Functional Genomics and Metabolite Profiling As Tools for Alkaloid Biosynthetic Gene Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Functional Genomics and Metabolite Profiling As Tools for Alkaloid Biosynthetic Gene Discovery University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2015-12-16 Functional Genomics and Metabolite Profiling as Tools for Alkaloid Biosynthetic Gene Discovery Dinsmore, Donald Reed Dinsmore, D. R. (2015). Functional Genomics and Metabolite Profiling as Tools for Alkaloid Biosynthetic Gene Discovery (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26246 http://hdl.handle.net/11023/2686 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Functional Genomics and Metabolite Profiling as Tools for Alkaloid Biosynthetic Gene Discovery by Donald Reed Dinsmore A THESIS SUMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOLOGICAL SCIENCES CALGARY, ALBERTA NOVEMBER, 2015 © Donald Reed Dinsmore 2015 ABSTRACT The benzylisoquinoline alkaloids (BIAs) are diverse group of plant specialized metabolites found in the families Papaveracea, Ranunculaceae, Berberidaceae and Menispermaceae. Plants remain the only commercial source for BIAs and their biosynthesis is poorly understood. O-methyltransferases (OMTs) are wide spread in BIA biosynthesis. Putative OMTs were found in stem and root Next-Generation Sequencing transcriptomic databases. Putative OMT cDNAs were isolated from Papaver somniferum and commercially synthesized. Recombinant protoberberine 2-O-methyltransferase (2OMT) was heterologously expressed in Escherichia coli and assayed. 2OMT demonstrated the 2-O-methylation of protoberberine alkaloids and the 7-O-methylation of simple BIAs. The substrate range and tissue specific expression of 2OMT suggest its in vivo role is converting (S)-cheilanthifoline to (S)-sinactine. A LC-MS based targeted alkaloid profiling of twenty BIA producing species from the families Papaveracea, Ranunculaceae, Berberidaceae and Menispermaceae was conducted. i ACKNOWLEDGEMENTS The completion of this thesis would not have been possible without the continued support and help from my fiancé, Alexis Greene, my parents Murray and Debra Dinsmore, my co- workers Scott Farrow and Guillaume Beaudoin and finally my supervisor Dr. Peter Facchini. I would also like to thank my committee members, Dr. Greg Moorhead and Dr. David Schriemer for their guidance throughout the duration of my program. ii TABLE OF CONTENTS ABSTRACT............................................................................................................................................................... I ACKNOWLEDGEMENTS......................................................................................................................................II TABLE OF CONTENTS ....................................................................................................................................... III LIST OF TABLES................................................................................................................................................. VII LIST OF FIGURES ..............................................................................................................................................VIII LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE................................................................IX CHAPTER ONE: INTRODUCTION .................................................................................................................... 1 1.1 SECONDARY OR SPECIALIZED METABOLISM IN PLANTS ..............................................................................................1 1.2 ALKALOID BIOSYNTHESIS IN PLANTS..............................................................................................................................4 1.3 BENZYLISOQUINOLINE ALKALOID BIOSYNTHESIS ..................................................................................................... 12 1.3.1 Structural diversity of benzylisoquinoline alkaloids ............................................................................... 12 1.3.2 Molecular biology and biochemistry of benzylisoquinoline alkaloids............................................. 14 1.3.3 The catalytic mechanism of OMTs................................................................................................................... 22 1.4 APPROACHES TO GENE DISCOVERY AND FUNCTIONAL CHARACTERIZATION OF ALKALOID BIOSYNTHETIC GENES........................................................................................................................................................................................ 24 1.4.1 Traditional approaches to gene identification .......................................................................................... 24 1.4.2 Genomics-based gene discovery approaches .............................................................................................. 24 1.4.3 Integration of targeted metabolomics and transcriptomics for gene discovery ...................... 26 1.4 OBJECTIVES ...................................................................................................................................................................... 27 CHAPTER TWO: MATERIALS AND METHODS..........................................................................................29 2.1 NUCLEIC ACID ISOLATION AND ANALYSIS .................................................................................................................. 29 iii 2.1.1 Isolation of cDNAs encoding putative OMTs from opium poppy stem............................................. 29 2.1.2 Isolation of cDNAs encoding putative OMTs from opium poppy root.............................................. 29 2.2 PHYLOGENETIC ANALYSIS.............................................................................................................................................. 30 2.3 CONSTRUCTION OF EXPRESSION VECTORS AND HETEROLOGOUS EXPRESSION.................................................... 32 2.3.1 Stem OMT gene candidates IzOMT1 through IzOMT6 ........................................................................... 32 2.3.2 Root OMT gene candidates DDOMT1-4......................................................................................................... 34 2.4 PURIFICATION OF RECOMBINANT PROTEINS AND ANALYSIS .................................................................................. 35 2.4.1 Purification of recombinant IzOMT 1-6 and DDOMT 1-4 ..................................................................... 35 2.4.2 SDS-PAGE.................................................................................................................................................................... 36 2.4.3 Western Blot Analysis ........................................................................................................................................... 36 2.5 RECOMBINANT OMT CANDIDATE ASSAYS ................................................................................................................ 36 2.5.1 Routine Enzyme assays......................................................................................................................................... 36 2.5.2 DDOMT1 Temperature and pH Optima assay............................................................................................ 37 2.5.3 DDOMT1 Km Assays ................................................................................................................................................ 37 2.6 LC-MS CONDITIONS FOR ENZYME ASSAY ANALYSIS................................................................................................. 38 2.6.1 LC conditions for enzyme assays ...................................................................................................................... 38 2.6.2 Mass analyzer conditions .................................................................................................................................... 38 2.7 REAL-TIME QUANTITATIVE PCR (QPCR).................................................................................................................. 39 2.8 LC-MS BASED TARGETED ALKALOID PROFILING OF 20 BIA PRODUCING PLANTS SPECIES.............................. 40 2.8.1 Plants............................................................................................................................................................................ 40 2.8.2 Chemical Standards ............................................................................................................................................... 40 2.8.3 Extraction of alkaloids from BIA producing plant species.................................................................... 41 2.8.4 LC conditions for targeted alkaloid profiling ............................................................................................. 42 2.5.2 Mass analyzer conditions for targeted alkaloids profiling................................................................... 42 iv CHAPTER THREE: THE ISOLATION AND FUNCTIONAL EXPRESSION OF A MOLECULAR CLONE ENCODING 2-PROTOBERBERINE O-METHYLTRANSFERASE...............................................................44
Recommended publications
  • 2354 Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1
    [Frontiers in Bioscience 11, 2354-2370, September 1, 2006] Metabolism and Ecology of Purine Alkaloids Ana Luisa Anaya 1, Rocio Cruz-Ortega 1 and George R. Waller 2 1Departamento de Ecologia Funcional, Instituto de Ecologia, Universidad Nacional Autonoma de Mexico. Mexico DF 04510, 2Department of Biochemistry and Molecular Biology, Oklahoma State University. Stillwater, OK 74078, USA TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Classification of alkaloids 4. The importance of purine in natural compounds 5. Purine alkaloids 5.1. Distribution of purine alkaloids in plants 5.2. Metabolism of purine alkaloids 6. Biosynthesis of caffeine 6.1. Purine ring methylation 6.2. Cultured cells 7. Catabolism of caffeine 8. Caffeine-free and low caffeine varieties of coffee 8.1. Patents 9. Ecological role of alkaloids 9.1. Herbivory 9.2. Allelopathy 9.2.1. Mechanism of action of caffeine and other purine alkaloids in plants 10. Perspective 11. Acknowledgements 12. References 1. ABSTRACT 2. INTRODUCTION In this review, the biosynthesis, catabolism, Alkaloids are one of the most diverse groups of ecological significance, and modes of action of purine secondary metabolites found in living organisms. They alkaloids particularly, caffeine, theobromine and have many distinct types of structure, metabolic pathways, theophylline in plants are discussed. In the biosynthesis of and ecological and pharmacological activities. Many caffeine, progress has been made in enzymology, the amino alkaloids have been used in medicine for centuries, and acid sequence of the enzymes, and in the genes encoding some are still important drugs. Alkaloids have, therefore, N-methyltransferases. In addition, caffeine-deficient plants been prominent in many scientific fields for years, and have been produced.
    [Show full text]
  • Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
    University of Bath PHD The extraction and chemistry of the metabolites of Mimosa tenuiflora and Papaver somniferum Ninan, Aleyamma Award date: 1990 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 THE EXTRACTION AND CHEMISTRY OF THE METABOLITES OF MIMOSA TENUIFLORA AND PAP AVER SOMNIFERUM. submitted by ALEYAMMA NINAN for the degree of Doctor of Philosophy of the University of Bath 1990 Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Tommann Tuntimahon At
    TOMMANNUS009909137B2TUNTIMAHON AT THE (12 ) United States Patent ( 10 ) Patent No. : US 9 , 909 , 137 B2 Fist (45 ) Date of Patent: *Mar . 6 , 2018 ( 54 ) PAPAVER SOMNIFERUM STRAIN WITH OTHER PUBLICATIONS HIGH CONCENTRATION OF THEBAINE Allen , R . S . , et al . , “Metabolic engineering of morphinan alkaloids (71 ) Applicant: Tasmanian Alkaloids Pty . Ltd ., by over -expression and RNAi suppression of salutaridinol 7 - 0 Westbury , Tasmania ( AU ) acetyltransferase in opium poppy ” Plant Biotechnology Journal; Jan . 2008 , vol. 6 , pp . 22 - 30 . (72 ) Inventor : Anthony J . Fist , Norwood (AU ) Patra , N . K . and Chavhan S . P ., “ Morphophysiology and geneticsof induced mutants expressed in the M1 generation in opium poppies , ” ( 73 ) Assignee : Tasmanian Alkaloids Pty . Ltd . , The Journal of Heredity ( 1990 ) ; 81( 5 ) pp . 347 - 350 . Crane , F . A . and Fairburn J . W . , “ Alkaloids in the germinating Westbury , Tasmania (AU ) seedling of poppy " , Transactions of the Illinois State Academy of Science . ( 1970 ) vol. 63 , No . 1 , 11 pp . 86 - 92 . ( * ) Notice : Subject to any disclaimer, the term of this Kutchan , T . M . and Dittrich H ., “ Characterization and mechanism of patent is extended or adjusted under 35 the berberine bridge enzyme, a covalently flavivated oxidase of U . S . C . 154 (b ) by 69 days . benzophenanthridine alkaloid biosynthesis in plants, ” ( 1995 ) vol. 270 , No. 41 Issue Oct. 13 ; pp . 24475 - 24481 . This patent is subject to a terminal dis Facchini, P . J . et al ., “ Molecular characterization of berberine bridge claimer. enzyme genes from opium poppy, ” ( 1996 ) Plant Physiol. 112: pp . 1669 - 1677 . De- Eknamkul W . and Zenk M . H ., “ Enzymatic formulation of (21 ) Appl . No. : 14 /816 ,639 ( R ) - reticuline from 1 , 2 - dehydroreticuline in the opium poppy plant, ” ( 1990 ) Tetradedron Lett 31 ( 34 ) , 4855 - 8 .
    [Show full text]
  • 1. Introduction
    Introduction 1. Introduction 1.1. Alkaloids The term alkaloid is derived from Arabic word al-qali, the plant from which “soda” was first obtained (Kutchan, 1995). Alkaloids are a group of naturally occurring low-molecular weight nitrogenous compounds found in about 20% of plant species. The majority of alkaloids in plants are derived from the amino acids tyrosine, tryptophan and phenylalanine. They are often basic and contain nitrogen in a heterocyclic ring. The classification of alkaloids is based on their carbon-nitrogen skeletons; common alkaloid ring structures include the pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and piperidines (Petterson et al., 1991; Bennett et al., 1994). In nature, plant alkaloids are mainly involved in plant defense against herbivores and pathogens. Many of these compounds have biological activity which makes them suitable for use as stimulants (nicotine, caffeine), pharmaceuticals (vinblastine), narcotics (cocaine, morphine) and poisons (tubocurarine). The discovery of morphine by the German pharmacist Friedrich W. Sertürner in 1806 began the field of plant alkaloid biochemistry. However, the structure of morphine was not determined until 1952 due to its stereochemical complexity. Major technical advances occurred in this field allowing for the elucidation of selected alkaloid biosynthetic pathways. Among these were the introduction of radiolabeled precursors in the 1950s and the establishment in the 1970s of plant cell suspension cultures as an abundant source of enzymes that could be isolated, purified and characterized. Finally, the introduction of molecular techniques has made possible the isolation of genes involved in alkaloid secondary pathways (Croteau et al., 2000; Facchini, 2001). 1.1.1. Benzylisoquinoline alkaloids Isoquinoline alkaloids represent a large and varied group of physiologically active natural products.
    [Show full text]
  • Morphine Julie Brousseau a Thesis Submitted
    Synthesis of Carbocycles Using Coinage Metal Catalysis and Formal Synthesis of (±)-Morphine Julie Brousseau A thesis submitted in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Chemistry Department of Chemistry and Biomolecular Sciences Faculty of Science University of Ottawa © Julie Brousseau, Ottawa, Canada, 2020 ABSTRACT Coinage metals such as copper, silver and gold have captivated mankind with their desirable qualities and social value. Recently, these metals have peaked the interests of scientists, where organic chemists have used them extensively in the homogenous catalysis of organic transformations. In our laboratory, we exploited their � -Lewis acidic properties to activate alkyne to induce intramolecular cyclization of nucleophilic enol ethers. We discovered that modulating the steric and electronic profiles of the ancillary ligand on the cationic metal complexes allowed for the regioselective control of such reactions. During the exploration of the substrate dependency of these transformations, we discovered that unsubstituted alkynes undergo a 6-endo-dig/acetalization/Prins reaction cascade in the presence of a silver salt such as [(BrettPhos)Ag(MeCN)]SbF6, resulting in the formation of highly strained polycycles. We have demonstrated that the formation of these products is initiated by a selective 6-endo-dig cyclization. Further mechanistic studies suggested that the reaction may occur through silver dual catalysis using deuterium-labelling experiments, however, single activation of the starting material would lead to the same product and thus both mechanisms were proposed. The further reactivity of these interesting polycyclic products was also explored. ii OTIPS R2 O OTIPS R1 [(BrettPhos)Ag(MeCN)]SbF6 (10 mol%) DCM, 60°C, 36h R1 9 Examples O R2 23-95% Yields Via O H/[Ag] R1 [Ag] O R2 Total synthesis of natural products is often referred to as an art, as it defines the boundaries of organic chemistry.
    [Show full text]
  • Ancestral Class-Promiscuity As a Driver of Functional Diversity in the BAHD
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ancestral class-promiscuity as a driver of functional diversity in the 2 BAHD acyltransferase family in plants 3 Lars H. Kruse1, Austin T. Weigle3, Jesús Martínez-Gómez1,2, Jason D. Chobirko1,5, Jason 4 E. Schaffer6, Alexandra A. Bennett1,7, Chelsea D. Specht1,2, Joseph M. Jez6, Diwakar 5 Shukla4, Gaurav D. Moghe1* 6 Footnotes: 7 1 Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, 8 NY, 14853, USA 9 2 L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA 10 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, 11 USA 12 4 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- 13 Champaign, Urbana, IL, 61801, USA 14 5 Present address: Department of Molecular Biology and Genetics, Cornell University, 15 Ithaca, NY, 14853, USA 16 6 Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA 17 7 Present address: Institute of Analytical Chemistry, Universität für Bodenkultur Wien, 18 Vienna, 1190, Austria 19 20 * Corresponding author: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Safrole and the Versatility of a Natural Biophore Lima, L
    Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Papaver Somniferum
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Papaver somniferum Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (+)-LAUDANIDINE Fruit -- 0 (+)-RETICULINE Fruit -- 0 (+)-RETICULINE Latex Exudate -- 0 (-)-ALPHA-NARCOTINE Inflorescence -- 0 (-)-NARCOTOLINE Inflorescence -- 0 (-)-SCOULERINE Latex Exudate -- 0 (-)-SCOULERINE Plant -- 0 10-HYDROXYCODEINE Latex Exudate -- 0 10-NONACOSANOL Latex Exudate Chemical Constituents of Oriental Herbs (3 diff. books) 0 13-OXOCRYPTOPINE Plant -- 0 16-HYDROXYTHEBAINE Plant -- 0 20-HYDROXY- Fruit 36.0 -- TRICOSANYLCYCLOHEXA NE 0 4-HYDROXY-BENZOIC- Pericarp -- ACID 0 4-METHYL-NONACOSANE Fruit 3.2 -- 0 5'-O- Plant -- DEMETHYLNARCOTINE 0 5-HYDROXY-3,7- Latex Exudate -- DIMETHOXYPHENANTHRE NE 0 6- Plant -- ACTEONLYDIHYDROSANG UINARINE 0 6-METHYL-CODEINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 6-METHYL-CODEINE Fruit -- 0 ACONITASE Latex Exudate -- 32 AESCULETIN Pericarp -- 3 ALANINE Seed 11780.0 12637.0 0.5273634907250652 -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 ALKALOIDS Latex Exudate 50000.0 250000.0 ANON. 1948-1976. The Wealth of India raw materials. Publications and Information Directorate, CSIR, New Delhi. 11 volumes. 5 ALLOCRYPTOPINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 15 ALPHA-LINOLENIC-ACID Seed 1400.0 5564.0 -0.22115561650586155 -- 2 ALPHA-NARCOTINE Plant Jeffery B. Harborne and H. Baxter, eds. 1983. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London. 791 pp. 17 APOMORPHINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 APOREINE Fruit -- 0 ARABINOSE Fruit ANON.
    [Show full text]
  • Feasibility Study on Opium Licensing in Afghanistan
    FEASIBILITY STUDY ON OPIUM LICENSING IN AFGHANISTAN FOR THE PRODUCTION OF MORPHINE AND OTHER ESSENTIAL MEDICINES ﻣﻄﺎﻟﻌﻪ اﻣﮑﺎﻧﺎت در ﻣﻮرد ﺟﻮاز دهﯽ ﺗﺮﻳﺎک در اﻓﻐﺎﻧﺴﺘﺎن ﺑﺮای ﺗﻮﻟﻴﺪ ﻣﻮرﻓﻴﻦ و ادوﻳﻪ ﺟﺎت ﺿﺮوری دﻳﮕﺮ Initial Findings – September 2005 Kabul, Afghanistan The British Institute of International and Comparative Law Hugo Warner • University of Calgary Peter Facchini - Jill Hagel University of Ghent Brice De Ruyver - Laurens van Puyenbroeck University of Kabul Abdul Aziz Ali Ahmad - Osman Babury Cheragh Ali Cheragh - Mohammad Yasin Mohsini University of Lisbon Vitalino Canas - Nuno Aureliano • Shruti Patel • University of Toronto Benedikt Fischer Todd Culbert - Juergen Rehm • Wageningen University Jules Bos - Suzanne Pegge • Ali Wardak • The Senlis Council Gabrielle Archer - Juan Arjona - Luke Bryant Marc Das Gupta - Furkat Elmirzaev - Guillaume Fournier Jane Francis - Thalia Ioannidou - Ernestien Jensema Manna Kamio Badiella - Jorrit Kamminga - Fabrice Pothier Emmanuel Reinert - David Spivack - Daniel Werb FEASIBILITY STUDY ON OPIUM LICENSING IN AFGHANISTAN FOR THE PRODUCTION OF MORPHINE AND OTHER ESSENTIAL MEDICINES Initial Findings – September 2005 Kabul, Afghanistan Study Commissioned by The Senlis Council Study Edited and coordinated by David Spivack Editorial team: Juan Arjona, Jane Francis, Thalia Ioannidou, Ernestien Jensema, Manna Kamio Badiella, Fabrice Pothier. Published 2005 by MF Publishing Ltd 17 Queen Anne’s Gate, London SW1H 9BU, UK ISBN: 0-9550798-2-9 Printed and bound in Afghanistan by Jehoon; Printing Press Other publications
    [Show full text]
  • Urinary Excretion of Morphine and Biosynthetic Precursors in Mice
    Urinary excretion of morphine and biosynthetic precursors in mice Nadja Grobea,1, Marc Lamshöftb,1, Robert G. Orthc, Birgit Drägerd, Toni M. Kutchana, Meinhart H. Zenka,2,3, and Michael Spitellerb,2 aDonald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; bInstitute of Environmental Research, University of Technology Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; cApis Discoveries LLC, 5827 Buffalo Ridge Road, P.O. Box 55, Gerald, MO 63037; and dInstitute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany Contributed by Meinhart H. Zenk, March 17, 2010 (sent for review December 1, 2009) It has been firmly established that humans excrete a small but been reported in human and rodent brain tissue as well as in urine steady amount of the isoquinoline alkaloid morphine in their urine. (13, 16–22). This firmly established occurrence led in the past to It is unclear whether it is of dietary or endogenous origin. There is no speculations that THP might be the precursor of endogenous doubt that a simple isoquinoline alkaloid, tetrahydropapaveroline morphine. Experiments were not, however, conducted to test this (THP), is found in human and rodent brain as well as in human urine. hypothesis. We investigate here the formation of mammalian This suggests a potential biogenetic relationship between both morphine by analyzing the biosynthetic pathway at three points: alkaloids. Unlabeled THP or [1; 3; 4-D3]-THP was injected intraperito- first, the simple substituted metabolites formed by injection i.p. of neally into mice and the urine was analyzed. This potential precur- THP; second, the phenol-coupled products formed from reticu- 0 sor was extensively metabolized (96%).
    [Show full text]
  • Natural Products (Secondary Metabolites)
    Biochemistry & Molecular Biology of Plants, B. Buchanan, W. Gruissem, R. Jones, Eds. © 2000, American Society of Plant Physiologists CHAPTER 24 Natural Products (Secondary Metabolites) Rodney Croteau Toni M. Kutchan Norman G. Lewis CHAPTER OUTLINE Introduction Introduction Natural products have primary ecological functions. 24.1 Terpenoids 24.2 Synthesis of IPP Plants produce a vast and diverse assortment of organic compounds, 24.3 Prenyltransferase and terpene the great majority of which do not appear to participate directly in synthase reactions growth and development. These substances, traditionally referred to 24.4 Modification of terpenoid as secondary metabolites, often are differentially distributed among skeletons limited taxonomic groups within the plant kingdom. Their functions, 24.5 Toward transgenic terpenoid many of which remain unknown, are being elucidated with increas- production ing frequency. The primary metabolites, in contrast, such as phyto- 24.6 Alkaloids sterols, acyl lipids, nucleotides, amino acids, and organic acids, are 24.7 Alkaloid biosynthesis found in all plants and perform metabolic roles that are essential 24.8 Biotechnological application and usually evident. of alkaloid biosynthesis Although noted for the complexity of their chemical structures research and biosynthetic pathways, natural products have been widely per- 24.9 Phenylpropanoid and ceived as biologically insignificant and have historically received lit- phenylpropanoid-acetate tle attention from most plant biologists. Organic chemists, however, pathway metabolites have long been interested in these novel phytochemicals and have 24.10 Phenylpropanoid and investigated their chemical properties extensively since the 1850s. phenylpropanoid-acetate Studies of natural products stimulated development of the separa- biosynthesis tion techniques, spectroscopic approaches to structure elucidation, and synthetic methodologies that now constitute the foundation of 24.11 Biosynthesis of lignans, lignins, contemporary organic chemistry.
    [Show full text]