STUDIES RELATED to the SYNTHESIS of Arylnaphthatrne LIGNANS

Total Page:16

File Type:pdf, Size:1020Kb

STUDIES RELATED to the SYNTHESIS of Arylnaphthatrne LIGNANS 1. STUDIES RELATED TO THE SYNTHESIS OF ARYLNAPHTHAtRNE LIGNANS A thesis presented by SUSAN MARY MELLOWS in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON Imperial College London S.W.7. October 1970. 2. Abstract This thesis is concerned with the synthesis o cyclolignans and in particular the synthesis of the pharmacologically active cyclolignan, podophyllotoxin. Existing syntheses of cyclolignans are reviewed. Various photochemical synthetic routes to the cyclolignans are proposed. One of these, the photoenolisation of o-benzylbenzaldehydes and subsequent Diels-Alder addition to the dienol of an appropriate dienophile has been investigated. Some general aspects of the photoenolisation reaction are discussed. Irradiation with ultra-violet light of the model compound o-tolualdehyde in the presence of dimethyl- acetylenedicarboxylate gave 2,3-dicarboxymethy1-1,4- -dihydro-l-naphthol. Cis-C1,C2-cis-C2,C3-l-tetralol- -2,3-dicarboxylic anhydride was formed by photoenolisation of o-tolualdehyde in the presence of maleic anhydride. Metal hydride reduction of the maleic anhydride adduct gave a mixture of cis-C1,C2-cis-C2,C3-2-carboxy-3-hydroxy- methyl-l-tetralo1-2,3'--lactone and cis-C1,C2-cis-C2,C3- 3-carboxy-2-hydroxymethyl-l-tetralo1-2',3-6'-lactone. gn acid catalysed rearrangement of the maleic anhydride adduct gave cis-C1,C2-cis-C2,C3-2,3-dicarboxy-l-tetralo1- 4-lactone which was reduced with diborane to cis-C1,C2- -cis-C2,C3-37carboxy-2-hydroxymethyl-l-tetralo1-2' ,3- - 3 • lactone. The synthesis of 6-(3,k,5-trimethoxybenzyl)piperonal is reported. Photoenolisation of this aldehyde in the presence of dimethylacetylenedicarboxylate gave 2,3-dicarboxymethy1-6,7-methylenedioxy-1-(3,4,5- -trimethoxypheny1)-1,4-dihydro-4-naphthol which could be dehydrated to give 2,3-dicarboxymethy1-6,7- -methylenedioxy-l-(3,4,5-trimethoxyphenyl)naphthalene or oxidised to 2,3-dicarboxymethy1-6,7-methylenedioxy- -1-(3,4,5)trimethoxypheny1)-4-naphthol. 4. Acknowledgements I sincerely thank Dr.P.G.Sammes for his guidance and help during the course of this work. I also thank Professor D.H.R.Barton for the privilege of working in his department. The technical assistance of Mr.R.Carter and his colleagues is gratefully acknowledged. Mr.K.I.Jones and his staff are thanked for micro-analyses. Nuclear magnetic resonance spectra were kindly run by Mrs.I.Boston and Mr.P.Jenkins and mass spectra by Mr.J.Bilton and Mrs. Lee. Colleagues, past and present, in the Tilden laboratory, especially Dr.K.W.Blake, Mr.A.E.A.Porter and Mr.F.Ellis are also thanked for their many useful discussions and their congenial company. 'The Road goes ever on and on Down from the door where it began. Now far ahead the Road has gone, And I must follow, if I can Pursuing it with eager feet, Until it joins some larger way Where many paths and errands meet. And whither then? I cannot say.' Bilbo Baggins The Fellowship of the Ring. Index Page Abstract 2 Acknowledgements 4 Review 7 Introduction 8 Interconversion of naturally occurring lignans 12 to other lignans and cyclolignans Synthesis of dehydrocyclolignanolides from 19 p-aroylpropionic acids Synthesis of cyclolignans,cyclolignanolides and 21 their dehydroderivatives via a 1-aryltetralone intermediate Synthesis of dehydrocyclolignanolides from 38 methyleugenol oxide or from safrole oxide Synthesis of dehydrocyclolignanolides and 44 1-arylnaphthalene-2,3-carboxylic acid anhydrides by photolysis of 1,4-diarylbutadiene derivatives Synthesis of dehydrocyclolignanolides and 47 cyclolignanolides by an intra-molecular Diels-Alder reaction Biosynthesis of lignans 58 Results and Discussion 62 Introduction 63 6. Page Synthesis of 6-(3,b,5-trimethoxybenzyl)piperonal 71 General discussion of the photoenolisation 98 reaction Photoenolisation of o-tolualdehyde and of 112 6-(3,4,5-trimethoxybenzyl)piperonal Experimental 139 References 184 7• REVIEW 8. Introduction Lignans are a group of naturally occurring phenols made up of two phenylpropane (c6-c3) units, joined at the 0-carbon atoms of the side chains. Weinges and Spanigl classified the lignans as true lignans, deriveable from structures Ia and Ib, or cyclolignans, derivatives of II (having two less hydrogen atoms than the true lignans). Those lignans having additional structural features were given more specific names ie. lignanolides III, monoepoxylignans IV and bisepoxylignans V. Similarly, those cyclolignans having a )'-lactone function at C2 and C3 were separately classified as cyclolignanolides VIa and VIb. No specific mention was made by these authors of dehydrocyclo- lignans but in view of the isolation' in recent years of a number of arylnaphthalene lignans, two new groups of cyclolignans warrant independent consideration, dehydrocyclolignans VII and dehydrocyclolignanolides Villa and VIIIb. Ar— C— C—C— Ar— C— C--C- Ar C— C— C— • -C—I —C —Ar ' Ia Ib 9. Ar / \ Ar-- C — c — c4Q,......0 c—c—C Ar'— C— C—e-..... C,z— C , Ar4 II III IV ,Ar . .. • .. /C— C—C R R '\o—L ,. `Ai"' V VIa VIb VII VIIIa VIIIb 10. Examples of arylnaphthalene lignans recently isolated from the Western red cedar, Thuja plicata Donn. are plicatinaphthalene and plicatinaphthol (1, R=H and 1, R=OH)2'8, dehydroderivatives of naturally occurring plicatin (2) which had previously been isolated from the same source4. Further examples, isolated from Justicia procumbens L.5'86 are Justicidin C (3, R=R1=0Me), Justicidin D (3, RR=0.CH2.0, RI=OMe) and Justicidin E (3, RR=0.CH2.0, R1=H). A few dihydroarylnaphthalene lignans have also been isolated LE. (dl)-thomasic acid (4, X=CH2OH) and (d1)-thomasidioic acid (4, X=CO2H) from the heartwood of Ulmus thomasii Sarg.8'7 and collinusin (5) from the leaves of Cleistanthus collinus.8 OH Me0 HO 014 OMe HO OMe HO HO 1 2 11. Me0 Me0 Me0 Me0 OH 4 5 The chemistry of lignans is the subject of reviews by Haworth9, Hearon and MacGreggorl°, Erdtman11, Adjangba12, Kato13, and Weinges and Spanigl . Shrecker and Hartwel114 have reviewed the podophyllum lignans. The present review covers syntheses of the cyclolignans, an aspect which has not previously been comprehensively surveyed. The review will deal.mainly with complete syntheses from common laboratory chemicals although a few illustrations of the numerous interconversions of naturally occurring lignans to other lignans and cyclolignans will be briefly discussed. A short synopsis of the biosynthesis of lignans is also included. 12. 1. Interconversion of naturally occurring lignans to other lignans and cyclolignans. Lignans and lignanolides can be converted to dehydrocyclolignans and dehydrocyclalignanolides, respectively. Flr example, the dimethyl ether (6) of naturally occurring (-)-guaiaretic acid which has been isolated from the resin of Guaiacum officinale L. and Guaiacum sanctum L.1° can be oxidised with iodine and mercuric chloride to dimethyldehydroguaiaretic acid (7)42. Cyclisation of the dimethyl ether (8) of natural (-)-matairesinol, obtained from the heartwood of the New Zealand matai, Podocarpus spicatus78 would be expected to occur towards either of the aromatic nuclei. In the event, treatment with lead tetraacetate gave a mixture of dimethyldehydroconidendrin (9) and dimethyldehydroretrodendrin (10)17. Sometimes partial dehydrogenation of lignans is possible. (-)- Arctigenin (11, R=H) occurs in the seeds of burdock, Arctum lappa L.'6 and its acetyl derivative (11, R=Ac) on treatment with lead tetraacetate yields (-)-acetylcyclo- arctigenin (12, R=Ac). Base hydrolysis of 12 (R=Ac) gives (-)-cycloarctigenin (12, R=H) which in turn, on methylation yields a-conidendrin (12, R=Me)18, a cyclolignan which is widely distributed in nature1°. 13. Me0 Me0 6 7 Me0 Me• • • 400 0 Me0 40100 0 40 OMe 0 OMe OMe 8 9 10 Me0 RO OMe OMe 11 12 14. Monoepoxylignans of the 2,5-diaryltetrahydrofuran type, after reduction with sodium and liquid ammonia and subsequent cyclisation in acidic media yield cyclolignans. For example, (-)-galbelgin (13) which has been isolated from Himantandra belgraveana F.v.Mul12°is converted to (-)-galbulin (14)20, a naturally occurring cyclolignan from the same source". These epoxylignans also undergo cyclisation with loss of water to give dehydrocyclolignans in acidic conditions, (-)-galbelgin (13) giving dehydrogalbelgin (15)20. Some 2,5-diaryltetrahydrofuran lignans occur naturally in a reduced form 2.E. (-)-podorhizol (16, 111=R=OMe) has been isolated as the glucoside from Podophyllum emodi resin", and more recently (-)-para- benzlactone (16, 111=H, RR=0.CH2.0-stereochemistry undefined) has been isolated from Parabenzoin trilobum Nakai?6 Acid catalysed cyclisation of these lignans yields the corresponding cyclolignan, eg. (-)-podorhizol gives a mixture of C1 epimers, desoxypodophyllotoxin (17, R1=R=OMe) and isodesoxypodophyllotoxin (18, 111=R=OMe) and (-)-parabenzlactone is transformed to Justicidin E (3, RR= 0.CH2.0, R1=H) after dehydrogenation of the cyclisation product with N-bromosuccinimide. 15. OMe 111 15 16 17 18 Acid treatment of 2-aryl-4-benzyltetrahydrofuran epoxylignans yields the corresponding cyclolignans. Although (+)-cyclo-olivil (20) has now been found in the resin of the Australian olive, Olea cunninghamii21, it was first obtained by acid treatment of (-)-olivil (19)22, which has been 2 24 isolated from the resin of the olive tree, Olea europaea-;n-' The structures given here for (-)-olivil and (+)-cyclo-olivil have only recently been assigned by Ayres et al.25,28 Similarly, (+)-lariciresinol (21) which occurs in the resin of Larix decidua27, gives (+)-cyclolariciresinol(22) in acidic media27. 16. ss.00H Me0 CH2OH ss OH HO H ,,%iCH2OH -...,. OMe .../ OMe OH 19 . 20 OMe MeO HO sCH112 osCH2OH OH OMe OH 21 22 17. Bisepoxylignans may be partially hydrogenated to the corresponding 2-aryl-k-benzyltetrahydrofuran monoepoxylignans which can yield cyclolignans under acidic conditions. For example (+)-eudesmin (23) which has been isolated from the wood of Humbertia madagasca:riensis and from the wood of Araucaria angustifolia28'29, may be converted to (+)- lariciresinol dimethyl ether and thence to (+)-dimethylcyclolariciresino13°.
Recommended publications
  • Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers with Topical Pharmaceutical Agents
    Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Author Watts, Annabelle M, Cripps, Allan W, West, Nicholas P, Cox, Amanda J Published 2019 Journal Title FRONTIERS IN PHARMACOLOGY Version Version of Record (VoR) DOI https://doi.org/10.3389/fphar.2019.00294 Copyright Statement © Frontiers in Pharmacology 2019. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/386246 Griffith Research Online https://research-repository.griffith.edu.au fphar-10-00294 March 27, 2019 Time: 17:52 # 1 REVIEW published: 29 March 2019 doi: 10.3389/fphar.2019.00294 Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Annabelle M. Watts1*, Allan W. Cripps2, Nicholas P. West1 and Amanda J. Cox1 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, QLD, Australia, 2 Menzies Health Institute Queensland, School of Medicine, Griffith University, Southport, QLD, Australia Allergic rhinitis (AR) is a chronic upper respiratory disease estimated to affect between 10 and 40% of the worldwide population. The mechanisms underlying AR are highly complex and involve multiple immune cells, mediators, and cytokines. As such, the development of a single drug to treat allergic inflammation and/or symptoms is confounded by the complexity of the disease pathophysiology. Complete avoidance of allergens that trigger AR symptoms is not possible and without a cure, the available therapeutic options are typically focused on achieving symptomatic relief.
    [Show full text]
  • Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents Improvisingnutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 1, January 2014 Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents ImprovisingNutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3 Director General, PERI, M-2/196, Sector-H, Aashiana, Lucknow-226012,UP, India1 Department of Biotechnology, SVU Gajraula, Amroha UP, India1 Assistant Professor, MGIP, Lucknow, UP, India2 Assistant Professor, DGPG College, Kanpur,UP, India3 Abstract: Until recently, pharmaceuticals used for the treatment of diseases have been based largely on the production of relatively small organic molecules synthesized by microbes or by organic chemistry. These include most antibiotics, analgesics, hormones, and other pharmaceuticals. Increasingly, attention has focused on larger and more complex protein molecules as therapeutic agents. This publication describes the types of biologics produced in plants and the plant based organic therapeutic agent's production systems in use. KeyWords: Antecedent, Antibiotics; Anticancer;Antiparasitic; Antileishmanial;Antifungal Analgesics; Flavonoids; Hormones; Pharmaceuticals. I. INTRODUCTION Naturally occurring pharmaceutical and chemical significance of these compounds offer interesting possibilities in exploring their more pharmacological and biocidal potentials. One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents [1]. Flavonoids comprise a widespread group of more than 400 higher plant secondary metabolites. Flavonoids are structurally derived from parent substance flavone. Many flavonoids are easily recognized as water soluble flower pigments in most flowering plants. According to their color, Flavonoids pigments have been classified into two groups:(a) The red-blue anthocyanin's and the yellow anthoxanthins,(b)Aurones are a class of flavonoids called anthochlor pigments[2].
    [Show full text]
  • Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances 2017
    INTERNATIONAL NARCOTICS CONTROL BOARD Precursors and chemicals frequently used in the illicit manufacture of narcotic drugs and psychotropic substances 2017 EMBARGO Observe release date: Not to be published or broadcast before Thursday, 1 March 2018, at 1100 hours (CET) UNITED NATIONS CAUTION Reports published by the International Narcotics Control Board in 2017 The Report of the International Narcotics Control Board for 2017 (E/INCB/2017/1) is supplemented by the following reports: Narcotic Drugs: Estimated World Requirements for 2018—Statistics for 2016 (E/INCB/2017/2) Psychotropic Substances: Statistics for 2016—Assessments of Annual Medical and Scientific Requirements for Substances in Schedules II, III and IV of the Convention on Psychotropic Substances of 1971 (E/INCB/2017/3) Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances: Report of the International Narcotics Control Board for 2017 on the Implementation of Article 12 of the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances of 1988 (E/INCB/2017/4) The updated lists of substances under international control, comprising narcotic drugs, psychotropic substances and substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances, are contained in the latest editions of the annexes to the statistical forms (“Yellow List”, “Green List” and “Red List”), which are also issued by the Board. Contacting the International Narcotics Control Board The secretariat of the Board may be reached at the following address: Vienna International Centre Room E-1339 P.O. Box 500 1400 Vienna Austria In addition, the following may be used to contact the secretariat: Telephone: (+43-1) 26060 Fax: (+43-1) 26060-5867 or 26060-5868 Email: [email protected] The text of the present report is also available on the website of the Board (www.incb.org).
    [Show full text]
  • Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum Album L
    plants Article Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Tim Jäger 1,2,3,†, Carla Holandino 1,4,* , Michelle Nonato de Oliveira Melo 4,5 , Evelyn Maribel Condori Peñaloza 4,5, Adriana Passos Oliveira 4, Rafael Garrett 5 , Gaétan Glauser 6 , Mirio Grazi 1, Hartmut Ramm 1, Konrad Urech 1 and Stephan Baumgartner 1,3,7,* 1 Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland; [email protected] (T.J.); [email protected] (M.G.); [email protected] (H.R.); [email protected] (K.U.) 2 Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany 3 Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany 4 Laboratório Multidisciplinar de Ciências Farmacêuticas, Pharmacy College, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (M.N.d.O.M.); [email protected] (E.M.C.P.); [email protected] (A.P.O.) 5 Metabolomics Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; [email protected] 6 Neuchatel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; [email protected] 7 Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland * Correspondence: [email protected] (C.H.); [email protected] (S.B.) † Deceased 1 March 2019. Citation: Jäger, T.; Holandino, C.; Abstract: Viscum album L., commonly known as European mistletoe, is a hemi-parasitic plant of Melo, M.N.d.O.; Peñaloza, E.M.C.; the Santalaceae family.
    [Show full text]
  • Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang
    Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang A thesis submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta ©Yannick Djoumbou Feunang, 2017 ii Abstract Metabolites are small molecules (<1500 Da) that are used in or produced during chemical reactions in cells, tissues, or organs. Upon absorption or biosynthesis in humans (or other organisms), they can either be excreted back into the environment in their original form, or as a pool of degradation products. The outcome and effects of such interactions is function of many variables, including the structure of the starting metabolite, and the genetic disposition of the host organism. For this reasons, it is usually very difficult to identify the transformation products as well as their long-term effect in humans and the environment. This can be explained by many factors: (1) the relevant knowledge and data are for the most part unavailable in a publicly available electronic format; (2) when available, they are often represented using formats, vocabularies, or schemes that vary from one source (or repository) to another. Assuming these issues were solved, detecting patterns that link the metabolome to a specific phenotype (e.g. a disease state), would still require that the metabolites from a biological sample be identified and quantified, using metabolomic approaches. Unfortunately, the amount of compounds with publicly available experimental data (~20,000) is still very small, compared to the total number of expected compounds (up to a few million compounds). For all these reasons, the development of cheminformatics tools for data organization and mapping, as well as for the prediction of biotransformation and spectra, is more crucial than ever.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
    Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at
    [Show full text]
  • Safrole and the Versatility of a Natural Biophore Lima, L
    Artigo Safrole and the Versatility of a Natural Biophore Lima, L. M.* Rev. Virtual Quim., 2015, 7 (2), 495-538. Data de publicação na Web: 31 de dezembro de 2014 http://www.uff.br/rvq Safrol e a Versatilidade de um Biofóro Natural Resumo: Safrol (1) obtido de óleos essenciais de diferentes espécies vegetais tem ampla aplicação na indústria química como precursor sintético do butóxido de piperonila, piperonal e de fármacos como a tadalafila, cinoxacina e levodopa. Do ponto vista toxicológico, é considerado uma hepatotoxina por mecanismo de bioativação metabólica conduzindo a formação de intermediários eletrofílicos, e tem sido descrito como inibidor de diferentes isoenzimas da família CYP450. A versatilidade de sua estrutura, permitindo várias transformações químicas, e a natureza biofórica de sua unidade benzodioxola ou metilenodioxifenila conferem-lhe características singulares, que o tornam atrativo material de partida para a síntese de compostos com distintas atividades farmacológicas. Exemplos selecionados de compostos bioativos, naturais e sintéticos, contendo o sistema benzodioxola serão comentados, incluindo aqueles provenientes de contribuição específica do LASSBio®. Palavras-chave: Safrol; benzodioxola; metilenodioxi; CYP450; bióforo; compostos bioativos. Abstract Safrole (1), obtained from essential oils from different plant species, has wide application in the chemical industry as a synthetic precursor of piperonyl butoxide, piperonal and drugs such as tadalafil, cinoxacin and levodopa. From the toxicological point of view, it is considered a hepatotoxin through metabolic bioactivation, leading to the formation of electrophilic metabolites, and has been described as an inhibitor of different CYP450 isoenzymes. The versatility of its structure, allowing various chemical transformations, and the biophoric nature of its benzodioxole or methylenedioxy subunit, give it unique features and make it an attractive starting material for the synthesis of compounds with different pharmacological activities.
    [Show full text]
  • Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
    Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes.
    [Show full text]
  • THE THIOBARBITURIC ACID TEST in IRRADIATION-STERILIZED BEEF By
    THE THIOBARBITURIC ACID TEST IN IRRADIATION-STERILIZED BEEF by NORMAN LEE SMITH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June 1959 APPROVED: Redacted for Privacy Associate Professor of Chemistry In Ghare of Major Redacted for Privacy Chairman of Department of Chemistry Redacted for Prîvacy Chairman of choo1 Graduate Committee Dean of Graduate School Date thesi9 19 presented July 10, 195B Typed by Cliatie Stoddard AC KOV'LEDGEMENTS The author would like to exprese his most sincere appreciation to Dr. E. C. Bubi, who by his guidance, help, and enthusiasm has made work on this project both an education and a pleasure. Especial thanks also o to Dr. Ian J. Tinsley, whose unfailing supply of timely suggestions, il1uminatin dis- cussions, and refreshing good humor was most generously shared. TABLE OF CONTENTS Chapter pase i INTRODUC T ION . i 2. LITERATURE STJRVEY . 5 3. PREPARATION AND IRRADIATION OF SAMPLES . 10 4. COLOR TESTS WITH THIOBARBITURIC ACID . 12 5. REAGENTS AND INSTRUMENTS . 15 6. GENERAL INFORMATION ON THE MEAT-TBA REACTION 17 Meat fractions and TBA reaction . 17 Spectral curves of meat-TBA piment solutions . 21 Autoc1avin of meat sampleß . ¿5 7. GENERAL INFORMATION ON THE GLYOXAL-TEA flc..tt'si.Lmr\?s1 L)i s S S S I S S S S ' Effect of pli on glyoxal-TBA reaction . 26 Glyoxal-barbituric acid reaction . 26 Barbituric acid reaction with beef . , 27 para-aminoacetophenone reaction with 1yoxal, malonaldehyde, and irradiated beef . 27 8. GLYOXAL-TBA AND :EAT-TBA PIGMENT PJI- FICATION e s .
    [Show full text]
  • WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/103058 Al 30 June 2016 (30.06.2016) P O P C T (51) International Patent Classification: (74) Agent: KHURANA & KHURANA, ADVOCATES & IP C07D 317/68 (2006.01) C07C 45/56 (2006.01) ATTORNEYS; E-13, UPSIDC, Site-IV, Behind-Grand Venice, Kasna Road, UP, National Capital Region, Greater (21) International Application Number: Noida 201310 (IN). PCT/IB201 5/053 112 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection available): AE, AG, AL, AM, 29 April 2015 (29.04.2015) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 4124/MUM/2014 23 December 2014 (23. 12.2014) IN MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (71) Applicant: ANTHEA AROMATIC S PRIVATE LIM¬ SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ITED [IN/IN]; R-81/82 TTC Industrial Area, Rabale Midc, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Biosynthesis of Phenylpropane
    Biosynthesis of Phenylpropane David Wang’s Wood Components Synthesis’s Class Phenylpropane n Phenylpropane derivatives are compounds composed of a C6-C3 carbon skeleton comprised of an aromatic ring with a propane side chain. n Phenylpropanoids are considered to be essential for plant life. n Dehydrodiconiferyl alcohol glucoside: dividing plant cells and acts as a cytokinin. n Flavonoid : polar transportation of auxin. n Flavonoids pigments: protect growing meristems against UV. n Isofavonoids and furanocoumarine: antibiotic and phytoalexin and protect plants from diseases. Lignin n Lignin is the second abundant and important organic substance in the plant world. n The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright. Outline of the Biosynthetic Pathway of Phenylpropanoids Phenylpropanoid pathway n Shikimate pathway commonly involved in the biosynthesis of many aromatic compounds. n Biosynthesis of phenylalanine and tyrosine. n General phenylprpanoid pathway to afford 4-coumaroyl-Co-A. n Pathways for lignin and lignans etc. associated with general phenylpropanoid pathway. General Biosynthesis Pathway of Plant Phenolic compounds Malonic acid pathway Acetyl-CoA Phenolic compounds (C6-C3-C6)n D-erythose 4-phosphate C6-C3-C6 Shikimate Cinnamate pathway pathway C6-C1 C6-C3 (C6-C3)2 (C6-C3)n L-Phenylalanine Cinnamic acid Phosphoenol
    [Show full text]
  • Aldrich Aldehydes and Ketones
    Aldrich Aldehydes and Ketones Library Listing – 1,311 spectra Subset of Aldrich FT-IR Spectral Libraries related to aldehydes and ketones. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collection of FT-IR Spectra and the data has been carefully examined and processed by Thermo. The molecular formula, CAS (Chemical Abstracts Services) registry number, when known, and the location number of the printed spectrum in The Aldrich Library of FT-IR Spectra are available. Aldrich Aldehydes and Ketones Index Compound Name Index Compound Name 182 ((1R)-ENDO)-(+)-3- 314 (7AS)-(+)-5,6,7,7A-TETRAHYDRO- BROMOCAMPHOR, 98% 7A- METHYL-1,5-INDANDIONE, 183 ((1S)-ENDO)-(-)-3- 99% BROMOCAMPHOR, 98% 97 (DIETHYLAMINO)ACETONE, 96% 274 (+)-3- 96 (DIMETHYLAMINO)ACETONE, 99% (TRIFLUOROACETYL)CAMPHOR, 145 (R)-(+)-3- 98% METHYLCYCLOHEXANONE, 98% 231 (+)-DIHYDROCARVONE, 98%, 135 (R)-(+)-3- MIXTURE OF ISOMERS METHYLCYCLOPENTANONE , 99% 1076 (+)-RUTIN HYDRATE, 95% 397 (R)-(+)-CITRONELLAL, 96% 830 (+)-USNIC ACID, 98% 229 (R)-(+)-PULEGONE, 98% 136 (+/-)-2,4- 248 (R)-(-)-4,4A,5,6,7,8-HEXAHYDRO- DIMETHYLCYCLOPENTANONE, 4A- METHYL-2(3H)- 99%, MIXTURE OF CIS AND TRANS NAPHTHALENONE, 97% 758 (+/-)-2- 232 (R)-(-)-CARVONE, 98% (METHYLAMINO)PROPIOPHENON 358 (S)-(+)-2- E HYDROCHLORIDE, 99% METHYLBUTYRALDEHYDE, 97% 275 (-)-3- 250 (S)-(+)-3,4,8,8A-TETRAHYDRO-8A- (TRIFLUOROACETYL)CAMPHOR, METHYL- 1,6(2H,7H)-
    [Show full text]