Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang

Total Page:16

File Type:pdf, Size:1020Kb

Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang Cheminformatics Tools for Enabling Metabolomics by Yannick Djoumbou Feunang A thesis submitted in partial fulfillment of requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta ©Yannick Djoumbou Feunang, 2017 ii Abstract Metabolites are small molecules (<1500 Da) that are used in or produced during chemical reactions in cells, tissues, or organs. Upon absorption or biosynthesis in humans (or other organisms), they can either be excreted back into the environment in their original form, or as a pool of degradation products. The outcome and effects of such interactions is function of many variables, including the structure of the starting metabolite, and the genetic disposition of the host organism. For this reasons, it is usually very difficult to identify the transformation products as well as their long-term effect in humans and the environment. This can be explained by many factors: (1) the relevant knowledge and data are for the most part unavailable in a publicly available electronic format; (2) when available, they are often represented using formats, vocabularies, or schemes that vary from one source (or repository) to another. Assuming these issues were solved, detecting patterns that link the metabolome to a specific phenotype (e.g. a disease state), would still require that the metabolites from a biological sample be identified and quantified, using metabolomic approaches. Unfortunately, the amount of compounds with publicly available experimental data (~20,000) is still very small, compared to the total number of expected compounds (up to a few million compounds). For all these reasons, the development of cheminformatics tools for data organization and mapping, as well as for the prediction of biotransformation and spectra, is more crucial than ever. My PhD thesis focused on developing several cheminformatics tools that address these limitations. First, I developed ClassyFire and ChemOnt. ClassyFire is a publicly available software tool and webserver that automatically and hierarchically classifies any given molecule based on its structure. It relies partly on ChemOnt, a comprehensive and iii comprehensible taxonomy that contains >4,800 chemical categories, as well as their textual descriptions and mappings to other ontologies. ClassyFire was used to classify and annotate >80 million compounds. The webserver also integrates a text-based search engine. These features make ClassyFire unique in the sphere of publicly available computational tools. ClassyFire and ChemOnt are available at http://classyfire.wishartlab.com. Second, I developed BioTransformer and BioTransformerDB. BioTransformer is a software tool for the prediction of small molecule metabolism in mammals. It uses a hybrid approach that partly relies on BioTransformerDB, a unique database of biotransformations containing experimentally confirmed metabolic reactions that transform >1,000 drugs, pesticides, cosmetics, and food compounds, among others. The current version of BioTransformer, which is available at https://bitbucket.org/djoumbou/biotransformer, focuses on the human species, but is easily expandable to other species. Third, I developed CFM-ID 3.0, an extension of CFM-ID (1.0, and 2.0), originally developed by Felicity Allen et al. CFM- ID 3.0 is a software tool and webserver for the prediction and annotation of MS spectra, as well as the identification of metabolites. With the integration of a rule-based fragmentation approach for spectra prediction, the development of new ranking functions, and the expansion of the spectral database, CFM-ID 3.0 showed a significant improvement, in terms of speed and accuracy, compared to previous versions. CFM-ID 3.0 is currently available as we web server at http://cfmid-staging.wishartlab.com/. ClassyFire, BioTransformer, and CFM-ID have found applications in various fields including chemical information management, metabolomics, and exposomics, among others. Together, they build a cheminformatics platform that can enable iv metabolomics, and contribute to the understanding of our environment as well as the advancement of science. v Preface This thesis is an original work by Yannick Djoumbou Feunang, based on several original ideas provided by my supervisor Dr. David S. Wishart. This research project was led by Dr. David Wishart from the Departments of Biological Sciences and Computing Science at University of Alberta. All experiments and research activities were performed in Dr. Wishart’s Lab at the University of Alberta. To complete the work described in this thesis, I was assisted by a number of individuals including Dr. Wishart and members of his laboratory. More specifically, Dr. Wishart supervised my training, coordinated the programming activities, designed the assessment methods used for this work and played a key role in the writing and editing of this thesis. Craig Knox, Roman Eisner, Michael Wilson helped in the development of the classification infrastructure for the ClassyFire program. Nazanin Assempour, and Dr. Ithayavani Iynkkaran contributed to the annotation/validation of biotransformations and structures in BioTransformerDB. Allison Pon, and Tanvir Sajed, contributed to the management of experimental spectral data obtained from other sources. Tammy Zheng prepared samples and collected experimental ESI-MS/MS spectra that were analyzed to create fragmentation rules. Dr Naama Karu provided feedback for the design and validation of the fragmentation rules. Dr Felicity Allen provided feedback in regard to previous versions of CFM-ID. In addition to the aforementioned colleagues, several other scientists provided feedback for different projects. Dr Evan Bolton facilitated the collaboration with the PubChem development team (NIH, USA). Dr Christoph Steinbeck, Dr Gary Owen, Dr Jana Hastings facilitated the collaboration with the ChEBI development team (EBI, UK). Dr Fahy Eoin, and Dr Shankar Subramanian facilitated the collaboration with the LIPID MAPS consortium vi (UCSD, USA). Dr Jarlei Fiamoncini (INRA, France), and Dr Claudine Manach (INRA, France) provided feedback in regard to gut microbial metabolism for BioTransformer. Dr Katherine Fenner (EAWAG, Switzerland) provided access to up to date preferences rules for the prediction of environmental microbial degradation. I was responsible for writing and testing the programs constituting ClassyFire, BioTransformer and CFM-ID 3.0. I was also responsible for developing the chemical ontology (ChemOnt) and the biotransformation database (BioTransformerDB) that were required to implement ClassyFire and BioTransformer, respectively. In addition I was largely responsible for acquiring and collecting all of the data required for BioTransformerDB and the experimental mass spectra files (from various databases) for CFM-ID 3.0’s spectral database, and for writing this thesis. vii Dedication I would like to dedicate this thesis to my late father, Nkemnoubong Djoumbou Joseph, and my mother Métago Janette épouse Djoumbou. Knowledge without wisdom is like water in the sand – African proverb viii Acknowledgements First and foremost, I would like to express my infinite gratitude to the almighty God, for giving me the honour and the ability maintain the course throughout this long journey. I aim at always doing my best for the betterment of the world and myself. I would like to express my sincere gratitude to my supervisor, Dr. David S. Wishart, for giving me the opportunity to work on some very exciting projects in his research group. I am particular grateful for his continuous support, patience, and motivation. Dr. Wishart’s vision, attention to detail, and high expectation for excellent work have played a significant role in my journey as a PhD student; they helped me acquire and improve my scientific skills that have helped make me a better, more independent researcher. It has been a real honour working in the Wishart group with such a diverse group of scientists and students from so many backgrounds and cultures. I would like to acknowledge the past and present members of the Wishart lab for contributing to my experience here at the University of Alberta. This is a special group of people and I will always appreciate the encouragement and good will we shared. I am especially thankful to Craig Knox, Roman Eisner, Allison Pon, Michael Wilson, Nazanin Assempour, Tammy Zheng, Tanvir Sajed, Siyang Tian, Zheng Shi, Dr. Naama Karu, Dr. Ithayavani Iynkkaran, and Dr. Felicity Allen. Thanks also to Dr. Rupa Mandal, the lab’s metabolomics manager, who has been a great source of help and provided wonderful suggestions during my research. I was able to work or collaborate with several scientists who contributed to the evaluation or development of my projects. I would like to particularly thank Dr. Evan ix Bolton (NIH, USA), Dr. Jarlei Fiamoncini (INRA, France), Dr. Claudine Manach (INRA, France), Dr. Christoph Steinbeck (EBI, UK), Dr. Gary Owen (EBI, UK), Dr. Jana Hastings (EBI, UK), Dr. Fahy Eoin (UCSD, USA), Dr. Shankar Subramanian (UCSD, USA), and Dr. Katherine Fenner (EAWAG, Switzerland). I would like to gratefully acknowledge my generous funding sources, especially the Canadian Institutes of Health Research and Genome Canada for financial support. I am also sincerely grateful to my supervisory committee members. I would like to thank Dr. Russ Greiner for his continuous support, and for always having the door open whenever I needed his help. He has played a significant role in my
Recommended publications
  • Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers with Topical Pharmaceutical Agents
    Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Author Watts, Annabelle M, Cripps, Allan W, West, Nicholas P, Cox, Amanda J Published 2019 Journal Title FRONTIERS IN PHARMACOLOGY Version Version of Record (VoR) DOI https://doi.org/10.3389/fphar.2019.00294 Copyright Statement © Frontiers in Pharmacology 2019. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/386246 Griffith Research Online https://research-repository.griffith.edu.au fphar-10-00294 March 27, 2019 Time: 17:52 # 1 REVIEW published: 29 March 2019 doi: 10.3389/fphar.2019.00294 Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents Annabelle M. Watts1*, Allan W. Cripps2, Nicholas P. West1 and Amanda J. Cox1 1 Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, QLD, Australia, 2 Menzies Health Institute Queensland, School of Medicine, Griffith University, Southport, QLD, Australia Allergic rhinitis (AR) is a chronic upper respiratory disease estimated to affect between 10 and 40% of the worldwide population. The mechanisms underlying AR are highly complex and involve multiple immune cells, mediators, and cytokines. As such, the development of a single drug to treat allergic inflammation and/or symptoms is confounded by the complexity of the disease pathophysiology. Complete avoidance of allergens that trigger AR symptoms is not possible and without a cure, the available therapeutic options are typically focused on achieving symptomatic relief.
    [Show full text]
  • Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents Improvisingnutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3
    ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 1, January 2014 Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents ImprovisingNutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3 Director General, PERI, M-2/196, Sector-H, Aashiana, Lucknow-226012,UP, India1 Department of Biotechnology, SVU Gajraula, Amroha UP, India1 Assistant Professor, MGIP, Lucknow, UP, India2 Assistant Professor, DGPG College, Kanpur,UP, India3 Abstract: Until recently, pharmaceuticals used for the treatment of diseases have been based largely on the production of relatively small organic molecules synthesized by microbes or by organic chemistry. These include most antibiotics, analgesics, hormones, and other pharmaceuticals. Increasingly, attention has focused on larger and more complex protein molecules as therapeutic agents. This publication describes the types of biologics produced in plants and the plant based organic therapeutic agent's production systems in use. KeyWords: Antecedent, Antibiotics; Anticancer;Antiparasitic; Antileishmanial;Antifungal Analgesics; Flavonoids; Hormones; Pharmaceuticals. I. INTRODUCTION Naturally occurring pharmaceutical and chemical significance of these compounds offer interesting possibilities in exploring their more pharmacological and biocidal potentials. One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents [1]. Flavonoids comprise a widespread group of more than 400 higher plant secondary metabolites. Flavonoids are structurally derived from parent substance flavone. Many flavonoids are easily recognized as water soluble flower pigments in most flowering plants. According to their color, Flavonoids pigments have been classified into two groups:(a) The red-blue anthocyanin's and the yellow anthoxanthins,(b)Aurones are a class of flavonoids called anthochlor pigments[2].
    [Show full text]
  • De Novo Transcriptome Sequencing in Bixa Orellana to Identify Genes Involved in Methylerythritol Phosphate, Carotenoid and Bixin Biosynthesis
    UC Davis UC Davis Previously Published Works Title De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis. Permalink https://escholarship.org/uc/item/09j257mk Journal BMC genomics, 16(1) ISSN 1471-2164 Authors Cárdenas-Conejo, Yair Carballo-Uicab, Víctor Lieberman, Meric et al. Publication Date 2015-10-28 DOI 10.1186/s12864-015-2065-4 Peer reviewed eScholarship.org Powered by the California Digital Library University of California De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis Cárdenas-Conejo et al. BMC Genomics (2015) 16:877 DOI 10.1186/s12864-015-2065-4 Cárdenas-Conejo et al. BMC Genomics (2015) 16:877 DOI 10.1186/s12864-015-2065-4 RESEARCH ARTICLE Open Access De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis Yair Cárdenas-Conejo1, Víctor Carballo-Uicab1, Meric Lieberman2, Margarita Aguilar-Espinosa1, Luca Comai2 and Renata Rivera-Madrid1* Abstract Background: Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. Results: In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds from B.
    [Show full text]
  • Bixin (Annatto) 6983-79-5 ( 1393-63-1)
    ii rl I I ii I '( SUMMARY OF DATA FOR CHEMICAL SELECTION Bixin (Annatto) 6983-79-5 ( 1393-63-1) BASIS OF NOMINATION TO THE CSWG The nomination ofbixin to the CSWG is based on the high production volume of annatto, which is consumed by virtually every person in the United States. According to data provided by the Food and Drug Administration (FDA), annatto is one ofthe most highly consumed colorants in the US food supply. Bixin is the ingredient that contributes this color. Despite annatto 's status as an unregulated color additive, surprisingly little is known about the toxicity ofbixin or norbixin, which are intentionally concentrated in annatto extracts and oils. Chronic toxicity studies have been conducted on annatto; at first glance. they suggest that annatto is nontoxic. However, these studies do not hold up well under scrutiny. In these studies, the exact concentrations of bixin or norbixin were not reported; these may vary anywhere from 2 to 50%. Also, no attempt has been made to characterize other ingredients in annatto that might have biological activity. Concern about the potential toxicity ofbixin is increased because a few short-term tests for genotoxicity ofannatto have been described as positive. Subchronic studies ofpurified bixin and short-term tests ofbixin, norbixin, and technical grade annatto products would alleviate concerns about the inferior data underpinning the widespread use ofannatto. Also, mechanistic and metabolism studies would extend scientific knowledge about an important and ubiquitous class ofchemicals,
    [Show full text]
  • Overview on Annatto and Other Colours, Colour Removal, Analysis
    1 Journal 2 Comprehensive Reviews in Food Science and Food Safety 3 Title 4 Colorants in cheese manufacture: Production, Chemistry, Interactions and Regulation 5 6 7 Authors 8 9 Sharma, P.1,2, Segat, A.1,2, Kelly, A. L.3, and Sheehan, J.J.1 10 11 1 Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland 12 2Dairy Processing Technology Centre (DPTC), Ireland 13 3School of Food and Nutritional Sciences, University College, Cork, Ireland 14 15 16 17 18 1 19 ABSTRACT 20 Colored Cheddar cheeses are prepared by adding an aqueous annatto extract (norbixin) to 21 cheese milk; however, a considerable proportion (~20%) of such colorant is transferred to 22 whey, which can limit the end use applications of whey products. Different geographical 23 regions have adopted various strategies for handling whey derived from colored cheeses 24 production. For example, in the USA, whey products are treated with oxidizing agents such 25 as hydrogen peroxide and benzoyl peroxide to obtain white and colorless spray-dried 26 products; however, chemical bleaching of whey is prohibited in Europe and China. 27 Fundamental studies have focused on understanding the interactions between colorants 28 molecules and various components of cheese. In addition, the selective delivery of colorants 29 to the cheese curd through approaches such as encapsulated norbixin and micro-capsules of 30 bixin or use of alternative colorants, including fat- soluble/emulsified versions of annatto or 31 beta-carotene, have been studied. This review provides a critical analysis of pertinent 32 scientific and patent literature pertaining to colorant delivery in cheese and various types of 33 colorant products on the market for cheese manufacture, and also considers interactions 34 between colorant molecules and cheese components; various strategies for elimination of 35 color transfer to whey during cheese manufacture are also discussed.
    [Show full text]
  • Aniline and Aniline Hydrochloride
    SOME AROMATIC AMINES AND RELATED COMPOUNDS VOLUME 127 This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met remotely, 25 May–12 June 2020 LYON, FRANCE - 2021 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS ANILINE AND ANILINE HYDROCHLORIDE 1. Exposure Characterization 1.1.2 Structural and molecular formulae, and relative molecular mass 1.1 Identification of the agent (a) Aniline 1.1.1 Nomenclature NH2 (a) Aniline Chem. Abstr. Serv. Reg. No.: 62-53-3 EC No.: 200-539-3 Molecular formula: C H N IUPAC systematic name: aniline 6 7 Relative molecular mass: 93.13 (NCBI, 2020a). Synonyms and abbreviations: benzenamine; phenylamine; aminobenzene; aminophen; (b) Aniline hydrochloride aniline oil. NH2 (b) Aniline hydrochloride Chem. Abstr. Serv. Reg. No.: 142-04-1 EC No.: 205-519-8 HCl IUPAC systematic name: aniline hydro - Molecular formula: C6H8ClN chloride Relative molecular mass: 129.59 (NCBI, Synonyms: aniline chloride; anilinium chlo- 2020b). ride; benzenamine hydrochloride; aniline. HCl; phenylamine hydrochloride; phenylam- monium chloride. 1.1.3 Chemical and physical properties of the pure substance Aniline is a basic compound and will undergo acid–base reactions. Aniline and its hydrochlo- ride salt will achieve a pH-dependent acid–base equilibrium in the body. 109 IARC MONOGRAPHS – 127 (a) Aniline Octanol/water partition coefficient (P): log Kow, 0.936, predicted median (US EPA, 2020b) Description: aniline appears as a yellowish Conversion factor: 1 ppm = 5.3 mg/m3 [calcu- to brownish oily liquid with a musty fishy lated from: mg/m3 = (relative molecular odour (NCBI, 2020a), detectable at 1 ppm 3 mass/24.45) × ppm, assuming temperature [3.81 mg/m ] (European Commission, 2016; (25 °C) and pressure (101 kPa)].
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • Exposure to Acetaminophen and All Its Metabolites Upon 10, 15, and 20Mg/Kg Intravenous Acetaminophen in Very-Preterm Infants
    Articles | Clinical Investigation nature publishing group Exposure to acetaminophen and all its metabolites upon 10, 15, and 20mg/kg intravenous acetaminophen in very-preterm infants Robert B. Flint1,2,3,11, Daniella W. Roofthooft1,11,AnnevanRongen4,5, Richard A. van Lingen6, Johannes N. van den Anker7,8,9, Monique van Dijk1,7, Karel Allegaert1,7,10, Dick Tibboel7, Catherijne A.J. Knibbe4,5 and Sinno H.P. Simons1 BACKGROUND: Exposure to acetaminophen and its meta- acetaminophen as an opioid-sparing therapy in adults and bolites in very-preterm infants is partly unknown. We children has now been introduced in neonatal intensive care investigated the exposure to acetaminophen and its meta- units across the globe (4). However, only very limited data of bolites upon 10, 15, or 20 mg/kg intravenous acetaminophen its use are available in the most preterm infants (5,6). in preterm infants. Acetaminophen (N-acetyl-p-amino-phenol) is extensively METHODS: In a randomized trial, 59 preterm infants metabolized in the liver. The main pathways involved are (24–32 weeks’ gestational age, postnatal age o1 week) glucuronidation and sulfation, which in adults account for received 10, 15, or 20 mg/kg acetaminophen intravenously. ~ 55 and 30% of acetaminophen metabolism, respectively Plasma concentrations of acetaminophen and its metabolites (7–9) (Figure 1). Only 2–5% is excreted unchanged in the (glucuronide, sulfate, cysteine, mercapturate, and glutathione) urine. Approximately 5–10% of acetaminophen is metabo- were determined in 293 blood samples. Area under the lized by cytochrome P450 (CYP), primarily by the CYP2E1 – plasma concentration time curves (AUC0–500 min) was related enzyme (10–12), to the toxic metabolite N-acetyl-p-benzo- to dose and gestational age.
    [Show full text]
  • Aldrich Aldehydes and Ketones
    Aldrich Aldehydes and Ketones Library Listing – 1,311 spectra Subset of Aldrich FT-IR Spectral Libraries related to aldehydes and ketones. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collection of FT-IR Spectra and the data has been carefully examined and processed by Thermo. The molecular formula, CAS (Chemical Abstracts Services) registry number, when known, and the location number of the printed spectrum in The Aldrich Library of FT-IR Spectra are available. Aldrich Aldehydes and Ketones Index Compound Name Index Compound Name 182 ((1R)-ENDO)-(+)-3- 314 (7AS)-(+)-5,6,7,7A-TETRAHYDRO- BROMOCAMPHOR, 98% 7A- METHYL-1,5-INDANDIONE, 183 ((1S)-ENDO)-(-)-3- 99% BROMOCAMPHOR, 98% 97 (DIETHYLAMINO)ACETONE, 96% 274 (+)-3- 96 (DIMETHYLAMINO)ACETONE, 99% (TRIFLUOROACETYL)CAMPHOR, 145 (R)-(+)-3- 98% METHYLCYCLOHEXANONE, 98% 231 (+)-DIHYDROCARVONE, 98%, 135 (R)-(+)-3- MIXTURE OF ISOMERS METHYLCYCLOPENTANONE , 99% 1076 (+)-RUTIN HYDRATE, 95% 397 (R)-(+)-CITRONELLAL, 96% 830 (+)-USNIC ACID, 98% 229 (R)-(+)-PULEGONE, 98% 136 (+/-)-2,4- 248 (R)-(-)-4,4A,5,6,7,8-HEXAHYDRO- DIMETHYLCYCLOPENTANONE, 4A- METHYL-2(3H)- 99%, MIXTURE OF CIS AND TRANS NAPHTHALENONE, 97% 758 (+/-)-2- 232 (R)-(-)-CARVONE, 98% (METHYLAMINO)PROPIOPHENON 358 (S)-(+)-2- E HYDROCHLORIDE, 99% METHYLBUTYRALDEHYDE, 97% 275 (-)-3- 250 (S)-(+)-3,4,8,8A-TETRAHYDRO-8A- (TRIFLUOROACETYL)CAMPHOR, METHYL- 1,6(2H,7H)-
    [Show full text]
  • UNITED STATES PATENT Office 2,377,193 PROCESS for the PRODUCTION of by DROXYAMMONUM, CLOB OE Philip F
    EPaRenees: Ray 29, 1945 2,377,193 UNITED STATES PATENT office 2,377,193 PROCESS FOR THE PRODUCTION OF BY DROXYAMMONUM, CLOB OE Philip F. Tryon, Terre Baute, nd, assignor to Commercial Solvents Corporation, Terre Haute, Ind., a corporation of Maryland No Drawing. Application October 9, 1943, Serial No. 505,664 10 Claims. (c. 23-87) My invention relates to a process for the pro and used as the source, of solvent for another duction of hydroxylammonium chloride. More reaction solution. The crystals obtained from particularly, it relates to a process for the pro this process are preferably dried for approxi duction of hydroxylammonium chloride by there- . mately two hours at 70-80 C. action of hydroxylammonium sulfate with hydro The reaction is effected with satisfactory re chloric acid. sults without the presence of a lower alcohol sol Prior methods of preparing hydroxylammoni went. However, slightly better yields are obtained um chloride have generally been unsatisfactory and the separation of the reaction product is in view of the relatively long and involved pro more easily accomplished when utilizing a lower cedures utilized, and the comparatively low yields O alcohol solvent, such as methanol. Also, it is obtained thereby, Typical of the former methods sometimes advantageous to heat the reaction employed in the synthesis of hydroxylammonium mixture to an elevated temperature of approx chloride, is the procedure involving the use of so imately 70° C. In such instances, however, little dium nitrite, sodium bisulfite and sulfur dioxide if any advantage is obtained by keeping the lower . to produce sodium hydroxylamine disulfonate, 15 alcohol reaction mixture at an elevated tempera which is in turn treated with acetone to form ac ture for an extended length of time.
    [Show full text]
  • Chemical Name
    List of substances banned for use in cosmetic products as from 1 December 2010 (updated July 2015) The following substances are classified as CMR substances of category 1A, 1B or 2 under Commission Regulation (EC) No 790/2009 and successive amendments of the Regulation 1272/2008.1 Therefore, these substances are banned for use in cosmetic products as from 1 December 2010 (which is the starting date of application of their classification), in accordance with Article 15 of the Cosmetics Regulation (EC) 1223/2009. Please note that some of the substances classified as CMR substances under Commission Regulation (EC) No 790/2009 and the successive amending regulations had already been regulated in Annex II to the Cosmetics Regulation through previous adaptations to technical progress of the Annexes to the Cosmetics Directive (which had been taken over by the Cosmetics Regulation at the time of its adoption in November 2009). They continue therefore to be listed in this Annex and to be banned for use in cosmetics, and are thus not included in the list below. In addition, some substances classified as CMR substances under Commission Regulation (EC) No 790/2009 and the successive amending regulations are considered to be covered by existing entries in Annex II to the Cosmetics Regulation and are not included in the list below. Chemical name EC No CAS No O-isobutyl-N-ethoxy carbonylthiocarbamate 434-350-4 103122-66-3 chlorpropham (ISO); 202-925-7 101-21-3 isopropyl 3-chlorocarbanilate hydroxylammonium nitrate 236-691-2 13465-08-2 reaction mass of: 4,7-bis(mercaptomethyl)-3,6,9-trithia- 427-050-1 - 1,11-undecanedithiol-; 4,8-bis(mercaptomethyl)-3,6,9-trithia-1,11- undecanedithiol; 5,7-bis(mercaptomethyl)-3,6,9-trithia-1,11- undecanedithiol cobalt acetate 200-755-8 71-48-7 1 This list does not contain the substance Musk Ketone (CAS 81-14-1), even though it has been classified as a CMR 2 substance by Commission Regulation 790/2009.
    [Show full text]
  • Metabolic Fate of Bioaccessible and Non-Bioaccessible Carotenoids
    CHapTer 9 Metabolic Fate of Bioaccessible and Non-bioaccessible Carotenoids TorsTen BoHn Luxembourg Institute of Health (LIH), population Health Department, rue 1 a-B, Thomas edison, L-1445 strassen, Luxembourg *e-mail: [email protected] 9.1 Introduction Carotenoids are among the most abundant lipophilic secondary plant compounds consumed in the diet. Carotenoids include mostly C-40 tetra- terpenoids, though also C-30 tri-1 and C-50 pentaterpenoids2 have been reported, at least in various bacteria, though due to their minute intake, they are not of dietary relevance. However, their dietary variety is increased when also counting the many apo-carotenoids (i.e. carotenoid metabolites derived from oxidative cleavage of carotenoids, which may occur in bacteria, fungi and plants, but also in animals).3 Major plant-derived apo-carotenoids include, for example, bixin, crocin, picrocrocin, abscisic acid, strigolactone and mycorradicin.4 Though several hundreds of carotenoids have been described in nature, it is estimated that only a few dozen or so predominate in our daily diet.5,6 Their dietary intake as well as circulating blood levels have been related to Food Chemistry, Function and Analysis No. 5 Non-extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health Edited by Fulgencio Saura-Calixto and Jara Pérez-Jiménez © The Royal Society of Chemistry 2018 Published by the Royal Society of Chemistry, www.rsc.org 165 166 Chapter 9 the reduced risk of several chronic diseases, including certain cardiometa- bolic conditions such as the metabolic syndrome7 and certain types of can- cer,8,9 but also allergies10 and asthma.11 a carotenoid health index based on total plasma carotenoids has been proposed by Donaldson, with <1 µM total carotenoids constituting a very high health risk12 regarding total mortality (lower threshold), and less so for metabolic syndrome and cancer (higher threshold).
    [Show full text]