Para-Coumaryl Coniferyl Sinapyl Alcohol Alcohol Alcohol Patent Application Publication Dec

Total Page:16

File Type:pdf, Size:1020Kb

Para-Coumaryl Coniferyl Sinapyl Alcohol Alcohol Alcohol Patent Application Publication Dec US 2003O226168A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0226168 A1 Carlson (43) Pub. Date: Dec. 4, 2003 (54) PLANT PREPARATIONS Publication Classification (76) Inventor: Peter S. Carlson, Chevy Chase, MD (51) Int. Cl. ............................ A01H 1700; C12N 15/82; (US) C12O 1/18 Correspondence Address: (52) U.S. Cl. .............................................. 800/279; 435/32 FOLEY AND LARDNER SUTE 500 (57) ABSTRACT 3000 KSTREET NW WASHINGTON, DC 20007 (US) The present invention provides methods for slowing down (21) Appl. No.: 10/366,720 the rate at which plant biomaterials, Such as lignin, are degraded, thereby improving the terrestrial Storage of carbon (22) Filed: Feb. 14, 2003 by reducing the amount of gaseous carbon dioxide released Related U.S. Application Data into the atmosphere upon biodegradation. The inventive methods contemplate the modification of plant macromol (60) Provisional application No. 60/403,650, filed on Aug. ecules to make them more resistant to degradation as well as 16, 2002. Provisional application No. 60/356,730, the treatment of living and non-living plants with fungicides filed on Feb. 15, 2002. to prolong the rate of plant breakdown. CH2OH CH2OH CHOH 1. 1. 1 OCH3 H3CO OCH3 OH OH OH para-coumaryl coniferyl sinapyl alcohol alcohol alcohol Patent Application Publication Dec. 4, 2003. Sheet 1 of 4 US 2003/0226168A1 ZHOHO?HOHOZHOHO £HOOOOºH£HOO HOHOHO Patent Application Publication Dec. 4, 2003. Sheet 3 of 4 US 2003/0226168A1 Á??Su??u|6u?u?e?su????OS -0||Á?Sue?u?6u?u?e?su?uô?T-||-------------------------------- uosuno?udp????polN AISueu fuuleS Patent Application Publication Dec. 4, 2003 Sheet 4 of 4 US 2003/0226168 A1 3 5, d a 2. on 2 2 12 CS 5. C C O 2 2 ( cus at s 5. C. C E C. C. O 2 i Z. s i 2 5 s O O). OO N CO LCD v. CO CN Y - O V A}|Sueu fulule)S US 2003/0226168 A1 Dec. 4, 2003 PLANT PREPARATIONS approximately 0.5 billion tonnes into the atmosphere. Cul tivation, for instance, exposes fresh Soil to the air, increasing FIELD OF THE INVENTION the rate of carbon dioxide emission. 0001. The present invention provides methods and mate 0008 Furthermore, fungi such as white-rot fungi and rials to improve terrestrial Storage of carbon in decaying wood-rotting fungi, as well as a variety of bacterial and plant biomass by incorporating modified macromolecule actinomycetes Species, appear to be the most efficient lignin precursors into key plant Structures, thereby improving the degraders present in terrestrial ecosystems. For instance, ability of plant biomass to withstand environmental degra white-rot fungi produce "lignase” peroxidase enzymes that dation and the activity of degradative microorganisms. produce free oxygen radicals that are potent lignin decom Modified lignin or modified lignin precursors incorporated posers. Thus, a major cause of CO2 release from Soil organic into plant biomass reduces the rate of degradation of lignin materials is the increased accessibility of carbon to elements in Soil. Furthermore, the antimicrobial activity of lignin that are capable of converting one form of carbon into breakdown products protects plants from degradative micro another. organisms. 0009. Accordingly, the rate at which carbon dioxide is 0002 This technology reduces the rate at which carbon produced depends upon both the Surrounding environmental dioxide is released into the atmosphere when plant and Soil conditions and upon the ease by which plant materials can organic matter are treated with the inventive molecules. be broken down. Thus, the decomposability of Soil organic Thus, the present invention increases the amount of carbon matter reflects the nature of its chemical components. In this that is Sequestered in a terrestrial ecosystem. regard, Some plant detritus and microbial biomass have a relatively short turnover time, generally less than 10 years. BACKGROUND In contrast, Soil organic carbon is more resistant to microbial 0003. An aspect of carbon sequestration is the prevention degradation and takes between 10 and 100 years to break of carbon dioxide emission into the atmosphere and the down. Since approximately 75% of terrestrial carbon is improved retention of carbon in terrestrial ecosystems. Stored within Soil organic material, the adaptation of Soil to Combustion of fossil fuel, Such as for power generation, better retain that carbon is one focus of recent Sequestration transport, industry and domestic use, is a major factor in efforts. increasing the concentration of carbon dioxide in the atmo 0010 For these reasons, there have been efforts to modify Sphere. terrestrial vegetation, Soil and plant-derived organic matter, 0004 Consequently, elevated levels of carbon dioxide So that the Sequestered carbon is more difficult to access, can be detrimental to the environment, causing, for instance, utilize and, thus liberate. global warming and fluctuations in global climates. For this 0011 To this end, “no-till' practices have been adopted to reason, Stabilizing and reducing the concentration of gas reduce the exposure of "fresh' Soil to oxidative processes. eous carbon, Such as CO, is a necessary step in diminishing Another is the transportation of natural organic matter to the effects of warming trends, while Simultaneously extend deep groundwater Systems where the residence time of Such ing the time period within which technologies for mitigating materials is hundreds, if not thousands, of years. CO2 emissions can be further developed. 0012 However, this latter method relies upon heavy 0005 One way to uncouple fossil fuel usage and CO rainfall or other Similarly intense precipitation after pro levels is to improve the Storage of carbon within terrestrial longed dry periods, to wash organically-Stored carbon into biomass. In this respect, plants and other worldwide Veg underground Sites. Planting new trees and forest fertilization etation are natural CO "sinks' that continually remove and are other methods by which the terrestrial biosphere is being trap gaseous carbon from the atmosphere by processes Such adapted So as to improve carbon Sequestration. as photosynthesis. On a global Scale, plants represent an enormous quantity of Stored carbon. Taken collectively, the 0013 There is still a need, however, for better methods of terrestrial biosphere is estimated to Sequester approximately retaining carbon in Soil, Such as by actually modifying the 2 gigatonnes of carbon (GtC) per year. Of that biomass, the terrestrial organic material that eventually becomes Soil. For most abundant component of terrestrial plant materials are instance, a key query is whether the formation of “highly cellulose and lignin, which represent key carbon Stores. recalcitrant organic macromolecules' can be enhanced through “Solid amendments, microbial manipulation, or 0006 Lignin is a very complex, aromatic macromol genetic selection of biomass.’ See Chapter 4 of CARBON ecule, used to form plant cell walls and structural tissues. SEQUESTRATION RESEARCH AND DEVELOPMENT, The molecule imparts Strength to the plant, facilitates water December 1999 Report, U.S. Department of Energy, avail transport and impedes biodegradation of plant polysaccha able at http://www.fe.doe.gov/coal power/sequestration/re rides and protects plants against microbial attack. Plants that ports/rd/. With regard to the latter, efforts have focused on have a highlignin content, may, therefore, Store a Substantial genetic manipulation of plants. amount of carbon while simultaneously being very difficult to degrade. 0014) Research is being conducted on modifying the genes of perennial plants to provide resistance to microbial 0007 Nevertheless, when plant litter becomes incorpo degradation. See 4-19 of CARBON SEQUESTRATION rated into Soil and components Such as lignin are eventually RESEARCH AND DEVELOPMENT. broken down, the once-trapped carbon can be liberated by any number of degradative factors, especially by microbes 0015. Another Suggested approach along these lines, and biochemical processes, Such as Oxidation. In fact, OXi involves the reintroduction of genetic Stocks of plants that dation of terrestrial Soil carbon is estimated to release possess higher lignin content into the biomass So as to US 2003/0226168 A1 Dec. 4, 2003 improve carbon sequestration and to better inhibit the ability plant that is capable of taking up a preparation of a molecule of microorganisms to decompose Soil organic material. that comprises a chemical group that is not a natural con However, recombinant genetic approaches can require Sub Situent of a macromolecule of the plant, Such as a modified Stantial research and development efforts and Stringent con lignin precursor. In another embodiment, the preparation of trol of the gene carriers that are used to introduce and a modified precursor may be a liquid, a powder, a gel, or a incorporate foreign genes into plant genomes. gas. In a preferred embodiment the preparation of a modified precursor is a liquid that can be applied to the roots of the 0016. Thus, there is a need for methods that would alter plant to be treated. In a further embodiment, the preparation the “composition of cellular components' and increase may include other chemicals or compounds, Such as a “energy content, durability and lignin content in order to herbicide or a plant growth regulator. In a preferred embodi reduce decomposition rates and to improve microbial and ment, glyphosate and glyophosine may each be added to a disease resistance. See CARBON SEOUESTRATION preparation of a modified precursor, independently or RESEARCH AND DEVELOPMENT, a U.S. Department of together. Energy Report, Office of Science, December 1999. 0017. A recent publication by Myneni (Science, 295, 0023. Another aspect of the present invention is a screen 1039-1041, 2002), showed that the halogen, chlorine, is ing assay for determining the antimicrobial properties of a naturally-occurring in plant organic materials. Indeed, plant macromolecule that contains a molecule that com Myneni showed that “organo-Cl” compounds are “the domi prises a chemical group that is not a natural consituent of a nant forms of chlorine in the organic fraction of Soils, macromolecule of the plant.
Recommended publications
  • ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis
    ABSTRACT SONG, XIAO. Investigating the Role and Structure of Free Radicals in Lignin Biosynthesis. (Under the direction of Prof. Tatyana Smirnova). Lignin is the second most abundant biopolymer on earth after cellulose that contributes to the overall viability and sustainability of the plant kingdom. Understanding molecular details of the lignin formation and cross-linking is of fundamental importance to production of biomass streams. Although the processes of monolignols oxidative dehydrogenation, polymerization and cross-linking to cell walls are proposed to occur through a free radical mechanism, the specific details remain elusive. In order to understand molecular mechanisms of these reactions, we investigated formation of radicals during enzyme-catalyzed (HRP or Laccase) oxidative dehydrogenation of twelve monolignols. To characterize short-lived radicals formed during the enzymatic reaction we employed EPR spectroscopy in combination with spin-trapping technique and deduced the structures and spatial conformations of radicals. We also utilized continuous- flow EPR in combination with enzyme surface immobilization to detect the formation of transient monolignol radicals and thus patterned their isotropic hyperfine parameters that allow for the mapping of unpaired electron distribution. Polymerized radicals formed as a result of the coupling of enzyme-generated monolignol radicals. The effective -factors and ∆퐻푃−푃 of EPR spectra of polymerized radicals could be used as a reference to identify the polymeric radicals obtained from monolignols by different methods and paramagnetic species in natural lignin. We further generated a monolignol radical using consecutive enzymatic deglucosidation and oxidative dehydrogenation of a monolignol glucoside. This approach could be used to probe the isotropic hyperfine interactions of radical structures of monolignols with limited solubility in water by continuous-flow EPR method, especially for monolignol hydroxycinnamate conjugate compounds whose isotropic hyperfine component have not been studied yet.
    [Show full text]
  • Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum Album L
    plants Article Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Tim Jäger 1,2,3,†, Carla Holandino 1,4,* , Michelle Nonato de Oliveira Melo 4,5 , Evelyn Maribel Condori Peñaloza 4,5, Adriana Passos Oliveira 4, Rafael Garrett 5 , Gaétan Glauser 6 , Mirio Grazi 1, Hartmut Ramm 1, Konrad Urech 1 and Stephan Baumgartner 1,3,7,* 1 Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland; [email protected] (T.J.); [email protected] (M.G.); [email protected] (H.R.); [email protected] (K.U.) 2 Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany 3 Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany 4 Laboratório Multidisciplinar de Ciências Farmacêuticas, Pharmacy College, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (M.N.d.O.M.); [email protected] (E.M.C.P.); [email protected] (A.P.O.) 5 Metabolomics Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; [email protected] 6 Neuchatel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; [email protected] 7 Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland * Correspondence: [email protected] (C.H.); [email protected] (S.B.) † Deceased 1 March 2019. Citation: Jäger, T.; Holandino, C.; Abstract: Viscum album L., commonly known as European mistletoe, is a hemi-parasitic plant of Melo, M.N.d.O.; Peñaloza, E.M.C.; the Santalaceae family.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
    Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at
    [Show full text]
  • Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
    Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes.
    [Show full text]
  • Global Journal of Research in Engineering
    Online ISSN : 2249-4596 Print ISSN : 0975-5861 DOI : 10.17406/GJRE SolarCellApplication GravitySeparationAndLeaching AzaraNassarawaBariteMineralOre WasteWoodfromaParquetFactory VOLUME17ISSUE5VERSION1.0 Global Journal of Researches in Engineering: J General Engineering Global Journal of Researches in Engineering: J General Engineering Volume 17 Issue 5 (Ver. 1.0) Open Association of Research Society Global Journals Inc. © Global Journal of (A Delaware USA Incorporation with “Good Standing”; Reg. Number: 0423089) Sponsors:Open Association of Research Society Researches in Engineering. Open Scientific Standards 2017. All rights reserved. Publisher’s Headquarters office This is a special issue published in version 1.0 ® of “Global Journal of Researches in Global Journals Headquarters Engineering.” By Global Journals Inc. 945th Concord Streets, All articles are open access articles distributed Framingham Massachusetts Pin: 01701, under “Global Journal of Researches in Engineering” United States of America Reading License, which permits restricted use. USA Toll Free: +001-888-839-7392 Entire contents are copyright by of “Global USA Toll Free Fax: +001-888-839-7392 Journal of Researches in Engineering” unless otherwise noted on specific articles. Offset Typesetting No part of this publication may be reproduced or transmitted in any form or by any means, Global Journals Incorporated electronic or mechanical, including photocopy, recording, or any information 2nd, Lansdowne, Lansdowne Rd., Croydon-Surrey, storage and retrieval system, without written Pin: CR9 2ER, United Kingdom permission. The opinions and statements made in this Packaging & Continental Dispatching book are those of the authors concerned. Ultraculture has not verified and neither confirms nor denies any of the foregoing and Global Journals Pvt Ltd no warranty or fitness is implied.
    [Show full text]
  • Biosynthesis of Phenylpropane
    Biosynthesis of Phenylpropane David Wang’s Wood Components Synthesis’s Class Phenylpropane n Phenylpropane derivatives are compounds composed of a C6-C3 carbon skeleton comprised of an aromatic ring with a propane side chain. n Phenylpropanoids are considered to be essential for plant life. n Dehydrodiconiferyl alcohol glucoside: dividing plant cells and acts as a cytokinin. n Flavonoid : polar transportation of auxin. n Flavonoids pigments: protect growing meristems against UV. n Isofavonoids and furanocoumarine: antibiotic and phytoalexin and protect plants from diseases. Lignin n Lignin is the second abundant and important organic substance in the plant world. n The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright. Outline of the Biosynthetic Pathway of Phenylpropanoids Phenylpropanoid pathway n Shikimate pathway commonly involved in the biosynthesis of many aromatic compounds. n Biosynthesis of phenylalanine and tyrosine. n General phenylprpanoid pathway to afford 4-coumaroyl-Co-A. n Pathways for lignin and lignans etc. associated with general phenylpropanoid pathway. General Biosynthesis Pathway of Plant Phenolic compounds Malonic acid pathway Acetyl-CoA Phenolic compounds (C6-C3-C6)n D-erythose 4-phosphate C6-C3-C6 Shikimate Cinnamate pathway pathway C6-C1 C6-C3 (C6-C3)2 (C6-C3)n L-Phenylalanine Cinnamic acid Phosphoenol
    [Show full text]
  • Comparative Transcriptional Analysis of Caffeoyl-Coenzyme a 3-O
    POJ 5(2):184-193 (2012) ISSN:1836-3644 Comparative transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase from Hibiscus cannabinus L., during developmental stages in various tissues and stress regulation Ritesh Ghosh1, Bo Sung Choi1, Mi-Jeong Jeong2, Dong Won Bae3, Sung Chul Shin4, Sang Un Park5, Hyoun-Sub Lim6, Jongkee Kim7, Hanhong Bae1,* 1School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea 2National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 3Central Laboratory, Gyeongsang National University, Jinju, 660-701, Korea 4Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju 660- 701, Korea 5Department of Crop Science, Chungnam National University, Daejeon 305-754, Korea 6Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea 7Department of Applied Plant Science, Chung-Ang University, Anseong 456-756, Korea *Corresponding author: [email protected] Abstract We have cloned a full-length gene, putatively encoding for caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT), an important enzyme involved in lignin biosynthesis, from kenaf (Hibiscus cannabinus L.). Herein, we investigated the expression pattern of a CCoAOMT orthologue from various tissues and organs during development, and in response to different environmental cues. The full-length CCoAOMT orthologue of kenaf consists of a 744 bp open reading frame (ORF), encoding for 247 amino acids of 27.91 kDa and an isoelectric point (pI) of 5.43. The deduced amino acids of CCoAOMT evidenced a high degree of identity (up to 84%) with other plant CCoAOMT sequences. Phylogenetic analysis demonstrated its close relationship with the CCoAOMT of Gossypium hirsutum (ACQ59096).
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency at High Ph
    fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Sisó-Terraza1†, Adrián Luis-Villarroya1†, Pierre Fourcroy2‡, Jean-François Briat2, Anunciación Abadía1, Frédéric Gaymard2, Javier Abadía1 and Ana Álvarez-Fernández1* 1 Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain, 2 Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Edited by: Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier, France Janin Riedelsberger, University of Talca, Chile Root secretion of coumarin-phenolic type compounds has been recently shown to Reviewed by: Stefano Cesco, be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous Free University of Bozen-Bolzano, Italy studies revealed the identity of a few simple coumarins occurring in roots and exudates Dierk Scheel, of Fe-deficient A. thaliana plants, and left open the possible existence of other Leibniz Institute of Plant Biochemistry, Germany unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and *Correspondence: HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds Ana Álvarez-Fernández accumulated in roots or secreted into the nutrient solution of A. thaliana plants in [email protected] response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions †These authors have contributed equally to this work. buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics.
    [Show full text]
  • HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Ex
    H OH metabolites OH Article HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Extracts from Two Helichrysum italicum Species Katja Kramberger 1,2 , Darja Barliˇc-Maganja 1, Dunja Bandelj 3, Alenka Baruca Arbeiter 3, Kelly Peeters 4,5, Ana MiklavˇciˇcVišnjevec 3,* and Zala Jenko Pražnikar 1,* 1 Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia; [email protected] (K.K.); [email protected] (D.B.-M.) 2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia 3 Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; [email protected] (D.B.); [email protected] (A.B.A.) 4 InnoRenew CoE, 6310 Izola, Slovenia; [email protected] 5 Andrej MarušiˇcInstitute, University of Primorska, 6000 Koper, Slovenia * Correspondence: [email protected] (A.M.V.); [email protected] (Z.J.P.); Tel.: +386-05-662-6469 (Z.J.P.) Received: 4 September 2020; Accepted: 8 October 2020; Published: 12 October 2020 Abstract: Mediterranean plant Helichrysum italicum represents a rich source of versatile bioactive compounds with potential benefits for human health. Despite extensive research on the plant’s active constituents, little attention has yet been paid to characterizing the relationship between its intra-specific genetic diversity and metabolite profile. The study aimed to determine metabolic profile of H. italicum ssp. italicum (HII) and ssp. tyrrhenicum (HIT) cultivated on the experimental plantation in Slovenia and to compare the chemical composition of extracts regarding the solvent extraction process. Extracts were prepared upon conventional extract preparation procedures: maceration with 50 % methanol or ethanol and cold or hot water infusion and analyzed using High Performance Liquid Chromatography-Diode Array Detection-Electrospray Ionization-Quadrupole Time-of-Flight-Mass Spectrometry (HPLC-DAD-ESI-QTOF-MS).
    [Show full text]
  • Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment
    biomolecules Article Metabolic Changes of Cholangiocarcinoma Cells in Response to Coniferyl Alcohol Treatment Bundit Promraksa 1,2, Praewpan Katrun 3,4, Jutarop Phetcharaburanin 1,2,3,5 , Yingpinyapat Kittirat 1,2, Nisana Namwat 1,2 , Anchalee Techasen 2,6, Jia V. Li 7 and Watcharin Loilome 1,2,* 1 Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] (B.P.); [email protected] (J.P.); [email protected] (Y.K.); [email protected] (N.N.) 2 Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] 3 Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; [email protected] 4 Department of Chemistry, Khon Kaen University, Khon Kaen 40002, Thailand 5 International Phenome Laboratory, Northeastern Science Park, Khon Kaen University, Khon Kaen 40002, Thailand 6 Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand 7 Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Abstract: Cholangiocarcinoma (CCA) is a major cause of mortality in Northeast Thailand with about 14,000 deaths each year. There is an urgent necessity for novel drug discovery to increase effective Citation: Promraksa, B.; Katrun, P.; treatment possibilities. A recent study reported that lignin derived from Scoparia dulcis can cause Phetcharaburanin, J.; Kittirat, Y.; CCA cell inhibition. However, there is no evidence on the inhibitory effect of coniferyl alcohol (CA), Namwat, N.; Techasen, A.; Li, J.V.; which is recognized as a major monolignol-monomer forming a very complex structure of lignin.
    [Show full text]
  • Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries
    PEER-REVIEWED REVIEW ARTICLE bioresources.com Wood Based Lignin Reactions Important to the Biorefinery and Pulp and Paper Industries Ricardo B. Santos,a,* Peter W. Hart,a Hasan Jameel,b and Hou-min Chang b The cleavage of lignin bonds in a wood matrix is an important step in the processes employed in both the biorefinery and pulp and paper industries. β-O-4 ether linkages are susceptible to both acidic and alkaline hydrolysis. The cleavage of α-ether linkages rapidly occurs under mildly acidic reaction conditions, resulting in lower molecular weight lignin fragments. Acidic reactions are typically employed in the biorefinery industries, while alkaline reactions are more typically employed in the pulp and paper industries, especially in the kraft pulping process. By better understanding lignin reactions and reaction conditions, it may be possible to improve silvicultural and breeding programs to enhance the formation of easily removable lignin, as opposed to more chemically resistant lignin structures. In hardwood species, the S/G ratio has been successfully correlated to the amount of β-O-4 ether linkages present in the lignin and the ease of pulping reactions. Keywords: Biorefinery; Lignin reactions; Kraft pulping; Cooking; Hardwood; Softwood; Enzymatic hydrolysis; S/G; S/V Contact information: a: MeadWestvaco Corporation, 501 South 5th Street, Richmond, VA, 23219, USA; b: Department of Forest Biomaterials, North Carolina State University, Box 8005, Raleigh, NC 27695-8005 USA; *Corresponding author: [email protected] INTRODUCTION Wood is a naturally occurring mixture of various organic polymers. Cellulose is a partially crystalline polymer that is reasonably chemical-resistant and has the ability to form hydrogen bonds.
    [Show full text]
  • Eugenol and Isoeugenol, Characteristic Aromatic Constituents of Spices, Are Biosynthesized Via Reduction of a Coniferyl Alcohol Ester
    Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester Takao Koeduka*†, Eyal Fridman*†‡, David R. Gang†§, Daniel G. Vassa˜ o¶, Brenda L. Jackson§, Christine M. Kishʈ, Irina Orlovaʈ, Snejina M. Spassova**, Norman G. Lewis¶, Joseph P. Noel**, Thomas J. Baiga**, Natalia Dudarevaʈ, and Eran Pichersky*†† *Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 North University Street, Ann Arbor, MI 48109-1048; §Department of Plant Sciences and Institute for Biomedical Science and Biotechnology, University of Arizona, Tucson, AZ 85721-0036; ¶Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340; ʈDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; and **Howard Hughes Medical Institute, Jack H. Skirball Chemical Biology and Proteomics Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Anthony R. Cashmore, University of Pennsylvania, Philadelphia, PA, May 5, 2006 (received for review March 31, 2006) Phenylpropenes such as chavicol, t-anol, eugenol, and isoeugenol are produced by plants as defense compounds against animals and microorganisms and as floral attractants of pollinators. Moreover, humans have used phenylpropenes since antiquity for food pres- ervation and flavoring and as medicinal agents. Previous research suggested that the phenylpropenes are synthesized in plants from substituted phenylpropenols, although the identity of the en- zymes and the nature of the reaction mechanism involved in this transformation have remained obscure. We show here that glan- dular trichomes of sweet basil (Ocimum basilicum), which synthe- size and accumulate phenylpropenes, possess an enzyme that can use coniferyl acetate and NADPH to form eugenol.
    [Show full text]