5-Hydroxyconiferyl Alcohol As a Monolignol in COMT-Deficient
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum Album L
plants Article Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Tim Jäger 1,2,3,†, Carla Holandino 1,4,* , Michelle Nonato de Oliveira Melo 4,5 , Evelyn Maribel Condori Peñaloza 4,5, Adriana Passos Oliveira 4, Rafael Garrett 5 , Gaétan Glauser 6 , Mirio Grazi 1, Hartmut Ramm 1, Konrad Urech 1 and Stephan Baumgartner 1,3,7,* 1 Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland; [email protected] (T.J.); [email protected] (M.G.); [email protected] (H.R.); [email protected] (K.U.) 2 Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany 3 Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany 4 Laboratório Multidisciplinar de Ciências Farmacêuticas, Pharmacy College, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (M.N.d.O.M.); [email protected] (E.M.C.P.); [email protected] (A.P.O.) 5 Metabolomics Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; [email protected] 6 Neuchatel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; [email protected] 7 Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland * Correspondence: [email protected] (C.H.); [email protected] (S.B.) † Deceased 1 March 2019. Citation: Jäger, T.; Holandino, C.; Abstract: Viscum album L., commonly known as European mistletoe, is a hemi-parasitic plant of Melo, M.N.d.O.; Peñaloza, E.M.C.; the Santalaceae family. -
Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at -
Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes. -
Biosynthesis of Phenylpropane
Biosynthesis of Phenylpropane David Wang’s Wood Components Synthesis’s Class Phenylpropane n Phenylpropane derivatives are compounds composed of a C6-C3 carbon skeleton comprised of an aromatic ring with a propane side chain. n Phenylpropanoids are considered to be essential for plant life. n Dehydrodiconiferyl alcohol glucoside: dividing plant cells and acts as a cytokinin. n Flavonoid : polar transportation of auxin. n Flavonoids pigments: protect growing meristems against UV. n Isofavonoids and furanocoumarine: antibiotic and phytoalexin and protect plants from diseases. Lignin n Lignin is the second abundant and important organic substance in the plant world. n The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright. Outline of the Biosynthetic Pathway of Phenylpropanoids Phenylpropanoid pathway n Shikimate pathway commonly involved in the biosynthesis of many aromatic compounds. n Biosynthesis of phenylalanine and tyrosine. n General phenylprpanoid pathway to afford 4-coumaroyl-Co-A. n Pathways for lignin and lignans etc. associated with general phenylpropanoid pathway. General Biosynthesis Pathway of Plant Phenolic compounds Malonic acid pathway Acetyl-CoA Phenolic compounds (C6-C3-C6)n D-erythose 4-phosphate C6-C3-C6 Shikimate Cinnamate pathway pathway C6-C1 C6-C3 (C6-C3)2 (C6-C3)n L-Phenylalanine Cinnamic acid Phosphoenol -
Comparative Transcriptional Analysis of Caffeoyl-Coenzyme a 3-O
POJ 5(2):184-193 (2012) ISSN:1836-3644 Comparative transcriptional analysis of caffeoyl-coenzyme A 3-O-methyltransferase from Hibiscus cannabinus L., during developmental stages in various tissues and stress regulation Ritesh Ghosh1, Bo Sung Choi1, Mi-Jeong Jeong2, Dong Won Bae3, Sung Chul Shin4, Sang Un Park5, Hyoun-Sub Lim6, Jongkee Kim7, Hanhong Bae1,* 1School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea 2National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea 3Central Laboratory, Gyeongsang National University, Jinju, 660-701, Korea 4Department of Chemistry and Research Institute of Life Science, Gyeongsang National University, Jinju 660- 701, Korea 5Department of Crop Science, Chungnam National University, Daejeon 305-754, Korea 6Department of Applied Biology, Chungnam National University, Daejeon 305-764, Korea 7Department of Applied Plant Science, Chung-Ang University, Anseong 456-756, Korea *Corresponding author: [email protected] Abstract We have cloned a full-length gene, putatively encoding for caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT), an important enzyme involved in lignin biosynthesis, from kenaf (Hibiscus cannabinus L.). Herein, we investigated the expression pattern of a CCoAOMT orthologue from various tissues and organs during development, and in response to different environmental cues. The full-length CCoAOMT orthologue of kenaf consists of a 744 bp open reading frame (ORF), encoding for 247 amino acids of 27.91 kDa and an isoelectric point (pI) of 5.43. The deduced amino acids of CCoAOMT evidenced a high degree of identity (up to 84%) with other plant CCoAOMT sequences. Phylogenetic analysis demonstrated its close relationship with the CCoAOMT of Gossypium hirsutum (ACQ59096). -
Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency at High Ph
fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Sisó-Terraza1†, Adrián Luis-Villarroya1†, Pierre Fourcroy2‡, Jean-François Briat2, Anunciación Abadía1, Frédéric Gaymard2, Javier Abadía1 and Ana Álvarez-Fernández1* 1 Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain, 2 Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Edited by: Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier, France Janin Riedelsberger, University of Talca, Chile Root secretion of coumarin-phenolic type compounds has been recently shown to Reviewed by: Stefano Cesco, be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous Free University of Bozen-Bolzano, Italy studies revealed the identity of a few simple coumarins occurring in roots and exudates Dierk Scheel, of Fe-deficient A. thaliana plants, and left open the possible existence of other Leibniz Institute of Plant Biochemistry, Germany unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and *Correspondence: HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds Ana Álvarez-Fernández accumulated in roots or secreted into the nutrient solution of A. thaliana plants in [email protected] response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions †These authors have contributed equally to this work. buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics. -
Para-Coumaryl Coniferyl Sinapyl Alcohol Alcohol Alcohol Patent Application Publication Dec
US 2003O226168A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0226168 A1 Carlson (43) Pub. Date: Dec. 4, 2003 (54) PLANT PREPARATIONS Publication Classification (76) Inventor: Peter S. Carlson, Chevy Chase, MD (51) Int. Cl. ............................ A01H 1700; C12N 15/82; (US) C12O 1/18 Correspondence Address: (52) U.S. Cl. .............................................. 800/279; 435/32 FOLEY AND LARDNER SUTE 500 (57) ABSTRACT 3000 KSTREET NW WASHINGTON, DC 20007 (US) The present invention provides methods for slowing down (21) Appl. No.: 10/366,720 the rate at which plant biomaterials, Such as lignin, are degraded, thereby improving the terrestrial Storage of carbon (22) Filed: Feb. 14, 2003 by reducing the amount of gaseous carbon dioxide released Related U.S. Application Data into the atmosphere upon biodegradation. The inventive methods contemplate the modification of plant macromol (60) Provisional application No. 60/403,650, filed on Aug. ecules to make them more resistant to degradation as well as 16, 2002. Provisional application No. 60/356,730, the treatment of living and non-living plants with fungicides filed on Feb. 15, 2002. to prolong the rate of plant breakdown. CH2OH CH2OH CHOH 1. 1. 1 OCH3 H3CO OCH3 OH OH OH para-coumaryl coniferyl sinapyl alcohol alcohol alcohol Patent Application Publication Dec. 4, 2003. Sheet 1 of 4 US 2003/0226168A1 ZHOHO?HOHOZHOHO £HOOOOºH£HOO HOHOHO Patent Application Publication Dec. 4, 2003. Sheet 3 of 4 US 2003/0226168A1 Á??Su??u|6u?u?e?su????OS -0||Á?Sue?u?6u?u?e?su?uô?T-||-------------------------------- uosuno?udp????polN AISueu fuuleS Patent Application Publication Dec. -
HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Ex
H OH metabolites OH Article HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Extracts from Two Helichrysum italicum Species Katja Kramberger 1,2 , Darja Barliˇc-Maganja 1, Dunja Bandelj 3, Alenka Baruca Arbeiter 3, Kelly Peeters 4,5, Ana MiklavˇciˇcVišnjevec 3,* and Zala Jenko Pražnikar 1,* 1 Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia; [email protected] (K.K.); [email protected] (D.B.-M.) 2 Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia 3 Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; [email protected] (D.B.); [email protected] (A.B.A.) 4 InnoRenew CoE, 6310 Izola, Slovenia; [email protected] 5 Andrej MarušiˇcInstitute, University of Primorska, 6000 Koper, Slovenia * Correspondence: [email protected] (A.M.V.); [email protected] (Z.J.P.); Tel.: +386-05-662-6469 (Z.J.P.) Received: 4 September 2020; Accepted: 8 October 2020; Published: 12 October 2020 Abstract: Mediterranean plant Helichrysum italicum represents a rich source of versatile bioactive compounds with potential benefits for human health. Despite extensive research on the plant’s active constituents, little attention has yet been paid to characterizing the relationship between its intra-specific genetic diversity and metabolite profile. The study aimed to determine metabolic profile of H. italicum ssp. italicum (HII) and ssp. tyrrhenicum (HIT) cultivated on the experimental plantation in Slovenia and to compare the chemical composition of extracts regarding the solvent extraction process. Extracts were prepared upon conventional extract preparation procedures: maceration with 50 % methanol or ethanol and cold or hot water infusion and analyzed using High Performance Liquid Chromatography-Diode Array Detection-Electrospray Ionization-Quadrupole Time-of-Flight-Mass Spectrometry (HPLC-DAD-ESI-QTOF-MS). -
Engineering a Monolignol 4-O-Methyltransferase with High Selectivity for the Condensed Lignin Precursor Coniferyl Alcohol
BNL-111732-2016-JA Engineering a monolignol 4-O-methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol Y. Cai, M-W Bhuiya, J. Shanklin, C-J Liu Brookhaven National Laboratory, Upton, NY 11973 USA Submitted to the Journal of Biological Chemistry September 2015 Biology Department Brookhaven National Laboratory U.S. Department of Energy DOE Office of Basic Energy Sciences Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. -
Discovery of Modules Involved in the Biosynthesis and Regulation of Maize Phenolic Compounds T
Plant Science 291 (2020) 110364 Contents lists available at ScienceDirect Plant Science journal homepage: www.elsevier.com/locate/plantsci Discovery of modules involved in the biosynthesis and regulation of maize phenolic compounds T Lina Gomez-Canoa, Fabio Gomez-Canoa, Francisco M. Dillona, Roberto Alers-Velazquezb, Andrea I. Doseffc, Erich Grotewolda, John Grayd,* a Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA b Molecular Biology Graduate Program, University of Toledo, Toledo, OH, 43606, USA c Department of Physiology, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA d Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA ARTICLE INFO ABSTRACT Keywords: Phenolic compounds are among the most diverse and widespread of specialized plant compounds and underly Phenylpropanoid many important agronomic traits. Our comprehensive analysis of the maize genome unraveled new aspects of Maize the genes involved in phenylpropanoid, monolignol, and flavonoid production in this important crop. Co-expression Remarkably, just 19 genes accounted for 70 % of the overall mRNA accumulation of these genes across 95 Enzymatic module tissues, indicating that these are the main contributors to the flux of phenolic metabolites. Eighty genes with Regulatory module intermediate to low expression play minor and more specialized roles. Remaining genes are likely undergoing Regulomics loss of function or are expressed in limited cell types. Phylogenetic and expression analyses revealed which members of gene families governing metabolic entry and branch points exhibit duplication, subfunctionaliza- tion, or loss of function. Co-expression analysis applied to genes in sequential biosynthetic steps revealed that certain isoforms are highly co-expressed and are candidates for metabolic complexes that ensure metabolite delivery to correct cellular compartments. -
Casparian Strip Diffusion Barrier in Arabidopsis Is Made of a Lignin Polymer Without Suberin
Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin Sadaf Naseera, Yuree Leea, Catherine Lapierreb, Rochus Frankec, Christiane Nawratha, and Niko Geldnera,1 aDepartment of Plant Molecular Biology, Biophore, Campus UNIL-Sorge, University of Lausanne, CH-1015 Lausanne, Switzerland; bInstitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique-AgroParisTech, Unité Mixte de Recherche 1318, F-78026 Versailles, France; and cEcophysiology of Plants, Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany Edited by Philip N. Benfey, Duke University, Durham, NC, and approved May 7, 2012 (received for review April 12, 2012) Casparian strips are ring-like cell-wall modifications in the root barrier could be perfectly fulfilled by this hydrophobic polymer. endodermis of vascular plants. Their presence generates a para- A number of problems have long prevented drawing conclusions cellular barrier, analogous to animal tight junctions, that is thought about the chemical nature of Casparian strips. First, the ring-like to be crucial for selective nutrient uptake, exclusion of pathogens, Casparian strips represent only the first stage of endodermal dif- and many other processes. Despite their importance, the chemical ferentiation, which is followed by the deposition of suberin lamel- nature of Casparian strips has remained a matter of debate, con- lae all around the cellular surface of endodermal cells (secondary founding further molecular analysis. Suberin, lignin, lignin-like stage) (9). Therefore, chemical analysis of whole roots, or even of polymers, or both, have been claimed to make up Casparian strips. isolated endodermal tissues, will always find both of the polymers Here we show that, in Arabidopsis, suberin is produced much too present. -
A 13C NMR Study Using Isotopically Labeled Precursors
3298 J. Agric. Food Chem. 2000, 48, 3298−3304 Biosynthesis, Molecular Structure, and Domain Architecture of Potato Suberin: A 13C NMR Study Using Isotopically Labeled Precursors Bin Yan and Ruth E. Stark* Department of Chemistry, Graduate School and College of Staten Island of the City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314 Although suberin in potato wound periderm is known to be a polyester containing long-chain fatty acids and phenolics embedded within the cell wall, many aspects of its molecular structure and polymer-polymer connectivities remain elusive. The present work combines biosynthetic incorpora- tion of site-specifically 13C-enriched acetates and phenylalanines with one- and two-dimensional solid-state 13C NMR spectroscopic methods to monitor the developing suberin polymer. Exogenous acetate is found to be incorporated preferentially at the carboxyl end of the aliphatic carbon chains, suggesting addition during the later elongation steps of fatty acid synthesis. Carboxyl-labeled phenylalanine precursors provide evidence for the concurrent development of phenolic esters and of monolignols typical of lignin. Experiments with ring-labeled phenylalanine precursors demonstrate a predominance of sinapyl and guaiacyl structures among suberin’s phenolic moieties. Finally, the analysis of spin-exchange (solid-state NOESY) NMR experiments in ring-labeled suberin indicates distances of no more than 0.5 nm between pairs of phenolic and oxymethine carbons, which are attributed to the aromatic-aliphatic polyester and the cell wall polysaccharide matrix, respectively. These results offer direct and detailed molecular information regarding the insoluble intermediates of suberin biosynthesis, indicate probable covalent linkages between moieties of its polyester and polysaccharide domains, and yield a clearer overall picture of this agriculturally important protective material.