Incorporation and Enhancement of Lignin Biosynthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrochemical Tools for Determination of Phenolic Compounds in Plants
Int. J. Electrochem. Sci., 8 (2013) 4520 - 4542 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Electrochemical Tools for Determination of Phenolic Compounds in Plants. A Review Jiri Dobes1, Ondrej Zitka1,2,3,4, Jiri Sochor1,5, Branislav Ruttkay-Nedecky1,3, Petr Babula1,3, Miroslava Beklova3,4, Jindrich Kynicky3,5,6, Jaromir Hubalek2,3, Borivoj Klejdus1, Rene Kizek1,2,3, Vojtech Adam1,2,3* 1Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union 2Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 10, CZ-616 00 Brno, Czech Republic, European Union 3Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ- 616 00 Brno, Czech Republic, European Union 4Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic, European Union 5Vysoka skola Karla Englise, Sujanovo nam. 356/1, CZ-602 00 Brno, Czech Republic, European Union 6Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union *E-mail: [email protected] Received: 2 January 2013 / Accepted: 3 February 2013 / Published: 1 April 2013 Electrochemical methods are a reliable tool for a fast and low cost assay of phenolic compounds (phenolics) in food samples. The methods are precise and sesnitive enough to assay low content of polyphenols. The devices can be stationary or flow through, and based on voltammetry or amperometry. -
Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum Album L
plants Article Metabolomics by UHPLC-Q-TOF Reveals Host Tree-Dependent Phytochemical Variation in Viscum album L. Tim Jäger 1,2,3,†, Carla Holandino 1,4,* , Michelle Nonato de Oliveira Melo 4,5 , Evelyn Maribel Condori Peñaloza 4,5, Adriana Passos Oliveira 4, Rafael Garrett 5 , Gaétan Glauser 6 , Mirio Grazi 1, Hartmut Ramm 1, Konrad Urech 1 and Stephan Baumgartner 1,3,7,* 1 Society for Cancer Research, Hiscia Institute, Kirschweg 9, 4144 Arlesheim, Switzerland; [email protected] (T.J.); [email protected] (M.G.); [email protected] (H.R.); [email protected] (K.U.) 2 Center for Complementary Medicine, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Breisacher Str. 115b, 79106 Freiburg, Germany 3 Institute of Integrative Medicine, University of Witten/Herdecke, Gerhard-Kienle-Weg 4, 58313 Herdecke, Germany 4 Laboratório Multidisciplinar de Ciências Farmacêuticas, Pharmacy College, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; [email protected] (M.N.d.O.M.); [email protected] (E.M.C.P.); [email protected] (A.P.O.) 5 Metabolomics Laboratory, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil; [email protected] 6 Neuchatel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland; [email protected] 7 Institute of Complementary and Integrative Medicine, University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland * Correspondence: [email protected] (C.H.); [email protected] (S.B.) † Deceased 1 March 2019. Citation: Jäger, T.; Holandino, C.; Abstract: Viscum album L., commonly known as European mistletoe, is a hemi-parasitic plant of Melo, M.N.d.O.; Peñaloza, E.M.C.; the Santalaceae family. -
Verbascoside — a Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance
Biotechnology Advances 32 (2014) 1065–1076 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Verbascoside — A review of its occurrence, (bio)synthesis and pharmacological significance Kalina Alipieva a,⁎, Liudmila Korkina b, Ilkay Erdogan Orhan c, Milen I. Georgiev d a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria b Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia c Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey d Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria article info abstract Available online 15 July 2014 Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological proper- ties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first Keywords: isolated from mullein but is also found in several other plant species. It has also been produced by in vitro Acteoside plant culture systems, including genetically transformed roots (so-called ‘hairy roots’). Verbascoside is hydro- fl Anti-in ammatory philic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, (Bio)synthesis anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective Cancer prevention Cell suspension culture properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside Hairy roots are summarised in this review. We also discuss its prominent pharmacological properties and outline future Phenylethanoid glycosides perspectives for its potential application. Verbascum spp. © 2014 Elsevier Inc. All rights reserved. Contents Treasurefromthegarden:thediscoveryofverbascoside,anditsoccurrenceanddistribution.......................... -
Coa LIGASE, FERULOYL-Coa REDUCTASE and CONIFERYL ALCOHOL OXIDOREDUCTASE
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 31, number 3 FEBS LETTERS May 1973 THREE NOVEL ENZYMES INVOLVED IN THE REDUCTION OF FERULIC ACID TO CONIFERYL ALCOHOL IN HIGHER PLANTS: FERULATE: CoA LIGASE, FERULOYL-CoA REDUCTASE AND CONIFERYL ALCOHOL OXIDOREDUCTASE G.G. GROSS, J’. STGCKIGT, R.L. MANSELL* and M.H. ZENK Lehrstuhl fiir Pjlanzenphysiologie, Ruhr-Universitbt, 463 Bochum, Germany Received 1 March 1973 1. Introduction cambial tissue, of phytotron grown Forsythia sp. were used. The tissue was frozen in liquid nitrogen Using a cell-free system from cambial tissue of and powdered. To the powder was added polyclar AT Sulix alba the reduction of ferulate to coniferyl alco- (w/w) and the mixture subsequently extracted with hol has been shown for the first time, unequivocally, 0.1 M borate buffer pH 7.8 supplemented with lop2 to occur in higher plants [l] . This conversion is de- M 2-mercaptoethanol. After centrifugation the super- pendent on ATP, CoA and reduced pyridine nucleo- natant was fractionated with ammonium sulfate and tides. A reaction sequence has been postulated on the the fraction between 35 and 72% was resuspended in basis of these experiments involving the intermediate the same buffer as above. This solution was treated formation of feruloyl-CoA and coniferyl aldehyde with an anion exchanger and used as a crude enzyme which is in accordance with previous assumptions for source. For the detection of the feruloyl-CoA reduc- this mechanism in lignin biosynthesis as recently re- tase, the above enzyme solution was further fraction- viewed [2]. -
Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at -
Characterisation of Extracts Obtained from Unripe Grapes and Evaluation
foods Article Characterisation of Extracts Obtained from Unripe Grapes and Evaluation of Their Potential Protective Effects against Oxidation of Wine Colour in Comparison with Different Oenological Products Giovanna Fia * , Ginevra Bucalossi and Bruno Zanoni DAGRI—Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies, University of Florence, Via Donizetti, 6-50144 Firenze, Italy; ginevra.bucalossi@unifi.it (G.B.); bruno.zanoni@unifi.it (B.Z.) * Correspondence: giovanna.fia@unifi.it; Tel.: +39-055-2755503 Abstract: Unripe grapes (UGs) are a waste product of vine cultivation rich in natural antioxidants. These antioxidants could be used in winemaking as alternatives to SO2. Three extracts were obtained by maceration from Viognier, Merlot and Sangiovese UGs. The composition and antioxidant activity of the UG extracts were studied in model solutions at different pH levels. The capacity of the UG extracts to protect wine colour was evaluated in accelerated oxidation tests and small-scale trials on both red and white wines during ageing in comparison with sulphur dioxide, ascorbic acid and commercial tannins. The Viognier and Merlot extracts were rich in phenolic acids while the Sangiovese extract was rich in flavonoids. The antioxidant activity of the extracts and commercial Citation: Fia, G.; Bucalossi, G.; tannins was influenced by the pH. In the oxidation tests, the extracts and commercial products Zanoni, B. Characterisation of Extracts showed different wine colour protection capacities in function of the type of wine. During ageing, Obtained from Unripe Grapes and Evaluation of Their Potential Protective the white wine with the added Viognier UG extract showed the lowest level of colour oxidation. -
Lignin from Bark As a Resource for Aromatics Production by Hydrothermal Liquefaction
Received: 24 April 2018 | Revised: 25 July 2018 | Accepted: 3 August 2018 DOI: 10.1111/gcbb.12562 ORIGINAL RESEARCH Lignin from bark as a resource for aromatics production by hydrothermal liquefaction Julia Schuler1 | Ursel Hornung1 | Nicolaus Dahmen1 | Jörg Sauer1 Institute for Catalysis Research and Technology, Karlsruhe Institute of Abstract Technology (KIT), Eggenstein‐ Biorefineries, which are using mostly unused side streams of other existing pro- Leopoldshafen, Germany cesses like bark or lignin, have a huge potential to open new resources, for exam- Correspondence ple, chemicals. But with new resources new challenges will be met along the Julia Schuler, Institute for Catalysis way. These challenges must be addressed and discussed to build a solid and far‐ Research and Technology, Karlsruhe sighted process. This work focuses on the formation of monocyclic compounds Institute of Technology (KIT), Eggenstein‐ Leopoldshafen, Germany. like catechol as a valuable product during the hydrothermal liquefaction of beech Email: [email protected] wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is Funding information to get a better knowledge of the behavior of bark during hydrothermal liquefac- Ministry of Science, Research and the tion for depolymerization aiming at the production of aromatic building blocks Arts of Baden‐Württemberg, Grant/Award for chemicals. Therefore, the influence, for example, of temperature and reaction Number: 200007 time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical meth- ods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes. -
Sinapate Dehydrodimers and Sinapate-Ferulate Heterodimers In
J. Agric. Food Chem. 2003, 51, 1427−1434 1427 Sinapate Dehydrodimers and Sinapate−Ferulate Heterodimers in Cereal Dietary Fiber MIRKO BUNZEL,*,† JOHN RALPH,‡,§ HOON KIM,‡,§ FACHUANG LU,‡,§ SALLY A. RALPH,# JANE M. MARITA,‡,§ RONALD D. HATFIELD,‡ AND HANS STEINHART† Institute of Biochemistry and Food Chemistry, Department of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; U.S. Dairy Forage Research Center, Agricultural Research Service, U.S. Department of Agriculture, Madison, Wisconsin 53706; Department of Forestry, University of WisconsinsMadison, Madison, Wisconsin 53706; and U.S. Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Madison, Wisconsin 53705 Two 8-8-coupled sinapic acid dehydrodimers and at least three sinapate-ferulate heterodimers have been identified as saponification products from different insoluble and soluble cereal grain dietary fibers. The two 8-8-disinapates were authenticated by comparison of their GC retention times and mass spectra with authentic dehydrodimers synthesized from methyl or ethyl sinapate using two different single-electron metal oxidant systems. The highest amounts (481 µg/g) were found in wild rice insoluble dietary fiber. Model reactions showed that it is unlikely that the dehydrodisinapates detected are artifacts formed from free sinapic acid during the saponification procedure. The dehydrodisinapates presumably derive from radical coupling of sinapate-polymer esters in the cell wall; the radical coupling origin is further confirmed by finding 8-8 and 8-5 (and possibly 8-O-4) sinapate-ferulate cross-products. Sinapates therefore appear to have an analogous role to ferulates in cross-linking polysaccharides in cereal grains and presumably grass cell walls in general. -
Wine and Grape Polyphenols — a Chemical Perspective
Wine and grape polyphenols — A chemical perspective Jorge Garrido , Fernanda Borges abstract Phenolic compounds constitute a diverse group of secondary metabolites which are present in both grapes and wine. The phenolic content and composition of grape processed products (wine) are greatly influenced by the technological practice to which grapes are exposed. During the handling and maturation of the grapes several chemical changes may occur with the appearance of new compounds and/or disappearance of others, and con- sequent modification of the characteristic ratios of the total phenolic content as well as of their qualitative and quantitative profile. The non-volatile phenolic qualitative composition of grapes and wines, the biosynthetic relationships between these compounds, and the most relevant chemical changes occurring during processing and storage will be highlighted in this review. 1. Introduction Non-volatile phenolic compounds and derivatives are intrinsic com-ponents of grapes and related products, particularly wine. They constitute a heterogeneous family of chemical compounds with several compo-nents: phenolic acids, flavonoids, tannins, stilbenes, coumarins, lignans and phenylethanol analogs (Linskens & Jackson, 1988; Scalbert, 1993). Phenolic compounds play an important role on the sensorial characteris-tics of both grapes and wine because they are responsible for some of organoleptic properties: aroma, color, flavor, bitterness and astringency (Linskens & Jackson, 1988; Scalbert, 1993). The knowledge of the relationship between the quality of a particu-lar wine and its phenolic composition is, at present, one of the major challenges in Enology research. Anthocyanin fingerprints of varietal wines, for instance, have been proposed as an analytical tool for authen-ticity certification (Kennedy, 2008; Kontoudakis et al., 2011). -
Production of Verbascoside, Isoverbascoside and Phenolic
molecules Article Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts Paweł Kubica 1 , Agnieszka Szopa 1,* , Adam Kokotkiewicz 2 , Natalizia Miceli 3 , Maria Fernanda Taviano 3 , Alessandro Maugeri 3 , Santa Cirmi 3 , Alicja Synowiec 4 , Małgorzata Gniewosz 4 , Hosam O. Elansary 5,6,7 , Eman A. Mahmoud 8, Diaa O. El-Ansary 9, Omaima Nasif 10, Maria Luczkiewicz 2 and Halina Ekiert 1,* 1 Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University, Medical College, ul. Medyczna 9, 30-688 Kraków, Poland; [email protected] 2 Chair and Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gda´nsk,Poland; [email protected] (A.K.); [email protected] (M.L.) 3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (N.M.); [email protected] (M.F.T.); [email protected] (A.M.); [email protected] (S.C.) 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, ul. Nowoursynowska 159c, 02-776 Warsaw, Poland; [email protected] (A.S.); [email protected] (M.G.) 5 Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; [email protected] 6 Floriculture, Ornamental Horticulture, -
Biosynthesis of Phenylpropane
Biosynthesis of Phenylpropane David Wang’s Wood Components Synthesis’s Class Phenylpropane n Phenylpropane derivatives are compounds composed of a C6-C3 carbon skeleton comprised of an aromatic ring with a propane side chain. n Phenylpropanoids are considered to be essential for plant life. n Dehydrodiconiferyl alcohol glucoside: dividing plant cells and acts as a cytokinin. n Flavonoid : polar transportation of auxin. n Flavonoids pigments: protect growing meristems against UV. n Isofavonoids and furanocoumarine: antibiotic and phytoalexin and protect plants from diseases. Lignin n Lignin is the second abundant and important organic substance in the plant world. n The incorporation of lignin into the cell walls of plants gave them the chance to conquer the Earth’s land surface. n Lignin increased the mechanical strength properties to such an extent that huge plants such as trees with heights of even more than 100 m can remain upright. Outline of the Biosynthetic Pathway of Phenylpropanoids Phenylpropanoid pathway n Shikimate pathway commonly involved in the biosynthesis of many aromatic compounds. n Biosynthesis of phenylalanine and tyrosine. n General phenylprpanoid pathway to afford 4-coumaroyl-Co-A. n Pathways for lignin and lignans etc. associated with general phenylpropanoid pathway. General Biosynthesis Pathway of Plant Phenolic compounds Malonic acid pathway Acetyl-CoA Phenolic compounds (C6-C3-C6)n D-erythose 4-phosphate C6-C3-C6 Shikimate Cinnamate pathway pathway C6-C1 C6-C3 (C6-C3)2 (C6-C3)n L-Phenylalanine Cinnamic acid Phosphoenol -
Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-Acetate
[CANCER RESEARCH 48, 5941-5946, November 1, 1988] Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-acetate Mou-Tuan Huang, Robert C. Smart, Ching-Quo Wong, and Allan H. Conney Department of Chemical Biology and Pharmacognosy, College of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855-0789 [M-T. H., A. H. C.]; Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey 07110 [M-T. H., R. C. S., C-Q. W., A. H. C.]; and Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695-7633 [R. C. SJ ABSTRACT also evaluated the effects of the related compounds chlorogenic acid, caffeic acid, and ferulic acid as potential inhibitors of The effects of topically applied curcumin, chlorogenic acid, caffeic acid, and ferulic acid on 12-O-tetradecanoylphorbol-13-acetate (TPA)- tumor promotion. induced epidermal ornithine decarboxylase activity, epidermal DNA syn thesis, and the promotion of skin tumors were evaluated in female CD-I MATERIALS AND METHODS mice. Topical application of 0.5, 1, 3, or 10 iano\ of curcumin inhibited by 31, 46, 84, or 98%, respectively, the induction of epidermal ornithine Materials. TPA was purchased from CRC Inc., Chanhassen, MN. decarboxylase activity by 5 nmol of TPA. In an additional study, the DL-['"C]Ornithine (58 Ci/mmol) and [3H]thymidine (5 Ci/mmol) were topical application of 10 ¿tinolofcurcumin, chlorogenic acid, caffeic acid, purchased from Amersham Corp., Arlington Heights, IL. fra/w-Reti- or ferulic acid inhibited by 91, 25,42, or 46%, respectively, the induction noic acid was obtained from Hoffmann-La Roche Inc., Basle, Switzer of ornithine decarboxylase activity by 5 nmol of TPA.