“Biosynthesis of Morphine in Mammals”

Total Page:16

File Type:pdf, Size:1020Kb

“Biosynthesis of Morphine in Mammals” “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments ...................................................................................... 15 6.1 Application to Papaver setigerum Seedlings ........................................................... 15 6.2 Injections into Mice and Collection of Urine .......................................................... 15 7 Preparation of Protein .......................................................................................... 15 7.1 Preparation of Crude Liver Protein ......................................................................... 15 7.2 Preparation of Microsomes from Liver ................................................................... 15 7.3 Heterologous Expression in E.coli .......................................................................... 16 7.3.1 Cloning of Amine N-Methyltransferase cDNA in Vector pET28a and Transformation into E. coli PlusKJ ......................................................................... 16 7.3.2 Isolation of Amine N-Methyltransferase His-tagged Protein from E. coli ................ 18 7.3.3 Thrombin Digestion of His-tagged Protein .............................................................. 19 8 Standard Test for Mammalian Liver Enzymes ................................................... 19 9 Solid Phase Extraction of Alkaloids ..................................................................... 20 9.1 Strata X-C (Phenomenex)-TCA method ................................................................. 20 9.2 Strata X-C (Phenomenex)-HClO4 method ............................................................... 20 9.3 Bond Elut Certify (Varian) ..................................................................................... 20 9.4 Sep Pak Plus C18 (Waters)-basic conditions ........................................................... 21 10 Chromatographic methods ................................................................................... 21 10.1 Thin Layer Chromatography (TLC) ........................................................................ 21 10.2 Analytical High Performance Liquid Chromatography ........................................... 22 10.3 Preparative High Performance Liquid Chromatography .......................................... 22 10.4 Liquid Chromatography-Mass Spectrometry (LC-MS) ........................................... 22 10.5 Liquid Chromatography-High Resolution Mass Spectrometry (HR-LC-MS) .......... 24 11 Protein Assay ........................................................................................................ 25 12 Radioactivity Measurements ................................................................................ 25 III RESULTS................................................................................................................. 26 PART A: MORPHINE ANALYTICS ......................................................................................... 26 1 Stability of morphine ............................................................................................ 26 2 Solid phase extraction with Strata X-C ............................................................... 29 3 Ion suppression ..................................................................................................... 31 4 MS-Instruments and Sensitivity ........................................................................... 35 I PART B: I.P. INJECTIONS INTO MICE AND THE MORPHINE PATHWAY IN MAMMALS .......... 38 1 The Biogenesis of Mammalian Morphinan Alkaloids ......................................... 38 1.1 Intraperitoneal Injection of (R,S)-Norlaudanosoline into Mice ................................ 41 1.1.1 Urinary Excretion of Tetrahydrobenzylisoquinoline Alkaloids after Application of (R,S)-Norlaudanosoline ...................................................................................... 44 1.1.2 Urinary Excretion of Tetrahydroprotoberberine Alkaloids after Application of (R,S)-Norlaudanosoline .......................................................................................... 45 1.1.3 Urinary Excretion of Aporphine and Morphinan Alkaloids after Application of (R,S)-Norlaudanosoline .......................................................................................... 46 1.2 Intraperitoneal Injection of (R)-Norlaudanosoline into Mice ................................... 47 1.3 Intraperitoneal Injection of (R)-[N-CD3]-Reticuline into Mice ................................ 49 2 Thebaine formation from Salutaridine in Mammals .......................................... 53 2.1 Intraperitoneal Injection of Salutaridine into Mice .................................................. 54 2.2 Intraperitoneal Injection of [7D]-Salutaridinol into Mice ........................................ 56 3 Morphine formation from Thebaine in Mammals .............................................. 59 3.1 Intraperitoneal Injection of [N-CD3]-Thebaine into Mice ........................................ 61 3.2 Intraperitoneal Injection of Oripavine into Mice ..................................................... 62 PART C: ENZYME STUDIES IN SELECTED MORPHINE BIOSYNTHETIC STEPS ...................... 66 1 Formation of 3,4-Dihydroxyphenylacetaldehyde (DOPAL) in Animals............. 67 2 Condensation to Norlaudanosoline ...................................................................... 71 3 N-Methylation in Mammalian Morphine Biosynthesis ....................................... 75 3.1 Heterologous Expression of two Human N-Methyltransferases ............................... 76 3.2 Activity of Recombinant Phenylethanolamine N-Methyltransferase and Amine N-Methyltransferase ............................................................................................... 78 3.3 Determination of Km, Vmax and the Catalytic Efficiency of NMT with (R)- configurated THBIQ Alkaloids as Substrates .......................................................... 80 4 The Oxidative C-C-Phenol-Coupling in Mammals .............................................. 84 4.1 The Phenol-Coupling Reaction in Mammals Catalyzed by Human CYP 2D6 and CYP 3A4 ................................................................................................................ 85 4.2 The Phenol-Coupling Reaction in Mammals Catalyzed by Rat CYP 2D2 ............... 89 4.3 Kinetic Analysis and Characteristics of Mammalian P450 Enzymes Catalyzing the Phenol Coupling Reaction................................................................................. 92 5 3-O-Demethylation of Thebaine and Codeine in Mammals Catalyzed by Human CYP 2D6 and Rat CYP 2D2 .................................................................... 97 6 6-O-Demethylation of Thebaine and Oripavine ................................................ 101 IV DISCUSSION .......................................................................................................... 103 V SUMMARY ............................................................................................................ 119 VI REFERENCES ........................................................................................................ 122 II List of Abbreviations APS ammonium persulfate cDNA complementary deoxyribonucleic acid cps counts per second CPR cytochrome P450 reductase CYP cytochrome P450 DLPC L-α-dilauroyl-sn-glycero-3-phosphocholine DNA deoxyribonucleic acid DOPAL 3,4-dihydroxyphenylacetaldehyde DOPA-pyruvate 3,4-dihydroxyphenylpyruvate DOPET 3,4-dihydroxyphenylethanol DW dry weight E. coli Escherichia coli EC-HPLC high perfomance liquid chromatography coupled to electrochemical detection EDTA ethylenediaminetetraacetic acid ELISA enzyme-linked immunosorbent assay EPI enhanced product ion EtOH ethanol FW fresh weight GC-MS gas chromatography-mass spectrometry GDP guanosine diphosphate GTP guanosine triphosphate HPLC high perfomance liquid chromatography HR-LC-MS liquid chromatography-high resolution mass spectrometry HR-MS high resolution mass spectrometry i.p. intraperitoneal LC-MS liquid chromatography-mass spectrometry
Recommended publications
  • Aldrich FT-IR Collection Edition I Library
    Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL
    [Show full text]
  • Title Total Biosynthesis of Opiates by Stepwise Fermentation Using
    Total biosynthesis of opiates by stepwise fermentation using Title engineered Escherichia coli. Nakagawa, Akira; Matsumura, Eitaro; Koyanagi, Takashi; Katayama, Takane; Kawano, Noriaki; Yoshimatsu, Kayo; Author(s) Yamamoto, Kenji; Kumagai, Hidehiko; Sato, Fumihiko; Minami, Hiromichi Citation Nature communications (2016), 7 Issue Date 2016-02-05 URL http://hdl.handle.net/2433/204378 This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; Right if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ Type Journal Article Textversion publisher Kyoto University ARTICLE Received 30 Oct 2015 | Accepted 7 Dec 2015 | Published 5 Feb 2016 DOI: 10.1038/ncomms10390 OPEN Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli Akira Nakagawa1, Eitaro Matsumura1, Takashi Koyanagi1, Takane Katayama2, Noriaki Kawano3, Kayo Yoshimatsu3, Kenji Yamamoto1, Hidehiko Kumagai1, Fumihiko Sato4 & Hiromichi Minami1 Opiates such as morphine and codeine are mainly obtained by extraction from opium poppies. Fermentative opiate production in microbes has also been investigated, and complete biosynthesis of opiates from a simple carbon source has recently been accom- plished in yeast. Here we demonstrate that Escherichia coli serves as an efficient, robust and flexible platform for total opiate synthesis. Thebaine, the most important raw material in opioid preparations, is produced by stepwise culture of four engineered strains at yields of 2.1 mg l À 1 from glycerol, corresponding to a 300-fold increase from recently developed yeast systems.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna Et Al
    US 2016O174603A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna et al. (43) Pub. Date: Jun. 23, 2016 (54) ELECTRONIC VAPORLIQUID (52) U.S. Cl. COMPOSITION AND METHOD OF USE CPC ................. A24B 15/16 (2013.01); A24B 15/18 (2013.01); A24F 47/002 (2013.01) (71) Applicants: Sahan Abayarathna, Missouri City, TX 57 ABSTRACT (US); Michael Jaehne, Missouri CIty, An(57) e-liquid for use in electronic cigarettes which utilizes- a TX (US) vaporizing base (either propylene glycol, vegetable glycerin, (72) Inventors: Sahan Abayarathna, MissOU1 City,- 0 TX generallyor mixture at of a 0.001 the two) g-2.0 mixed g per with 1 mL an ratio. herbal The powder herbal extract TX(US); (US) Michael Jaehne, Missouri CIty, can be any of the following:- - - Kanna (Sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Salvia eivinorm, Kratom (Mitragyna speciosa), Celandine (21) Appl. No.: 14/581,179 poppy (Stylophorum diphyllum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia Californica), Sinicuichi (Heimia Salicifolia), (22) Filed: Dec. 23, 2014 St. John's Wort (Hypericum perforatum), Yerba lenna yesca A rtemisia scoparia), CaleaCal Zacatechichihichi (Calea(Cal termifolia), Leonurus Sibericus (Leonurus Sibiricus), Wild dagga (Leono Publication Classification tis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffiisa), Kava (Piper methysticum), Scotch broom (51) Int. Cl. tops (Cytisus scoparius), Valarien (Valeriana officinalis), A24B 15/16 (2006.01) Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca A24F 47/00 (2006.01) virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifo A24B I5/8 (2006.01) lium pretense), and/or combinations therein.
    [Show full text]
  • Alternative Formats If You Require This Document in an Alternative Format, Please Contact: [email protected]
    University of Bath PHD The extraction and chemistry of the metabolites of Mimosa tenuiflora and Papaver somniferum Ninan, Aleyamma Award date: 1990 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 23. Sep. 2021 THE EXTRACTION AND CHEMISTRY OF THE METABOLITES OF MIMOSA TENUIFLORA AND PAP AVER SOMNIFERUM. submitted by ALEYAMMA NINAN for the degree of Doctor of Philosophy of the University of Bath 1990 Attention is drawn to the fact that the copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without prior consent of the author.
    [Show full text]
  • House Bill No. 325
    FIRST REGULAR SESSION HOUSE BILL NO. 325 101ST GENERAL ASSEMBLY INTRODUCED BY REPRESENTATIVE PRICE IV. 0249H.01I DANA RADEMAN MILLER, Chief Clerk AN ACT To repeal sections 195.010, 579.015, 579.020, 579.040, 579.055, and 579.105, RSMo, and to enact in lieu thereof twenty new sections relating to the legalization of marijuana for adult use, with penalty provisions. Be it enacted by the General Assembly of the state of Missouri, as follows: Section A. Sections 195.010, 579.015, 579.020, 579.040, 579.055, and 579.105, RSMo, 2 are repealed and twenty new sections enacted in lieu thereof, to be known as sections 195.010, 3 195.2300, 195.2303, 195.2309, 195.2310, 195.2312, 195.2315, 195.2317, 195.2318, 195.2321, 4 195.2324, 195.2327, 195.2330, 195.2333, 579.015, 579.020, 579.040, 579.055, 579.105, and 5 610.134, to read as follows: 195.010. The following words and phrases as used in this chapter and chapter 579, 2 unless the context otherwise requires, mean: 3 (1) "Acute pain", pain, whether resulting from disease, accidental or intentional trauma, 4 or other causes, that the practitioner reasonably expects to last only a short period of time. Acute 5 pain shall not include chronic pain, pain being treated as part of cancer care, hospice or other 6 end-of-life care, or medication-assisted treatment for substance use disorders; 7 (2) "Addict", a person who habitually uses one or more controlled substances to such an 8 extent as to create a tolerance for such drugs, and who does not have a medical need for such 9 drugs, or who is so far addicted to the use of such drugs as to have lost the power of self-control 10 with reference to his or her addiction; 11 (3) "Administer", to apply a controlled substance, whether by injection, inhalation, 12 ingestion, or any other means, directly to the body of a patient or research subject by: 13 (a) A practitioner (or, in his or her presence, by his or her authorized agent); or EXPLANATION — Matter enclosed in bold-faced brackets [thus] in the above bill is not enacted and is intended to be omitted from the law.
    [Show full text]
  • Tommann Tuntimahon At
    TOMMANNUS009909137B2TUNTIMAHON AT THE (12 ) United States Patent ( 10 ) Patent No. : US 9 , 909 , 137 B2 Fist (45 ) Date of Patent: *Mar . 6 , 2018 ( 54 ) PAPAVER SOMNIFERUM STRAIN WITH OTHER PUBLICATIONS HIGH CONCENTRATION OF THEBAINE Allen , R . S . , et al . , “Metabolic engineering of morphinan alkaloids (71 ) Applicant: Tasmanian Alkaloids Pty . Ltd ., by over -expression and RNAi suppression of salutaridinol 7 - 0 Westbury , Tasmania ( AU ) acetyltransferase in opium poppy ” Plant Biotechnology Journal; Jan . 2008 , vol. 6 , pp . 22 - 30 . (72 ) Inventor : Anthony J . Fist , Norwood (AU ) Patra , N . K . and Chavhan S . P ., “ Morphophysiology and geneticsof induced mutants expressed in the M1 generation in opium poppies , ” ( 73 ) Assignee : Tasmanian Alkaloids Pty . Ltd . , The Journal of Heredity ( 1990 ) ; 81( 5 ) pp . 347 - 350 . Crane , F . A . and Fairburn J . W . , “ Alkaloids in the germinating Westbury , Tasmania (AU ) seedling of poppy " , Transactions of the Illinois State Academy of Science . ( 1970 ) vol. 63 , No . 1 , 11 pp . 86 - 92 . ( * ) Notice : Subject to any disclaimer, the term of this Kutchan , T . M . and Dittrich H ., “ Characterization and mechanism of patent is extended or adjusted under 35 the berberine bridge enzyme, a covalently flavivated oxidase of U . S . C . 154 (b ) by 69 days . benzophenanthridine alkaloid biosynthesis in plants, ” ( 1995 ) vol. 270 , No. 41 Issue Oct. 13 ; pp . 24475 - 24481 . This patent is subject to a terminal dis Facchini, P . J . et al ., “ Molecular characterization of berberine bridge claimer. enzyme genes from opium poppy, ” ( 1996 ) Plant Physiol. 112: pp . 1669 - 1677 . De- Eknamkul W . and Zenk M . H ., “ Enzymatic formulation of (21 ) Appl . No. : 14 /816 ,639 ( R ) - reticuline from 1 , 2 - dehydroreticuline in the opium poppy plant, ” ( 1990 ) Tetradedron Lett 31 ( 34 ) , 4855 - 8 .
    [Show full text]
  • 1. Introduction
    Introduction 1. Introduction 1.1. Alkaloids The term alkaloid is derived from Arabic word al-qali, the plant from which “soda” was first obtained (Kutchan, 1995). Alkaloids are a group of naturally occurring low-molecular weight nitrogenous compounds found in about 20% of plant species. The majority of alkaloids in plants are derived from the amino acids tyrosine, tryptophan and phenylalanine. They are often basic and contain nitrogen in a heterocyclic ring. The classification of alkaloids is based on their carbon-nitrogen skeletons; common alkaloid ring structures include the pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and piperidines (Petterson et al., 1991; Bennett et al., 1994). In nature, plant alkaloids are mainly involved in plant defense against herbivores and pathogens. Many of these compounds have biological activity which makes them suitable for use as stimulants (nicotine, caffeine), pharmaceuticals (vinblastine), narcotics (cocaine, morphine) and poisons (tubocurarine). The discovery of morphine by the German pharmacist Friedrich W. Sertürner in 1806 began the field of plant alkaloid biochemistry. However, the structure of morphine was not determined until 1952 due to its stereochemical complexity. Major technical advances occurred in this field allowing for the elucidation of selected alkaloid biosynthetic pathways. Among these were the introduction of radiolabeled precursors in the 1950s and the establishment in the 1970s of plant cell suspension cultures as an abundant source of enzymes that could be isolated, purified and characterized. Finally, the introduction of molecular techniques has made possible the isolation of genes involved in alkaloid secondary pathways (Croteau et al., 2000; Facchini, 2001). 1.1.1. Benzylisoquinoline alkaloids Isoquinoline alkaloids represent a large and varied group of physiologically active natural products.
    [Show full text]
  • Morphine Julie Brousseau a Thesis Submitted
    Synthesis of Carbocycles Using Coinage Metal Catalysis and Formal Synthesis of (±)-Morphine Julie Brousseau A thesis submitted in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Chemistry Department of Chemistry and Biomolecular Sciences Faculty of Science University of Ottawa © Julie Brousseau, Ottawa, Canada, 2020 ABSTRACT Coinage metals such as copper, silver and gold have captivated mankind with their desirable qualities and social value. Recently, these metals have peaked the interests of scientists, where organic chemists have used them extensively in the homogenous catalysis of organic transformations. In our laboratory, we exploited their � -Lewis acidic properties to activate alkyne to induce intramolecular cyclization of nucleophilic enol ethers. We discovered that modulating the steric and electronic profiles of the ancillary ligand on the cationic metal complexes allowed for the regioselective control of such reactions. During the exploration of the substrate dependency of these transformations, we discovered that unsubstituted alkynes undergo a 6-endo-dig/acetalization/Prins reaction cascade in the presence of a silver salt such as [(BrettPhos)Ag(MeCN)]SbF6, resulting in the formation of highly strained polycycles. We have demonstrated that the formation of these products is initiated by a selective 6-endo-dig cyclization. Further mechanistic studies suggested that the reaction may occur through silver dual catalysis using deuterium-labelling experiments, however, single activation of the starting material would lead to the same product and thus both mechanisms were proposed. The further reactivity of these interesting polycyclic products was also explored. ii OTIPS R2 O OTIPS R1 [(BrettPhos)Ag(MeCN)]SbF6 (10 mol%) DCM, 60°C, 36h R1 9 Examples O R2 23-95% Yields Via O H/[Ag] R1 [Ag] O R2 Total synthesis of natural products is often referred to as an art, as it defines the boundaries of organic chemistry.
    [Show full text]
  • Ancestral Class-Promiscuity As a Driver of Functional Diversity in the BAHD
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ancestral class-promiscuity as a driver of functional diversity in the 2 BAHD acyltransferase family in plants 3 Lars H. Kruse1, Austin T. Weigle3, Jesús Martínez-Gómez1,2, Jason D. Chobirko1,5, Jason 4 E. Schaffer6, Alexandra A. Bennett1,7, Chelsea D. Specht1,2, Joseph M. Jez6, Diwakar 5 Shukla4, Gaurav D. Moghe1* 6 Footnotes: 7 1 Plant Biology Section, School of Integrative Plant Sciences, Cornell University, Ithaca, 8 NY, 14853, USA 9 2 L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA 10 3 Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, 11 USA 12 4 Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana- 13 Champaign, Urbana, IL, 61801, USA 14 5 Present address: Department of Molecular Biology and Genetics, Cornell University, 15 Ithaca, NY, 14853, USA 16 6 Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA 17 7 Present address: Institute of Analytical Chemistry, Universität für Bodenkultur Wien, 18 Vienna, 1190, Austria 19 20 * Corresponding author: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.385815; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Opioid Receptors: Structural and Mechanistic Insights Into Pharmacology and Signaling
    European Journal of Pharmacology ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Opioid receptors: Structural and mechanistic insights into pharmacology and signaling Yi Shang, Marta Filizola n Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, One Gustave, L. Levy Place, Box 1677, New York, NY 10029, USA article info abstract Article history: Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Al- Received 25 January 2015 though substantial research on these important subtypes of G protein-coupled receptors has been Received in revised form conducted over the past two decades to discover ligands with higher specificity and diminished side 2 March 2015 effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural Accepted 11 May 2015 biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as Keywords: a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the GPCRs purpose of drug discovery. Opioid binding & 2015 Elsevier B.V. All rights reserved. Receptor Molecular dynamics Allosteric modulators Virtual screening Functional selectivity Dimerization 1. Introduction been devoted over the years to reduce the disadvantages of these drugs while retaining their therapeutic efficacy. In the absence of Opioid receptors belong to the super-family of G-protein cou- high-resolution crystal structures of opioid receptors until 2012, pled receptors (GPCRs), which are by far the most abundant class the majority of these efforts used ligand-based strategies, although of cell-surface receptors, and also the targets of about one-third of some also resorted to rudimentary molecular models of the re- approved/marketed drugs (Vortherms and Roth, 2005).
    [Show full text]
  • Safrole and the Versatility of a Natural Biophore Lima, L
    Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities.
    [Show full text]
  • S41467-019-09610-2.Pdf
    Corrected: Author correction ARTICLE https://doi.org/10.1038/s41467-019-09610-2 OPEN Mechanism-based tuning of insect 3,4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids Christopher J. Vavricka1, Takanobu Yoshida1, Yuki Kuriya1, Shunsuke Takahashi 1, Teppei Ogawa2, Fumie Ono3, Kazuko Agari1, Hiromasa Kiyota4, Jianyong Li5, Jun Ishii 1, Kenji Tsuge1, Hiromichi Minami6, Michihiro Araki1,3, Tomohisa Hasunuma1,7 & Akihiko Kondo 1,7,8 1234567890():,; Previous studies have utilized monoamine oxidase (MAO) and L-3,4-dihydroxyphenylalanine decarboxylase (DDC) for microbe-based production of tetrahydropapaveroline (THP), a benzylisoquinoline alkaloid (BIA) precursor to opioid analgesics. In the current study, a phylogenetically distinct Bombyx mori 3,4-dihydroxyphenylacetaldehyde synthase (DHPAAS) is identified to bypass MAO and DDC for direct production of 3,4-dihydrox- yphenylacetaldehyde (DHPAA) from L-3,4-dihydroxyphenylalanine (L-DOPA). Structure- based enzyme engineering of DHPAAS results in bifunctional switching between aldehyde synthase and decarboxylase activities. Output of dopamine and DHPAA products is fine- tuned by engineered DHPAAS variants with Phe79Tyr, Tyr80Phe and Asn192His catalytic substitutions. Balance of dopamine and DHPAA products enables improved THP biosynthesis via a symmetrical pathway in Escherichia coli. Rationally engineered insect DHPAAS produces (R,S)-THP in a single enzyme system directly from L-DOPA both in vitro and in vivo, at higher yields than that of the wild-type enzyme. However, DHPAAS-mediated downstream BIA production requires further improvement. 1 Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan. 2 Mitsui Knowledge Industry Co., Ltd. (MKI), 2-3-33 Nakanoshima, Kita-ku, Osaka 530-0005, Japan.
    [Show full text]