WO 2016/149821 Al 29 September 2016 (29.09.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/149821 Al 29 September 2016 (29.09.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/149821 Al 29 September 2016 (29.09.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 9/02 (2006.01) C12N 15/81 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 1/19 (2006.01) C12N 9/04 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C12N 15/53 (2006.01) CI2P 17/10 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, C12N 15/54 (2006.01) C12P 17/12 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (21) International Application Number: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, PCT/CA2016/050334 SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 23 March 2016 (23.03.2016) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (26) Publication Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (30) Priority Data: TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 62/136,912 23 March 2015 (23.03.2015) US DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (71) Applicant: VALORBEC SOCIETE EN COMMAN¬ SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, DITE [CA/CA]; 355 Peel, Carrefour INGO, Suite 503, GW, KM, ML, MR, NE, SN, TD, TG). Montreal, Quebec H3C 2G9 (CA). Declarations under Rule 4.17 : (72) Inventors: FOSSATI, Elena; 35 rue Marie Chapleau, — as to applicant's entitlement to apply for and be granted a Blainville, Quebec J7C 5Z9 (CA). NARCROSS, Lauren; patent (Rule 4.1 7(H)) 5090 Circle Road, Apt. 308, Montreal, Quebec H3W 2A1 (CA). MARTIN, Vincent; 5205 Beaconsfield, Montreal, Published: Quebec H3X 3R9 (CA). — with international search report (Art. 21(3)) (74) Agent: GOUDREAU GAGE DUBUC; 2000 McGill Col — with sequence listing part of description (Rule 5.2(a)) lege, Suite 2200, Montreal, Quebec H3A 3H3 (CA). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (54) Title: METHODS OF MAKING MORPHINAN ALKALOIDS AND ENZYMES THEREFORE (57) Abstract: A method of preparing a morphinan alkaloid (MA) metabolite comprising: (a) culturing a host cell under conditions suitable for MA production including a first fermentation at a pH of between about 7.5 and about 10, said host cell comprising: (i) a o first heterologous coding sequence encoding a first enzyme involved in a metabolite pathway that converts (R)-reticuline into the metabolite; (ii) a second heterologous coding sequence encoding a second enzyme involved in a metabolite pathway that converts (R)-reticuline into the metabolite; and/or (iii) a third heterologous coding sequence encoding a second enzyme involved in a meta bolite pathway that converts (R)-reticuline into the metabolite; (b) adding (R)-reticuline to the cell culture; and (c) recovering the metabolite from the cell culture. Plasmids and host cells encoding the enzymes are also provided. METHODS OF MAKING MORPHINAN ALKALOIDS AND ENZYMES THEREFORE CROSS REFERENCE TO RELATED APPLICATIONS [0001] This application is PCT application Serial No PCT/CA2016/* filed on March 23, 2016 and published in English under PCT Article 2 1(2), which itself claims benefit of U.S. provisional application Serial No. 62/136,912, filed on March 23, 2015. All documents above are incorporated herein in their entirety by reference. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT [0002] N.A. FIELD OF THE INVENTION [0003] The present invention relates to methods of making morphinan alkaloids and enzymes therefore. More specifically, the present invention is concerned with a recombinant method of making morphinan alkaloids in microbial cells. REFERENCE TO SEQUENCE LISTING [0004] Pursuant to 37 C.F.R. 1.821 (c), a sequence listing is submitted herewith as an ASCII compliant text file named, that was created on March 22, 2016 and having a size of 1080 kilobytes. The content of the aforementioned file named 13234-1 86_ST25 is hereby incorporated by reference in its entirety. BACKGROUND OF THE INVENTION [0005] Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. They include the opiates codeine and morphine and their semi¬ synthetic derivatives, such as dihydromorphine and hydromorphone as well as thebaine. Thebaine and morphine are the two main opiates extracted from opium poppy latex, meaning that they are the starting precursors for the synthesis of other opioids [3]. The opioids antagonist naloxone and naltrexone, used to treat opiate addiction and overdose, are derived from thebaine. Thebaine is a precursor to codeine and morphine biosynthesis in planta (FIG. 1) and is also the starting precursor for semi-synthetic opioids. For instance, it can be used for the chemical synthesis of the analgesics oxycodone and buprenorphine, which have more favourable side-effect profiles than morphine [1 ,2]. [0006] Morphinan alkaloids belong to a broader class of plant secondary metabolites known as benzylisoquinoline alkaloids (BIAs), with diverse pharmaceutical properties including the muscle relaxant papaverine, the antimicrobials berberine and sanguinarine and the antitussive and potential anticancer drug noscapine [8,9]. Thousands of distinct BIAs have been identified in plants, all derived from a single precursor: (S)-norcoclaurine. BIA synthesis in plants proceeds through the enantioselective Pictet-Spengler condensation of the L-tyrosine derivatives L-dopamine and 4-hydroxyphenylacetaldehyde to produce (S)- norcoclaurine, catalyzed by the enzyme norcoclaurine synthase (NCS; FIG. 2a) [ 10]. (S)-Norcoclaurine can be converted to the branch point intermediate (S)-reticuline via three methylation events (FIG. 2a). In P. somniferum the morphine pathway diverges from other BIA pathways in that it proceeds through (R)- reticuline instead of (S)-reticuline (FIG. 2a). The epimerization of (S)-reticuline to (R)-reticuline has been proposed to proceed via dehydrogenation of (S)-reticuline to 1,2-dehydroreticuline and subsequent enantioselective reduction to (R)-reticuline but the enzyme(s) responsible for this reaction have long remained elusive [ 1 1,12]. [0007] Cultivars of opium poppy improved for optimal opiate production by extensive breeding cycles and mutagenesis are the only commercial source of thebaine and morphine [2,3]. While the supply of morphinan alkaloids from plant extraction currently meets demand [3], efficient production of opiates using microbial platforms could not only contribute to reduce the cost of opiate production, but also offer a versatile platform for the creation of new scaffolds for drug discovery [7]. This refers to both alkaloids that do not accumulate in sufficient quantity and new molecules not yet isolated nor produced from plants. [0008] There remains a need for efficient production of opiates using microbial platforms. [0009] The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety. SUMMARY OF THE INVENTION [0010] Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline and (R)-reticuline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline and demonstrated that (R)-reticuline cannot be generated from (R)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) (FIG. 1) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, a 7-gene pathway was reconstituted for the production of codeine and morphine from supplemented precursors in S. cerevisiae. [001 1] Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase (SAR) and codeine-O-demethylase (CODM) likely limit flux to morphine synthesis. Poor PsSAR and CODM expression or catalytic properties could all contribute to the low efficiency of this conversion and should be investigated for pathway optimization. Variation of gene expression (through copy number variation for example) [4] and use of orthologues and/or paralogs with better expression and/or catalytic properties are possible approaches to overcome this problem [36]. Also, solutions could be to generate synthetic microbial compartments [34], multi-enzyme scaffolds to channel intermediates to the pathway of interest [35], or alteration of an enzyme's specificity by protein engineering. Salutaridine reductase from Papaver bracteatum (PbSAR), which differs only in 13 amino acids from PsSAR, is known to be substrate inhibited at low concentration of salutaridine ( ,· = 150 µΜ) [29]. A previous mutagenesis study of PbSAR, based on homology modeling, resulted in identification of 2 mutants, F 104A and I275A, with reduced substrate inhibition and increased K , but slightly higher t. The double mutant F104A/I275A showed no substrate inhibition, with a higher K and cat. Therefore, an increased flux in the (R )-reticuline to the thebaine pathway could ostensibly be achieved by incorporating these mutations in PsSAR sequences.
Recommended publications
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Tommann Tuntimahon At
    TOMMANNUS009909137B2TUNTIMAHON AT THE (12 ) United States Patent ( 10 ) Patent No. : US 9 , 909 , 137 B2 Fist (45 ) Date of Patent: *Mar . 6 , 2018 ( 54 ) PAPAVER SOMNIFERUM STRAIN WITH OTHER PUBLICATIONS HIGH CONCENTRATION OF THEBAINE Allen , R . S . , et al . , “Metabolic engineering of morphinan alkaloids (71 ) Applicant: Tasmanian Alkaloids Pty . Ltd ., by over -expression and RNAi suppression of salutaridinol 7 - 0 Westbury , Tasmania ( AU ) acetyltransferase in opium poppy ” Plant Biotechnology Journal; Jan . 2008 , vol. 6 , pp . 22 - 30 . (72 ) Inventor : Anthony J . Fist , Norwood (AU ) Patra , N . K . and Chavhan S . P ., “ Morphophysiology and geneticsof induced mutants expressed in the M1 generation in opium poppies , ” ( 73 ) Assignee : Tasmanian Alkaloids Pty . Ltd . , The Journal of Heredity ( 1990 ) ; 81( 5 ) pp . 347 - 350 . Crane , F . A . and Fairburn J . W . , “ Alkaloids in the germinating Westbury , Tasmania (AU ) seedling of poppy " , Transactions of the Illinois State Academy of Science . ( 1970 ) vol. 63 , No . 1 , 11 pp . 86 - 92 . ( * ) Notice : Subject to any disclaimer, the term of this Kutchan , T . M . and Dittrich H ., “ Characterization and mechanism of patent is extended or adjusted under 35 the berberine bridge enzyme, a covalently flavivated oxidase of U . S . C . 154 (b ) by 69 days . benzophenanthridine alkaloid biosynthesis in plants, ” ( 1995 ) vol. 270 , No. 41 Issue Oct. 13 ; pp . 24475 - 24481 . This patent is subject to a terminal dis Facchini, P . J . et al ., “ Molecular characterization of berberine bridge claimer. enzyme genes from opium poppy, ” ( 1996 ) Plant Physiol. 112: pp . 1669 - 1677 . De- Eknamkul W . and Zenk M . H ., “ Enzymatic formulation of (21 ) Appl . No. : 14 /816 ,639 ( R ) - reticuline from 1 , 2 - dehydroreticuline in the opium poppy plant, ” ( 1990 ) Tetradedron Lett 31 ( 34 ) , 4855 - 8 .
    [Show full text]
  • 1. Introduction
    Introduction 1. Introduction 1.1. Alkaloids The term alkaloid is derived from Arabic word al-qali, the plant from which “soda” was first obtained (Kutchan, 1995). Alkaloids are a group of naturally occurring low-molecular weight nitrogenous compounds found in about 20% of plant species. The majority of alkaloids in plants are derived from the amino acids tyrosine, tryptophan and phenylalanine. They are often basic and contain nitrogen in a heterocyclic ring. The classification of alkaloids is based on their carbon-nitrogen skeletons; common alkaloid ring structures include the pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and piperidines (Petterson et al., 1991; Bennett et al., 1994). In nature, plant alkaloids are mainly involved in plant defense against herbivores and pathogens. Many of these compounds have biological activity which makes them suitable for use as stimulants (nicotine, caffeine), pharmaceuticals (vinblastine), narcotics (cocaine, morphine) and poisons (tubocurarine). The discovery of morphine by the German pharmacist Friedrich W. Sertürner in 1806 began the field of plant alkaloid biochemistry. However, the structure of morphine was not determined until 1952 due to its stereochemical complexity. Major technical advances occurred in this field allowing for the elucidation of selected alkaloid biosynthetic pathways. Among these were the introduction of radiolabeled precursors in the 1950s and the establishment in the 1970s of plant cell suspension cultures as an abundant source of enzymes that could be isolated, purified and characterized. Finally, the introduction of molecular techniques has made possible the isolation of genes involved in alkaloid secondary pathways (Croteau et al., 2000; Facchini, 2001). 1.1.1. Benzylisoquinoline alkaloids Isoquinoline alkaloids represent a large and varied group of physiologically active natural products.
    [Show full text]
  • Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae
    Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae Daniel, Bastian; Wallner, Silvia; Steiner, Barbara; Oberdorfer, Gustav; Kumar, Prashant; van der Graaff, Eric; Roitsch, Thomas; Sensen, Christoph W; Gruber, Karl; Macheroux, Peter Published in: PLOS ONE DOI: 10.1371/journal.pone.0156892 Publication date: 2016 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Daniel, B., Wallner, S., Steiner, B., Oberdorfer, G., Kumar, P., van der Graaff, E., ... Macheroux, P. (2016). Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae. PLOS ONE, 11(6), e0156892. https://doi.org/10.1371/journal.pone.0156892 Download date: 08. Apr. 2020 RESEARCH ARTICLE Structure of a Berberine Bridge Enzyme-Like Enzyme with an Active Site Specific to the Plant Family Brassicaceae Bastian Daniel1, Silvia Wallner1, Barbara Steiner1, Gustav Oberdorfer2, Prashant Kumar2, Eric van der Graaff3, Thomas Roitsch3,4, Christoph W. Sensen5, Karl Gruber2, Peter Macheroux1* 1 Institute of Biochemistry, Graz University of Technology, Graz, Austria, 2 Institute of Molecular Biosciences, University of Graz, Graz, Austria, 3 Department of Plant and Environmental Sciences, a11111 University of Copenhagen, Copenhagen, Denmark, 4 Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic, 5 Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria * [email protected] OPEN ACCESS Abstract Citation: Daniel B, Wallner S, Steiner B, Oberdorfer Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), G, Kumar P, van der Graaff E, et al.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Papaver Somniferum
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Papaver somniferum Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (+)-LAUDANIDINE Fruit -- 0 (+)-RETICULINE Fruit -- 0 (+)-RETICULINE Latex Exudate -- 0 (-)-ALPHA-NARCOTINE Inflorescence -- 0 (-)-NARCOTOLINE Inflorescence -- 0 (-)-SCOULERINE Latex Exudate -- 0 (-)-SCOULERINE Plant -- 0 10-HYDROXYCODEINE Latex Exudate -- 0 10-NONACOSANOL Latex Exudate Chemical Constituents of Oriental Herbs (3 diff. books) 0 13-OXOCRYPTOPINE Plant -- 0 16-HYDROXYTHEBAINE Plant -- 0 20-HYDROXY- Fruit 36.0 -- TRICOSANYLCYCLOHEXA NE 0 4-HYDROXY-BENZOIC- Pericarp -- ACID 0 4-METHYL-NONACOSANE Fruit 3.2 -- 0 5'-O- Plant -- DEMETHYLNARCOTINE 0 5-HYDROXY-3,7- Latex Exudate -- DIMETHOXYPHENANTHRE NE 0 6- Plant -- ACTEONLYDIHYDROSANG UINARINE 0 6-METHYL-CODEINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 6-METHYL-CODEINE Fruit -- 0 ACONITASE Latex Exudate -- 32 AESCULETIN Pericarp -- 3 ALANINE Seed 11780.0 12637.0 0.5273634907250652 -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 ALKALOIDS Latex Exudate 50000.0 250000.0 ANON. 1948-1976. The Wealth of India raw materials. Publications and Information Directorate, CSIR, New Delhi. 11 volumes. 5 ALLOCRYPTOPINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 15 ALPHA-LINOLENIC-ACID Seed 1400.0 5564.0 -0.22115561650586155 -- 2 ALPHA-NARCOTINE Plant Jeffery B. Harborne and H. Baxter, eds. 1983. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London. 791 pp. 17 APOMORPHINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 APOREINE Fruit -- 0 ARABINOSE Fruit ANON.
    [Show full text]
  • Redalyc.Identification of Isoquinoline Alkaloids from Berberis Microphylla
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MANOSALVA, Loreto; MUTIS, Ana; DÍAZ, Juan; URZÚA, Alejandro; FAJARDO, Víctor; QUIROZ, Andrés Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 4, 2014, pp. 324-335 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85631435002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (4): 324 - 335 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article In memorian Professor Luis Astudillo, Universidad de Talca, Chile Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS [Identificación de alcaloides isoquinolínicos en Berberis microphylla G. Forst mediante CLAE IES-MS/MS] Loreto MANOSALVA1, Ana MUTIS2, Juan DÍAZ3, Alejandro URZÚA4, Víctor FAJARDO5 & Andrés QUIROZ2 1Doctorado en Ciencias de Recursos Naturales; 2Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales; 3Laboratory of Mass Spectrometry, Scientific and Technological Bioresource Nucleus (Bioren), Universidad de La Frontera, Temuco, Chile 4Laboratory of Chemical Ecology, Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile 5Chile Laboratorio de Productos Naturales, Universidad de Magallanes, Punta Arenas, Chile Contactos | Contacts: Andrés QUIROZ - E-mail address: [email protected] Abstract: Berberis microphylla (G.
    [Show full text]
  • Urinary Excretion of Morphine and Biosynthetic Precursors in Mice
    Urinary excretion of morphine and biosynthetic precursors in mice Nadja Grobea,1, Marc Lamshöftb,1, Robert G. Orthc, Birgit Drägerd, Toni M. Kutchana, Meinhart H. Zenka,2,3, and Michael Spitellerb,2 aDonald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132; bInstitute of Environmental Research, University of Technology Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; cApis Discoveries LLC, 5827 Buffalo Ridge Road, P.O. Box 55, Gerald, MO 63037; and dInstitute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany Contributed by Meinhart H. Zenk, March 17, 2010 (sent for review December 1, 2009) It has been firmly established that humans excrete a small but been reported in human and rodent brain tissue as well as in urine steady amount of the isoquinoline alkaloid morphine in their urine. (13, 16–22). This firmly established occurrence led in the past to It is unclear whether it is of dietary or endogenous origin. There is no speculations that THP might be the precursor of endogenous doubt that a simple isoquinoline alkaloid, tetrahydropapaveroline morphine. Experiments were not, however, conducted to test this (THP), is found in human and rodent brain as well as in human urine. hypothesis. We investigate here the formation of mammalian This suggests a potential biogenetic relationship between both morphine by analyzing the biosynthetic pathway at three points: alkaloids. Unlabeled THP or [1; 3; 4-D3]-THP was injected intraperito- first, the simple substituted metabolites formed by injection i.p. of neally into mice and the urine was analyzed. This potential precur- THP; second, the phenol-coupled products formed from reticu- 0 sor was extensively metabolized (96%).
    [Show full text]
  • Natural Products (Secondary Metabolites)
    Biochemistry & Molecular Biology of Plants, B. Buchanan, W. Gruissem, R. Jones, Eds. © 2000, American Society of Plant Physiologists CHAPTER 24 Natural Products (Secondary Metabolites) Rodney Croteau Toni M. Kutchan Norman G. Lewis CHAPTER OUTLINE Introduction Introduction Natural products have primary ecological functions. 24.1 Terpenoids 24.2 Synthesis of IPP Plants produce a vast and diverse assortment of organic compounds, 24.3 Prenyltransferase and terpene the great majority of which do not appear to participate directly in synthase reactions growth and development. These substances, traditionally referred to 24.4 Modification of terpenoid as secondary metabolites, often are differentially distributed among skeletons limited taxonomic groups within the plant kingdom. Their functions, 24.5 Toward transgenic terpenoid many of which remain unknown, are being elucidated with increas- production ing frequency. The primary metabolites, in contrast, such as phyto- 24.6 Alkaloids sterols, acyl lipids, nucleotides, amino acids, and organic acids, are 24.7 Alkaloid biosynthesis found in all plants and perform metabolic roles that are essential 24.8 Biotechnological application and usually evident. of alkaloid biosynthesis Although noted for the complexity of their chemical structures research and biosynthetic pathways, natural products have been widely per- 24.9 Phenylpropanoid and ceived as biologically insignificant and have historically received lit- phenylpropanoid-acetate tle attention from most plant biologists. Organic chemists, however, pathway metabolites have long been interested in these novel phytochemicals and have 24.10 Phenylpropanoid and investigated their chemical properties extensively since the 1850s. phenylpropanoid-acetate Studies of natural products stimulated development of the separa- biosynthesis tion techniques, spectroscopic approaches to structure elucidation, and synthetic methodologies that now constitute the foundation of 24.11 Biosynthesis of lignans, lignins, contemporary organic chemistry.
    [Show full text]
  • Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants
    diversity Review Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants Karimjan Tayjanov 1, Nilufar Z. Mamadalieva 1,* and Michael Wink 2 1 Institute of the Chemistry of Plant Substances, Academy of Sciences, Mirzo Ulugbek str. 77, 100170 Tashkent, Uzbekistan; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +9-987-126-25913 Academic Editor: Ipek Kurtboke Received: 22 November 2016; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains.
    [Show full text]
  • Synthesis of Novel Compounds Based on Reticuline Scaffold for New Drugs Discovery Tam-Dan Batenburg-Nguyen University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2005 Synthesis of novel compounds based on reticuline scaffold for new drugs discovery Tam-Dan Batenburg-Nguyen University of Wollongong Recommended Citation Batenburg-Nguyen, Tam-Dan, Synthesis of novel compounds based on reticuline scaffold for new drugs discovery, Doctor of Philosophy thesis, Department of Chemistry, Faculty of Science, University of Wollongong, 2005. http://ro.uow.edu.au/theses/1190 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Synthesis of Novel Compounds Based on the Reticuline Scaffold for New Drugs Discovery. A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy From University of Wollongong Tam-Dan (Uta) Batenburg-Nguyen B. Adv. Med Chem (Hons) Department of Chemistry University of Wollongong Wollongong, Australia December, 2005 i Declaration I, Tam-Dan (Uta) Batenburg-Nguyen hereby declare that all materials presented in this thesis, submitted in the fulfillment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, are exclusively of my own work. These materials have not been submitted for qualifications at any other academic institution, unless otherwise referenced or acknowledged. Tam-Dan (Uta) Batenburg-Nguyen December, 2005 ii Table of Contents DECLARATION…………………………………………………………………………… i LIST OF FIGURES………………………………………………………………………….xi LIST OF SCHEMES…………………………………………………………………xiv LIST OF TABLES………………………………………………………………………… .xx LIST OF ABBREVIATIONS…………………………………………………………… xxii ABSTRACT…………………………………………………………………………… xxviii ACKNOWLEDGEMENTS……………………………………………………………… xxxii CHAPTER 1 INTRODUCTION ............................................................................... 1 1.1. HISTORY OF NATURAL PRODUCTS. .............................................................. 2 1.2.
    [Show full text]
  • Modulatory Effects of Eschscholzia Californica Alkaloids on Recombinant GABAA Receptors
    Hindawi Publishing Corporation Biochemistry Research International Volume 2015, Article ID 617620, 9 pages http://dx.doi.org/10.1155/2015/617620 Research Article Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors Milan Fedurco,1 Jana Gregorová,2 Kristýna Šebrlová,2 Jana Kantorová,2 Ondlej Peš,2 Roland Baur,3 Erwin Sigel,3 and Eva Táborská2 1 Michelin Recherche et Technique S.A., Route Andre-Piller´ 30, 1762 Givisiez, Switzerland 2Department of Biochemistry, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3Institute of Biochemistry and Molecular Medicine, University of Bern, Buhlstrasse¨ 28, 3012 Bern, Switzerland Correspondence should be addressed to Milan Fedurco; [email protected] Received 28 July 2015; Revised 5 September 2015; Accepted 15 September 2015 Academic Editor: Emanuel Strehler Copyright © 2015 Milan Fedurco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant 1 2 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 M. However, ()-reticuline behaved as positive allosteric modulator at the 3, 5,and6 isoforms of GABAA receptors.
    [Show full text]
  • Research Article Modulatory Effects of Eschscholzia Californica Alkaloids on Recombinant GABAA Receptors
    Hindawi Publishing Corporation Biochemistry Research International Volume 2015, Article ID 617620, 9 pages http://dx.doi.org/10.1155/2015/617620 Research Article Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors Milan Fedurco,1 Jana Gregorová,2 Kristýna Šebrlová,2 Jana Kantorová,2 Ondlej Peš,2 Roland Baur,3 Erwin Sigel,3 and Eva Táborská2 1 Michelin Recherche et Technique S.A., Route Andre-Piller´ 30, 1762 Givisiez, Switzerland 2Department of Biochemistry, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3Institute of Biochemistry and Molecular Medicine, University of Bern, Buhlstrasse¨ 28, 3012 Bern, Switzerland Correspondence should be addressed to Milan Fedurco; [email protected] Received 28 July 2015; Revised 5 September 2015; Accepted 15 September 2015 Academic Editor: Emanuel Strehler Copyright © 2015 Milan Fedurco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant 1 2 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 M. However, ()-reticuline behaved as positive allosteric modulator at the 3, 5,and6 isoforms of GABAA receptors.
    [Show full text]