS Tunable plastic development Plant development is highly plastic; that is, it can be extensively adjusted to different environments. These authors investigated whether the traits involved in this plasticity are controlled coordinately or independently. Specifically, they looked at plastic responses of Arabidopsis thaliana roots to two different nitrogen environments and used both genome-wide association mapping and gene expression analysis to identify the contributing genes. Their findings support the independent control of plastic traits, an insight that could be put to use in developing more robust crops. ORIGINAL RESEARCH PAPER Gifford, M. L. et al. Plasticity regulators modulate specific root traits in discrete nitrogen environments. PLoS Genet. 9, e1003760 (2013) COMPLEX DISEASE A SNP for disease prognosis Genome-wide association studies (GWASs) have generally focused on susceptibility to disease, whereas the genetics of complex-disease progression and outcome has received little attention. Here, the authors use data from previous GWASs to identify a single-nucleotide polymorphism (SNP) in the forkhead box O3 gene (FOXO3) that is associated with the severity of, but not the susceptibility to, Crohn’s disease, rheumatoid arthritis and malaria infection. This finding shows how new biological insights can be gained from re-analyses of GWAS data and has implications for predicting disease outcome and developing new therapies. ORIGINAL RESEARCH PAPER Lee, J. C. et al. Human SNP links differential outcomes in inflammatory and infectious disease to a FOXO3-regulated pathway. Cell 155, 57–69 (2013) EVOLUTION Interference follows duplication One important source of genetic material for evolution is gene duplication followed by the partitioning of ancestral functions among the resulting paralogues.
    [Show full text]
  • Dynamique De La Population De Lacécidomyie Du Riz, Orseolia
    BURKINA FASO Unité-Progrès-JusticeUnité- Progrès-Justice MINISTERE DE L'ENSEIGNEMENT SU))ERJEUR,SU]>ERJEUR, DE LA RECHERCHE SCIENTIFIQUE ET DE L'INNOVATION (MESRSI) UNIVERSITE NAZI BONI (UNB) INSTITUT DE DEVELOPPEMENT RURAL (lDR)(IDR) Memoire de fin de cycle En vile de l-ohtelltiolll'obtention du DIPLOME D'INGENIEUR DU DEVELOPPEMENT RURAL OPTION: AGRONOMIE Thème: l'Ï.rnn~rl:le de la lSeo,Ra ryzlVJ Présenté par Kossi LArEVI Directeur de mémoire: Pr Irénée SOMDA Co-Directeurs de mémoire: Mme Delphine OUATTARA : Dr Fernand SANKARA N: 2018/ AGRO Septembre 2018 Table des matières Pages DEDICACE i REMERCIEMENTS ii LISTES DES SIGLES ET ABREVIATIONS ivjy LISTE DES TABLEAUX .. -_ vy LISTE DES FrGURES '_.. vi LISTE DES PHOTOS ET PLANCHES vii RESUME viîi ABSTRACT ix INTRODUCTION 1 CHAPITRE 1: RIZ ET RIZICULTURE AU BURKINA FASO 5 1.1. Importance de la riziculture au Burkina Faso 5 1.2. Types de riziculture au Burkina Faso _ 6 1.2.1. Riziculture plupluvialeviale stricteslricte 6 1.2.2. Riziculture de bas-t(')ndbas-t()nd 7 1.2.3. Riziculture irriguée avecavec ma it rise totale de l'eau 7 1.3. Contraintes au développement de la riziculture au Burkina Faso 7 1.3.1.13.1. Contraintes socio -économiques 7 I.J.2. Contraintes abiotiques 7 1.3.3. Contraintes biotiques 8 CHAPITRE 2: PRINCIPAUX fNSECTESINSECTES RARAVAGEURSVAGEURS DU RIZ AU BURKJNA FASO 111 1 2. l . Lépidoptères foreurs de tiges 11 2.1.1. Foreur rayé: Chilo zacconiuszacconÎus Bleszynski 11 2.1.2. Foreur blanc: Maliarpha separalella Rag Illl 2. 1).3.
    [Show full text]
  • Plant Genetic Resources As Commons: the Model of Fao’S International Treaty
    PLANT GENETIC RESOURCES AS COMMONS: THE MODEL OF FAO’S INTERNATIONAL TREATY Dr. María Iglesias Introduction After almost 7 years of negotiations, the International Treaty on Plant Genetic Resources for Food and Agriculture (hereinafter ITPGRFA) was adopted in November 20011. The Treaty already recognises in its Preamble that plant genetic resources for food and agriculture are a common concern of all countries, in that all countries depend very largely on plant genetic resources for food and agriculture that originated elsewhere. Thus, the main objectives of the ITPGRFA are the conservation and sustainable use of plant genetic resources for food and agriculture (hereinafter PGRFAs) and the fair and equitable sharing of the benefits arising out of their use, in harmony with the Convention on Biological Diversity, for sustainable agriculture and food security2. Although the Treaty covers all PGRs3, it establishes an international commons pool, the so called multilateral system, only for certain kinds of resources that will guarantee the access to these resources and the sharing of benefits 1 The ITPGRFA entered in to force in June 2004. In December 2008, 119 states had ratified it. 2 Art. 1. The ITPGRFA may be considered in fact as a special application of art. 15 (Access to Genetic Resources) of the Convention on Biological Diversity: “1. Recognizing the sovereign rights of States over their natural resources, the authority to determine access to genetic resources rests with the national governments and is subject to national legislation. 2. Each Contracting Party shall endeavour to create conditions to facilitate access to genetic resources for environmentally sound uses by other Contracting Parties and not to impose restrictions that run counter to the objectives of this Convention.
    [Show full text]
  • Plant Genetic Resources Conservation: Integrated Strategies
    PGR conservation: Integrated strategies. Ganeshan Plant Genetic Resources conservation: Integrated strategies S. Ganeshan Tropical Botanic Garden & Research Institute, Thiruvananthapuram, India. Plant Genetic Resources (PGRs) comprise a heterogeneous group of plant species involving herbs, shrubs, lianas and trees. About 90% of the world’s food comes from just 20 plant species. There is a need to increase the number of species to be brought under cultivation. Plant breeders find the need to use wild species and to introduce them into cultivated forms for the desired qualities of resistance to pests and diseases and the ability to withstand adverse soil and weather conditions. India's biological diversity is very rich but unfortunately its wealth is being eroded due to lack of integrated conservation approaches. This diversity needs to be conserved and the immediate task will be to devise and enforce time bound action plans for saving the plant species as well as their habitats. Action has to be directed towards all levels of conservation, in situ and ex situ. The conservation strategies need to be integrated and based on species specific decision support systems, which could be based on research and development outputs. Appropriate links are desirable between in situ and ex situ conservation approaches keeping the in situ reservoirs as base biological capital, sourcing PGRs in a sustainable manner for creation of core ex situ reservoirs representing the entire genetic diversity of the desired species or a combination of them. Need based technological interventions for ex situ conservation such as creation of a back up in vitro active gene bank for an FGB, strengthened by cryobanking of species specific meristem, seed, pollen and DNA as complementary conservation approaches to capture the entire range of genetic diversity will have to be explored.
    [Show full text]
  • The "Tragedy of the Commons" in Plant Genetic Resources: the Need for a New International Regime Centered Around an International Biotechnology Patent Office
    Gulati: The "Tragedy of the Commons" in Plant Genetic Resources: The Need for a New International Regime Centered Around an International Biotechnology Patent Office Note The "Tragedy of the Commons" in Plant Genetic Resources: The Need for a New International Regime Centered Around an International Biotechnology Patent Office Chetan Gulati- The last several centuries have seen a transformation in the ways in which wealth is generated. As society has transformed itself in the post- industrial era, "knowledge" and "information," as opposed to land and physical property, have increasingly become the primary sources of wealth generation.1 For example, historically, it was ownership of the forest that was the principal channel for the derivation of riches. Today it is the possession of the patent in the pharmaceutical product derived from the leaves of the trees of the very same forest that is the fountain from which the greatest wealth springs. It is not surprising, therefore, that the strategy of wealth maximization has shifted from the desire to accumulate physical property to one in which the domination2 of intellectual property rights ("IPRs") has become preeminent. As already alluded to, the products derived from plant genetic resources ("PGRs")3 are major sources of wealth generation for developed t J.D., Yale Law School, expected 2002. I am grateful to Professor Gideon Parchomovsky for his guidance and valuable commentary. I should also thank my colleagues at the Yale Law School, especially Saema Somalya, Jean Tom and the other editors of the Yale Human Rights and Development Law Journal, without whose constant challenge to my ideas, this project would never have come to fruition.
    [Show full text]
  • Biodiversity Conservation: How Can the Regulation of Bioprospecting
    N°06/13 JUNE 2013 | BIODIVERSITY Biodiversity conservation: How can the regulation of bioprospecting under the Nagoya Protocol make a difference? Claudio Chiarolla, Renaud Lapeyre, Romain Pirard (IDDRI) THE REGULATION OF BIOPROSPECTING: WHAT IS IT? AND WHY IS IT IMPORTANT? The need to protect biodiversity and to promote fairness in the use of genetic resources and associated traditional knowledge has engendered one of the most contentious debates of the 21st century between devel- oped and developing countries. This debate has fundamental implications for the way in which basic and applied research on genetic resources and biodiversity is conducted and its results are made available between and within peoples and societies. Therefore, the regulation of bioprospecting –i.e. “the search for plant and animal species from which medicinal drugs and other commercially valuable compounds can be obtained”– not only tells stories about biodiversity conservation, but also about food security, global health, intellectual property, indigenous peoples, equity, justice and human rights. NEW PERSPECTIVES: BIOPROSPECTING CONTRACTS AS MARKET- BASED INSTRUMENTS In a context of financial constraint, MBIs are seen as a potential tool to help foster biodiversity conservation. As private contracts between two (or more) parties (theoretically Coasean agreements), bioprospecting contracts could be more efficient than command-and-control regulations aimed at biodiversity conservation. Aiming to regulate bioprospecting, the Nagoya Protocol on Access to Genetic Resources and Benefit Shar- ing (ABS), adopted in 2010, should help to stop the misappropriation This article is based on research that has of genetic resources and associated traditional knowledge (known as received a financial support from the French ‘biopiracy’), while providing legal certainty for public and private users government in the framework of the programme of such resources.
    [Show full text]