Safrole and the Versatility of a Natural Biophore Lima, L

Total Page:16

File Type:pdf, Size:1020Kb

Safrole and the Versatility of a Natural Biophore Lima, L Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities. Selected examples of natural and synthetic bioactive compounds containing the benzodioxole system will be discussed, including those from specific contribution of LASSBio®. Keywords: Safrole; benzodioxole; methylenedioxy; CYP450; biophore; bioactive compounds. * Universidade Federal do Rio de Janeiro, LASSBio (http://www.farmacia.ufrj.br/lassbio/) - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, PO Box 68024, CEP 21944-971, Rio de Janeiro-RJ, Brasil. [email protected] DOI: 10.5935/1984-6835.20150023 Rev. Virtual Quim. |Vol 7| |No. 2| |495-538| 495 Volume 7, Número 2 Março-Abril 2015 Revista Virtual de Química ISSN 1984-6835 Safrol e a Versatilidade de um Biofóro natural Lídia M. Lima* Universidade Federal do Rio de Janeiro, LASSBio (http://www.farmacia.ufrj.br/lassbio/) - Laboratório de Avaliação e Síntese de Substâncias Bioativas, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, PO Box 68024, CEP 21944- 971, Rio de Janeiro-RJ, Brasil. * [email protected] Recebido em 3 de dezembro de 2014. Aceito para publicação em 3 de dezembro de 2014 1. Physicochemical properties, natural sources and industrial applications 2. Toxicity and metabolism 3. Role of cytochrome P450 4. 1,3-Benzodioxole in nature 5. Synthetic bioactive compounds 6. LASSBio’s ontriution 7. Final remarks 1. Physicochemical properties, Cinamomum mollissimum and Sassafras 1 natural sources and industrial albidum Nutt. applications Util ’s Brazil as the ajor eporter of sassafras oil in the world, nowadays China and Vietnam are the great producers. The Ocotea pretiosa, a native tree in Mata Safrole (1, C H O ), also known as safrol, 10 10 2 Atlantica, typical from tropical rainforests, 1,3-benzodioxole-5-(2-propenyl); 3,4- was the main store of the Brazilian sassafras methylenedioxy-allylbenzene; 3-(3,4- oil until the depletion of this natural methylenedioxyphenyl)-prop-1-ene; 5- resource, placing it on the endangered list. allylbenzo[d][1,3]dioxole, is a colorless or Several others Lauraceae trees, which wood slightly yellow liquid with boiling point 233.1 distillation was performed to yield a rich ± 30.0 °C, density 1.118 ± 0.06 g/cm3 (at 20 source of sassafras oil containing high °C, 760 Torr), molar volume 145.0 ± 3.0 amount of safrole, are also at risk of cm3/mol (at 20 °C, 760 Torr) and molecular extinction.2-4 weight 162.19 g/mol. It is obtained by distillation of sassafras oil, currently derived Many attempts to identify alternative from endangered plants of the Lauraceae natural sources from safrole have been family such as Ocotea pretiosa, Ocotea made. Among then, the Piperaceae emerge odorifera, Cinamomum petrophilum, as a promising alternative. First described by 496 Rev. Virtual Quim. |Vol 7| |No. 2| |495-538| Lima, L. M. Yunker in 1972,1 Piper hispidinervium (known crucial component in the natural pyrethroid as long pepper) is a safrole-rich plant well insecticides, due its synergist activity, and for distributed throughout South America and heliotropin (3), used in flagrances and as endemic in the state of Acre in Brazil. Its flavoring agent (Figure 1).4,5 unique conditions for cultivation in areas The finding that heliotropin or piperonal with facilities for harvest, associated with (3), easily synthesized from safrole6-8(Figure high levels of safrole in its leaves, make the 2), was a key intermediate in the synthesis of sustainable management and its economic complex organic molecules expanded its exploration feasible. Others Piper species, value and its industrial application. In fact, 3 including P. divaricatum P. nigrum, P. can be used as starting material from the callosum and P. aduncum are also considered synthesis of several biological active eventual sustainable source of safrole.4,5 compounds, including the drugs cinoxacin Historically, the demand for sassafras oil (5), tadalafil (6) and levodopa (7) (Figure 2). It depends mainly on the international market is also used in the synthesis of illicit drug 3,4- for piperonyl butoxide (PBO, 2), a methylenedioxy-N-methylamphetamine semisynthetic derivative of safrole, that is a (MDMA, ecstasy, 8). SASSAFRAS OIL O O safrole (1) O O O O O O H O O PBO (2) heliotropin or piperonal (3) Chemical industry applicatons: synergist agent of natural pyrethrum insecticide; fragrance; flavoring agent Figure 1. Safrole (1) a raw material for the synthesis of PBO (2) and heliotropin (3) Rev. Virtual Quim. |Vol 7| |No. 2| |495-538| 497 Lima, L. M. O HO OH NH HO 2 O CH3 levodopa (7) O NHCH3 MDMA (8) H O O o O KOH 3N/n-BuOH 1- O2/O3, AcOH, 0 C O O reflux, 6h, 98% O 2- Zn, AcOH, 0oC, 70% O safrole (1) isosafrole (4) heliotropin or piperonal (3) O CH3 H N O O N O O OH N N H O O H N O CH3 tadalafil (6) cinoxacin (5) Figure 2. Heliotropin (3) obtained from safrole (1) and its use as raw material for the synthesis of cinoxacin (5), tadalafil (6), levodopa (7) and MDMA (8) 2. Toxicity and metabolism cytochrome P450 (CYP450) family (Figure 3). In the first hypothesis, the allyl double bond of safrole (1) is oxidized to epoxide The most important dietary sources of metabolite (9), which can alkylate DNA (10). safrole (1) are nutmeg, mace and its essential This hypothesis is considered less likely, since metabolite 9 is fast hydrolyzed by oils, although it is also a natural constituent 14,16 of cinnamon, anise, black pepper and sweet microsomal epoxide hydrolase. The most basil and is present in cola drinks.9,10 Safrole well-established hypothesis is based on the (1) was first recognized to be a reatiit of ethlee C’, oth alllic and benzylic, presented in the alkyl side chain of hepatoarioge i the ’s ad a 14,17 animal studies have been documented safrole (1). This position is easily oxidized concerning this toxicology.11-15 to ’-hydroxy derivative (11), by a classical CYP450 mediated hydroxylation. This Seeral attepts to eplai safrole’s metabolite (11) undergoes phase-2 muta- and genotoxicity have been made. In metabolism by sulfotransferase (SULT), that general, all hypotheses predict its catalyze the transfer of a sulfonate group (- bioactivation to produce electrophilic SO− fro the ofator ′- intermediates that are able to interact with phosphoadenosine-′-phosphosulfate (PAPS) 14-18 DNA. This bioactivation process is to the hydroxyl group of 11, to furnish the dependent of previous oxidative reactions metabolite 12 (Figure 3)18. This reactive catalyzed by different isoenzymes of metabolite can interact with DNA by a 498 Rev. Virtual Quim. |Vol 7| |No. 2| |495-538| Lima, L. M. classical SN2 reaction, eliminating sulfate ion methylenedioxy bridge. As demonstrated by (SO−) and forming a covalent adduct of this Clemens and Barz (1995),28 the microsomal essential macromolecule (13). An alternative preparations from elicited heterotrophic cell mechanism is also possible and provides the cultures of chickpea in the presence of 02 and loss of O-sulphate, resulting in a stabilized NADPH catalyze methylenedioxy bridge carbonium ion that form adducts with DNA formation (21 and 22) from pratensein (19) and may be assumed to play a role in and calycosin (20) (Figure 4). They also tumorigenesis.19-22 The third hypothesis is demonstrated that methylenedioxy bridge based on the bioactivation of safrole (1) by O- formation, in these conditions, was blocked dealkylation step of methylenedioxy by various CYP450 inhibitors, characterizing a subunity. The O-dealkylation process, cytochrome P450-dependent process.28 catalyzed by CYP450 enzymes and which CYP450 enzymes have been shown to play mechanism was elucidated by Fukuto and essential roles in plant secondary coworkers (1991),23 furnish the catechol metabolism,29 and all members of the metabolite (14). This metabolite can CYP719A subfamily, that have been undergoes oxidation of 1 or 2 electrons to characterized so far, catalyze methylenedioxy provide the ortho-semiquinone (15) or ortho- bridge formation in isoquinoline alkaloid quinone (16), respectively, generating biosynthesis.30 As exemplified in Figure 5, (S)- reactive oxygen species that can promote scoulerine (23) are converted at (S)- oxidative DNA damage (Figure 3).
Recommended publications
  • Toxicity of Pyrethorids Co-Administered with Sesame Oil Against Housefly Musca Domestica L
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2007/09–5–782–784 http://www.fspublishers.org Toxicity of Pyrethorids Co-administered with Sesame Oil against Housefly Musca domestica L. SOHAIL AHMED1 AND MUHAMMAD IRFANULLAH Department of Agri-Entomology, University of Agriculture, Faisalabad–38040, Pakistan 1Corresponding author’s e-mail: [email protected] ABSTRACT The susceptibility of a laboratory reared strain of Musca domestica L. to cypermethrin 10 EC, fenpropathrin 20 EC, fenvalerate 20 EC and lambda cyhalothrin 2.5 EC, at different ranges of concentrations (250 to 2500 ppm) of the formulated insecticides in acetone alone and in combination with sesame oil in 1:1 and 1:2 ratio of insecticide: sesame oil was investigated. These concentrations in a volume of 5 mL were added to 25 g of granulated sugar in a petridish. House flies were fed on the insecticide coated sugar for 48 h. Knockdown and mortality data were recorded after 1, 2, 4, 6, 8, 12, 24 and 48 h and subjected to probit analysis. KD50 values of cypermethrin, lambda-cyhalothrin, fenpropathrin and fenvalerate in 1:1 ratio with sesame oil were 4297, 17188, 2324 and 8487 ppm, respectively as compared to 1915, 15034, 2608 and 4005 ppm respectively when these insecticides were applied alone. Similar fashion was seen in context of LC50 values. The pyrethroid + sesame oil combination in two ratios does not show the synergism in M. domestica. Key Words: M. domestica; Pyrethroids; Synergist; Sesame oil INTRODUCTION conventional insecticides as well as against cotton aphid (Aphis gossypii Glover) (Moore, 2005). Sesamin, a lignan Housefly (Musca domestica L.) causes a serious threat occurring in sesame’s seed oil has been reported as synergist to human and livestock health by transmitting many insecticide, antisseptic, bactericide (Bedigian et al., 1985).
    [Show full text]
  • Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2012 Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole Kate Cummings Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Forest Sciences Commons Recommended Citation Cummings, Kate, "Sassafras Tea: Using a Traditional Method of Preparation to Reduce the Carcinogenic Compound Safrole" (2012). All Theses. 1345. https://tigerprints.clemson.edu/all_theses/1345 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SASSAFRAS TEA: USING A TRADITIONAL METHOD OF PREPARATION TO REDUCE THE CARCINOGENIC COMPOUND SAFROLE A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Forest Resources by Kate Cummings May 2012 Accepted by: Patricia Layton, Ph.D., Committee Chair Karen C. Hall, Ph.D Feng Chen, Ph. D. Christina Wells, Ph. D. ABSTRACT The purpose of this research is to quantify the carcinogenic compound safrole in the traditional preparation method of making sassafras tea from the root of Sassafras albidum. The traditional method investigated was typical of preparation by members of the Eastern Band of Cherokee Indians and other Appalachian peoples. Sassafras is a tree common to the eastern coast of the United States, especially in the mountainous regions. Historically and continuing until today, roots of the tree are used to prepare fragrant teas and syrups.
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Pesticide Safety & Pesticide Categories
    Pesticide Safety & Pesticide Categories Janet Hurley, & Don Renchie Texas A&M AgriLife Extension Service School IPM What is a pesticide • Any substance or mixture of substances intended for preventing, destroying, repelling, or mitigating any pest. • Any substance or mixture of substances intended for use as a plant regulator, defoliant, or desiccant. • Any nitrogen stabilizer. • A product is likely to be a pesticide if the labeling or advertising: • Makes a claim to prevent, kill, destroy, mitigate, remove, repel or any other similar action against any pest. • Indirectly states or implies an action against a pest. • Draws a comparison to a pesticide. • Pictures a pest on the label. Not considered pesticides Drugs used to control the diseases of humans or animals, which are regulated by the FDA Fertilizers and soil nutrients Certain low-risk substances such as cedar chips, garlic and mint oil are exempted from regulation by EPA (requires license) • 25b classification requires no signal word (mostly food-safe compounds) Pest control devices (i.e., mousetraps) are not pesticides, but subject to labeling requirements There are many kinds of pesticides How insecticides work: Modes of action • Nervous system poisons • Acts on the nerve • Metabolic inhibitors • Affect ability of target to process food • Hormone mimics • Disrupt normal growth & reproduction • Physical poisons • Physically damage insect • Repellents & attractants • All products have been assigned to groups based on their mode of Mode of action: • i.e. pyrethroids are Group 3; Action Neonicotinoids are Group 4A, Spinosad is Group 5, Diamides Classification are Group 28 • Product labels include the number corresponding to the mode of action group.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Methyleugenol (4-Allyl-1,2-Dimethoxybenzene)
    EUROPEAN COMMISSION HEALTH & CONSUMER PROTECTION DIRECTORATE-GENERAL Directorate C - Scientific Opinions C2 - Management of scientific committees II; scientific co-operation and networks Scientific Committee on Food SCF/CS/FLAV/FLAVOUR/4 ADD1 FINAL 26 September 2001 Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene) (adopted on 26 September 2001) Rue de la Loi 200, B-1049 Bruxelles/Wetstraat 200, B-1049 Brussel - Belgium - Office: F101 - 6/172 Telephone: direct line (+32-2) 295.4861, switchboard 299.11.11. Fax: (+32-2) 299.4891 Telex: COMEU B 21877. Telegraphic address: COMEUR Brussels http://europa.eu.int/comm/food/fs/sc/scf/index_en.html SCF/CS/FLAV/FLAVOUR/4 ADD1 FINAL Opinion of the Scientific Committee on Food on Methyleugenol (4-Allyl-1,2-dimethoxybenzene) (adopted on 26 September 2001) Terms of reference The Committee is asked to advise the Commission on substances used as flavouring substances or present in flavourings or present in other food ingredients with flavouring properties for which existing toxicological data indicate that restrictions of use or presence might be necessary to ensure safety for human health. In particular, the Committee is asked to advise the Commission on the implications for human health of methyleugenol (4-allyl-1,2-dimethoxybenzene) in the diet. Introduction In 1999 methyleugenol was evaluated by the Committee of Experts on Flavouring Substances of the Council of Europe. The conclusions of this Committee were: "Available data show that methyleugenol is a naturally-occurring genotoxic carcinogen compound with a DNA-binding potency similar to that of safrole. Human exposure to methyleugenol may occur through the consumption of foodstuffs flavoured with aromatic plants and/or their essential oil fractions which contain methyleugenol.
    [Show full text]
  • Committee for Risk Assessment RAC Annex 1 Background Document To
    Committee for Risk Assessment RAC Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of piperonyl butoxide (ISO); 2-(2-butoxyethoxy)ethyl 6-propylpiperonyl ether EC Number: 200-076-7 CAS Number: 51-03-6 CLH-O-0000006819-59-01/F The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to public consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as ‘RAC evaluation’. Only the RAC text reflects the view of RAC. Adopted 11 June 2020 P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu [04.01-ML-009.02] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER CLH report Proposal for Harmonised Classification and Labelling Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2 Substance Name: 2-(2-butoxyethoxy)ethyl 6-propylpiperonyl ether; piperonyl butoxide (ISO) EC Number: 200-076-7 CAS Number: 51-03-6 Index Number: n/a Contact details for dossier submitter: General Chemical State Laboratory of Greece 16 Anastasiou Tsocha Str., 11521 Ampelokipi, Athens, Greece Tel: 0030 210 6479286, 0030 210 6479408 Fax: 0030 210 6466917 Email: [email protected] Scientific Advisor: Benaki Phytopathological Institute 8 Stefanou Delta Str., 145 61 Kifissia, Attica, Greece Tel: 0030 210 8180334 Email: [email protected] ANNEX 1 - BACKGROUND DOCUMENT TO RAC OPINION ON PIPERONYL BUTOXIDE (ISO); 2-(2-BUTOXYETHOXY)ETHYL 6-PROPYLPIPERONYL ETHER Version number: 1.4 Date: March 2019 CONTENTS PART A.
    [Show full text]
  • Extraction of Safrole from Essential Oils with Ionic Liquids
    João Miguel Pinheiro Pinto Burguete Cardoso Bachelor degree in Chemical and Biochemical Engineering Extraction of safrole from essential oils with ionic liquids Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical and Biochemical Engineering Adviser: Ewa Bogel-Łukasik, Auxiliary Researcher, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Co-adviser: Urszula Domanska-´ Zelazna,˙ Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology Examination Committee Chairperson: Mário Fernando José Eusébio Members: Luís Alexandre Almeida Fernandes Cobra Branco Ewa Bogel-Łukasik March, 2017 Extraction of safrole from essential oils with ionic liquids Copyright © João Miguel Pinheiro Pinto Burguete Cardoso, Faculty of Sciences and Tech- nology, NOVA University of Lisbon. The Faculty of Sciences and Technology and the NOVA University of Lisbon have the right, perpetual and without geographical boundaries, to file and publish this disserta- tion through printed copies reproduced on paper or on digital form, or by any other means known or that may be invented, and to disseminate through scientific reposito- ries and admit its copying and distribution for non-commercial, educational or research purposes, as long as credit is given to the author and editor. This document was created using the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep. Informática of FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt Acknowledgements I am grateful to FCT/UNL and the Physical Chemistry department at Warsaw University of Technology for providing me the opportunity to study abroad as well as their staff for its continuous collaboration on this research work.
    [Show full text]
  • THE THIOBARBITURIC ACID TEST in IRRADIATION-STERILIZED BEEF By
    THE THIOBARBITURIC ACID TEST IN IRRADIATION-STERILIZED BEEF by NORMAN LEE SMITH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1959 APPROVED: Redacted for Privacy Associate Professor of Chemistry In Ghare of Major Redacted for Privacy Chairman of Department of Chemistry Redacted for Prîvacy Chairman of choo1 Graduate Committee Dean of Graduate School Date thesi9 19 presented July 10, 195B Typed by Cliatie Stoddard AC KOV'LEDGEMENTS The author would like to exprese his most sincere appreciation to Dr. E. C. Bubi, who by his guidance, help, and enthusiasm has made work on this project both an education and a pleasure. Especial thanks also o to Dr. Ian J. Tinsley, whose unfailing supply of timely suggestions, il1uminatin dis- cussions, and refreshing good humor was most generously shared. TABLE OF CONTENTS Chapter pase i INTRODUC T ION . i 2. LITERATURE STJRVEY . 5 3. PREPARATION AND IRRADIATION OF SAMPLES . 10 4. COLOR TESTS WITH THIOBARBITURIC ACID . 12 5. REAGENTS AND INSTRUMENTS . 15 6. GENERAL INFORMATION ON THE MEAT-TBA REACTION 17 Meat fractions and TBA reaction . 17 Spectral curves of meat-TBA piment solutions . 21 Autoc1avin of meat sampleß . ¿5 7. GENERAL INFORMATION ON THE GLYOXAL-TEA flc..tt'si.Lmr\?s1 L)i s S S S I S S S S ' Effect of pli on glyoxal-TBA reaction . 26 Glyoxal-barbituric acid reaction . 26 Barbituric acid reaction with beef . , 27 para-aminoacetophenone reaction with 1yoxal, malonaldehyde, and irradiated beef . 27 8. GLYOXAL-TBA AND :EAT-TBA PIGMENT PJI- FICATION e s .
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Papaver Somniferum
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Papaver somniferum Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (+)-LAUDANIDINE Fruit -- 0 (+)-RETICULINE Fruit -- 0 (+)-RETICULINE Latex Exudate -- 0 (-)-ALPHA-NARCOTINE Inflorescence -- 0 (-)-NARCOTOLINE Inflorescence -- 0 (-)-SCOULERINE Latex Exudate -- 0 (-)-SCOULERINE Plant -- 0 10-HYDROXYCODEINE Latex Exudate -- 0 10-NONACOSANOL Latex Exudate Chemical Constituents of Oriental Herbs (3 diff. books) 0 13-OXOCRYPTOPINE Plant -- 0 16-HYDROXYTHEBAINE Plant -- 0 20-HYDROXY- Fruit 36.0 -- TRICOSANYLCYCLOHEXA NE 0 4-HYDROXY-BENZOIC- Pericarp -- ACID 0 4-METHYL-NONACOSANE Fruit 3.2 -- 0 5'-O- Plant -- DEMETHYLNARCOTINE 0 5-HYDROXY-3,7- Latex Exudate -- DIMETHOXYPHENANTHRE NE 0 6- Plant -- ACTEONLYDIHYDROSANG UINARINE 0 6-METHYL-CODEINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 6-METHYL-CODEINE Fruit -- 0 ACONITASE Latex Exudate -- 32 AESCULETIN Pericarp -- 3 ALANINE Seed 11780.0 12637.0 0.5273634907250652 -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 ALKALOIDS Latex Exudate 50000.0 250000.0 ANON. 1948-1976. The Wealth of India raw materials. Publications and Information Directorate, CSIR, New Delhi. 11 volumes. 5 ALLOCRYPTOPINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 15 ALPHA-LINOLENIC-ACID Seed 1400.0 5564.0 -0.22115561650586155 -- 2 ALPHA-NARCOTINE Plant Jeffery B. Harborne and H. Baxter, eds. 1983. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London. 791 pp. 17 APOMORPHINE Plant Father Nature's Farmacy: The aggregate of all these three-letter citations. 0 APOREINE Fruit -- 0 ARABINOSE Fruit ANON.
    [Show full text]
  • WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T (51) International Patent Classification: (74) Agent: KHURANA & KHURANA, ADVOCATES & IP C07D 317/68 (2006.01) C07C 45/56 (2006.01) ATTORNEYS; E-13, UPSIDC, Site-IV, Behind-Grand Venice, Kasna Road, UP, National Capital Region, Greater (21) International Application Number: Noida 201310 (IN). PCT/IB201 5/053 112 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 29 April 2015 (29.04.2015) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 4124/MUM/2014 23 December 2014 (23. 12.2014) IN MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicant: ANTHEA AROMATIC S PRIVATE LIM¬ SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ITED [IN/IN]; R-81/82 TTC Industrial Area, Rabale Midc, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Piperonyl Butoxide
    JOURNAL OF PESTICIDE REFORM/ SUMMER 2002 • VOL. 22, NO. 2 ● INSECTICIDE SYNERGIST FACTSHEET PIPERONYL BUTOXIDE Piperonyl butoxide (PBO) is a synergist used to increase the potency of insecticides like pyrethrins and pyrethroids. According to the U.S. Environmental Protection Agency (EPA), PBO is one of the most commonly used ingredients in household pesticide products. PBO acts as a synergist by inhibiting the activity of a family of enzymes called P450s. These enzymes have many functions, including breakdown of toxic chemicals and transformation of hormones. Symptoms of PBO exposure include nausea, diarrhea, and labored breathing. EPA classifies PBO as a “possible human carcinogen” because it caused liver tumors and cancers in laboratory tests. In a study conducted by PBO manufacturers, PBO caused atrophy of the testes in male rats. Other researchers found behavioral changes (a decrease in home recognition behavior) in the offspring of exposed mothers. PBO affects a variety of hormone-related organs, including thyroid glands, adrenal glands and the pituitary gland. PBO reduces the immune response of human lymphocytes, cells in our blood that help fight infections. Concentrations of less than one part per million of PBO reduce fish egg hatch and growth of juvenile fish. PBO also inhibits hormone-related enzymes in fish and slows the breakdown of toxic chemicals in their tissues. PBO is very toxic to earthworms and highly toxic to aquatic animals. BY CAROLINE COX taining products are Figure 1 made indoors every Piperonyl Butoxide year in the U.S, and Piperonyl butoxide (PBO) is an almost 60 million insecticide synergist, a chemical that O applications out- is used to make insecticides more po- doors.10 tent.
    [Show full text]