Natural Products (Secondary Metabolites)

Total Page:16

File Type:pdf, Size:1020Kb

Natural Products (Secondary Metabolites) Biochemistry & Molecular Biology of Plants, B. Buchanan, W. Gruissem, R. Jones, Eds. © 2000, American Society of Plant Physiologists CHAPTER 24 Natural Products (Secondary Metabolites) Rodney Croteau Toni M. Kutchan Norman G. Lewis CHAPTER OUTLINE Introduction Introduction Natural products have primary ecological functions. 24.1 Terpenoids 24.2 Synthesis of IPP Plants produce a vast and diverse assortment of organic compounds, 24.3 Prenyltransferase and terpene the great majority of which do not appear to participate directly in synthase reactions growth and development. These substances, traditionally referred to 24.4 Modification of terpenoid as secondary metabolites, often are differentially distributed among skeletons limited taxonomic groups within the plant kingdom. Their functions, 24.5 Toward transgenic terpenoid many of which remain unknown, are being elucidated with increas- production ing frequency. The primary metabolites, in contrast, such as phyto- 24.6 Alkaloids sterols, acyl lipids, nucleotides, amino acids, and organic acids, are 24.7 Alkaloid biosynthesis found in all plants and perform metabolic roles that are essential 24.8 Biotechnological application and usually evident. of alkaloid biosynthesis Although noted for the complexity of their chemical structures research and biosynthetic pathways, natural products have been widely per- 24.9 Phenylpropanoid and ceived as biologically insignificant and have historically received lit- phenylpropanoid-acetate tle attention from most plant biologists. Organic chemists, however, pathway metabolites have long been interested in these novel phytochemicals and have 24.10 Phenylpropanoid and investigated their chemical properties extensively since the 1850s. phenylpropanoid-acetate Studies of natural products stimulated development of the separa- biosynthesis tion techniques, spectroscopic approaches to structure elucidation, and synthetic methodologies that now constitute the foundation of 24.11 Biosynthesis of lignans, lignins, contemporary organic chemistry. Interest in natural products was and suberization not purely academic but rather was prompted by their great utility 24.12 Flavonoids as dyes, polymers, fibers, glues, oils, waxes, flavoring agents, per- 24.13 Coumarins, stilbenes, fumes, and drugs. Recognition of the biological properties of myriad styrylpyrones, and arylpyrones natural products has fueled the current focus of this field, namely, 24.14 Metabolic engineering of the search for new drugs, antibiotics, insecticides, and herbicides. phenylpropanoid production: Importantly, this growing appreciation of the highly diverse biologi- a possible source of enhanced cal effects produced by natural products has prompted a reevalua- fibers, pigments, pharmaceuti- tion of the possible roles these compounds play in plants, especially cals, and flavoring agents in the context of ecological interactions. As illustrated in this chapter, many of these compounds now have been shown to have important 1250 Chapter 24 Natural Products (Secondary Metabolites) adaptive significance in protection against thus a natural product (Fig. 24.1). Even herbivory and microbial infection, as attrac- lignin, the essential structural polymer of tants for pollinators and seed-dispersing ani- wood and second only to cellulose as the mals, and as allelopathic agents (allelochem- most abundant organic substance in plants, icals that influence competition among plant is considered a natural product rather than species). These ecological functions affect a primary metabolite. plant survival profoundly, and we think it In the absence of a valid distinction reasonable to adopt the less pejorative term based on either structure or biochemistry, we “plant natural products” to describe sec- return to a functional definition, with prima- ondary plant metabolites that act primarily ry products participating in nutrition and es- on other species. sential metabolic processes inside the plant, and natural (secondary) products influenc- ing ecological interactions between the plant The boundary between primary and and its environment. In this chapter, we secondary metabolism is blurred. provide an overview of the biosynthesis of the major classes of plant natural products, Based on their biosynthetic origins, plant emphasizing the origins of their structural natural products can be divided into three diversity, as well as their physiological func- major groups: the terpenoids, the alkaloids, tions, human uses, and potential biotechno- and the phenylpropanoids and allied pheno- logical applications. lic compounds. All terpenoids, including both primary metabolites and more than 25,000 secondary compounds, are derived 24.1 Terpenoids from the five-carbon precursor isopentenyl diphosphate (IPP). The 12,000 or so known Terpenoids perhaps are the most structurally alkaloids, which contain one or more nitro- varied class of plant natural products. The gen atoms, are biosynthesized principally name terpenoid, or terpene, derives from the from amino acids. The 8000 or so phenolic fact that the first members of the class were compounds are formed by way of either the shikimic acid pathway or the malonate/ acetate pathway. Primary metabolite Secondary metabolite Primary and secondary metabolites can- not readily be distinguished on the basis of precursor molecules, chemical structures, or biosynthetic origins. For example, both pri- mary and secondary metabolites are found among the diterpenes (C ) and triterpenes 20 COOH COOH (C30). In the diterpene series, both kaurenoic Kaurenoic acid Abietic acid acid and abietic acid are formed by a very similar sequence of related enzymatic reac- tions (Fig. 24.1); the former is an essential in- termediate in the synthesis of gibberellins, N COOH N COOH i.e., growth hormones found in all plants H H (see Chapter 17), whereas the latter is a resin Proline Pipecolic acid component largely restricted to members of the Fabaceae and Pinaceae. Similarly, the es- Figure 24.1 sential amino acid proline is classified as a Kaurenoic acid and proline are primary metabo- lites, whereas the closely related compounds abietic primary metabolite, whereas the C6 analog acid and pipecolic acid are considered secondary pipecolic acid is considered an alkaloid and metabolites. 24.1–Terpenoids 1251 isolated from turpentine (“terpentin” in Ger- known hemiterpene is isoprene itself, a vol- man). All terpenoids are derived by repeti- atile product released from photosynthe- tive fusion of branched five-carbon units tically active tissues. The enzyme isoprene based on isopentane skeleton. These mono- synthase is present in the leaf plastids of nu- mers generally are referred to as isoprene merous C3 plant species, but the metabolic units because thermal decomposition of rationale for the light-dependent production many terpenoid substances yields the alkene of isoprene is unknown (acclimation to high gas isoprene as a product (Fig. 24.2, upper temperatures has been suggested). Estimated panel) and because suitable chemical condi- annual foliar emissions of isoprene are quite tions can induce isoprene to polymerize in substantial (5 × 108 metric tons of carbon), multiples of five carbons, generating numer- and the gas is a principal reactant in the ous terpenoid skeletons. For these reasons, NOx radical–induced formation of tropo- the terpenoids are often called isoprenoids, spheric ozone (see Chapter 22, Fig. 22.37). although researchers have known for well C10 terpenoids, although they consist of over 100 years that isoprene itself is not two isoprene units, are called monoterpenes; the biological precursor of this family of as the first terpenoids isolated from turpen- metabolites. tine in the 1850s, they were considered to be the base unit from which the subsequent nomenclature is derived. The monoterpenes 24.1.1 Terpenoids are classified by the are best known as components of the vol- number of five-carbon units they contain. atile essences of flowers and of the essential oils of herbs and spices, in which they make The five-carbon (isoprene) units that make up as much as 5% of plant dry weight. Mono- up the terpenoids are often joined in a “head- terpenes are isolated by either distillation or to-tail” fashion, but head-to-head fusions are extraction and find considerable industrial also common, and some products are formed use in flavors and perfumes. by head-to-middle fusions (Fig. 24.2, lower The terpenoids that derive from three panel). Accordingly, and because extensive isoprene units contain 15 carbon atoms and structural modifications with carbon–carbon are known as sesquiterpenes (i.e., one and bond rearrangements can occur, tracing the one-half terpenes). Like monoterpenes, original pattern of isoprene units is some- many sesquiterpenes are found in essential times difficult. oils. In addition, numerous sesquiterpenoids The smallest terpenes contain a single act as phytoalexins, antibiotic compounds isoprene unit; as a group, they are named produced by plants in response to microbial hemiterpenes (half-terpenes). The best challenge, and as antifeedants that discour- age opportunistic herbivory. Although the plant hormone abscisic acid is structurally a sesquiterpene, its C15 precursor, xanthoxin, is not synthesized directly from three isoprene Isopentane Isoprene units but rather is produced by asymmetric cleavage of a C40 carotenoid (see Chapter 17). The diterpenes, which contain 20 car- bons (four C5 units), include phytol (the hy- drophobic side chain of chlorophyll), the
Recommended publications
  • Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models
    molecules Review Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010–2020): A Review Maria Elaine Araruna 1, Catarina Serafim 1, Edvaldo Alves Júnior 1, Clelia Hiruma-Lima 2, Margareth Diniz 1,3 and Leônia Batista 1,3,* 1 Postgraduate Program in Natural Products and Bioactive Synthetic, Health Sciences Center, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil; [email protected] (M.E.A.); [email protected] (C.S.); [email protected] (E.A.J.); [email protected] (M.D.) 2 Department of Structural and Functional Biology (Physiology), Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil; [email protected] 3 Department of Pharmacy, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil * Correspondence: [email protected]; Tel.: +55-83-32167003; Fax: +55-83-32167502 Academic Editors: Maurizio Battino, Jesus Simal-Gandara and Esra Capanoglu Received: 8 September 2020; Accepted: 28 September 2020; Published: 20 November 2020 Abstract: Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities.
    [Show full text]
  • Applications of Pueraria Lobata in Treating Diabetics and Reducing Alcohol Drinking
    Chinese Herbal Medicines 11 (2019) 141–149 Contents lists available at ScienceDirect Chinese Herbal Medicines journal homepage: www.elsevier.com/locate/chmed Review Applications of Pueraria lobata in treating diabetics and reducing alcohol drinking ∗ Jing Liu a, Yeu-Ching Shi b, David Yue-Wei Lee a, a Bio-Organic and Natural Products Research Laboratory, Mailman Research Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA b Taiwan Indigena Botanica, Taipei 10684, China a r t i c l e i n f o a b s t r a c t Article history: Pueraria lobata is one of the most important medicinal herbs used traditionally in China. According to Received 31 January 2018 Shanghan Lun ( Treatise on Exogenous Febrile Disease ), it has been used traditionally to relieve body heat, Revised 29 June 2018 eye soring, dry mouth, headache associated with high blood pressure, and stiff neck problems. Modern Accepted 19 December 2018 studies in the 1970s revealed that isoflavonoids extracted from P. lobata were the bioactive components Available online 5 April 2019 of an herbal remedy namely Yufeng Ningxin Tablets for the treatment of patients after stroke. This article Keywords: reviews recent application of P. lobota in the treatment of diabetics and in reducing alcohol drinking. In diabetics view of its low toxicity profile, P. lobota stands an excellent chance to be developed as a phytomedicine Pueraria lobata (Willd) Ohwi for treating human diseases. reducing alcohol drinking ©2019 Tianjin Press of Chinese Herbal Medicines. Published by Elsevier B.V. All rights reserved. Contents 1. Historical use of Pueraria lobata .
    [Show full text]
  • Metabolomics Reveals the Molecular Mechanisms of Copper Induced
    Article Cite This: Environ. Sci. Technol. 2018, 52, 7092−7100 pubs.acs.org/est Metabolomics Reveals the Molecular Mechanisms of Copper Induced Cucumber Leaf (Cucumis sativus) Senescence † ‡ § ∥ ∥ ∥ Lijuan Zhao, Yuxiong Huang, , Kelly Paglia, Arpana Vaniya, Benjamin Wancewicz, ‡ § and Arturo A. Keller*, , † Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu 210023, China ‡ Bren School of Environmental Science & Management, University of California, Santa Barbara, California 93106-5131, United States § University of California, Center for Environmental Implications of Nanotechnology, Santa Barbara, California 93106, United States ∥ UC Davis Genome Center-Metabolomics, University of California Davis, 451 Health Sciences Drive, Davis, California 95616, United States *S Supporting Information ABSTRACT: Excess copper may disturb plant photosynthesis and induce leaf senescence. The underlying toxicity mechanism is not well understood. Here, 3-week-old cucumber plants were foliar exposed to different copper concentrations (10, 100, and 500 mg/L) for a final dose of 0.21, 2.1, and 10 mg/plant, using CuSO4 as the Cu ion source for 7 days, three times per day. Metabolomics quantified 149 primary and 79 secondary metabolites. A number of intermediates of the tricarboxylic acid (TCA) cycle were significantly down-regulated 1.4−2.4 fold, indicating a perturbed carbohy- drate metabolism. Ascorbate and aldarate metabolism and shikimate- phenylpropanoid biosynthesis (antioxidant and defense related pathways) were perturbed by excess copper. These metabolic responses occur even at the lowest copper dose considered although no phenotype changes were observed at this dose. High copper dose resulted in a 2-fold increase in phytol, a degradation product of chlorophyll.
    [Show full text]
  • Secondary Metabolites and Phenylpropanoid Pathway Enzymes
    Journal of Photochemistry and Photobiology B: Biology 140 (2014) 332–343 Contents lists available at ScienceDirect Journal of Photochemistry and Photobiology B: Biology journal homepage: www.elsevier.com/locate/jphotobiol Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant ⇑ Swabha Takshak, S.B. Agrawal Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India article info abstract Article history: The present study aims to investigate the effects of supplemental ultraviolet B (3.6 kJ mÀ2 dayÀ1 above Received 28 May 2014 ambient) radiation on secondary metabolites and phenylpropanoid pathway enzymes of Withania Received in revised form 12 August 2014 somnifera under field conditions at 40, 70, and 100 days after transplantation. Secondary metabolites’ Accepted 14 August 2014 (alkaloids, anthocyanins, carotenoids, flavonoids, lignin, phytosterols, saponins, and tannins) concentra- Available online 6 September 2014 tions were analysed at the end of the treatments. Activities of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone–flavanone isomerase Keywords: (CHI), and dihydroflavonol reductase (DFR) were also determined. In treated plants, secondary metabo- Phenylpropanoid pathway enzymes lite-concentrations generally increased (higher concentrations being recorded in roots compared to Secondary metabolites s-UV-B leaves). Anomalies were recorded for lycopene in roots and phytosterols in leaves (all sampling ages); Withania somnifera b-carotene declined in leaves at third sampling age. s-UV-B-treated plants depicted decrease in withan- olide A content with concomitant increase in withaferin A (two major alkaloids analysed by HPLC) com- pared to their respective controls.
    [Show full text]
  • Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids
    Utilizing UVPD Fragmentation for Plant Molecules: Phenylpropanoids Romain Huguet1, Tim Stratton1, Seema Sharma1, Christopher Mullen1, Jesse Canterbury1, and Vlad Zabrouskov1 1Thermo Fisher Scientific, San Jose, California, USA RESULTS A significant difference between the fragmentation approaches arises from the means in which UVPD Laser In addition to early observation of typically higher energy fragmentation channels in the UVPD, an ABSTRACT they initiate fragmentation. In HCD, energy is imparted by the initial injection of the ions into the increase in fragment ions arising from ionization of the aromatic rings or the conjugated double For this work, we used a Nd:YAG (neodymium doped yttrium aluminum garnet) laser. This is an collision cell and collisions with a relatively static gas. A greater voltage offset gives rise to more Purpose: Investigate the potential use of UVPD to provide unique and potentially diagnostic Compound Structure and UV Absorption bond chalconoids was observed (Figure 6). While ionization was largely the result of the ketone or optically pumped laser that typically emits in the infrared range (>1000nm). When operated in a energetic collisions. The energy is internally distributed with bonds breaking to form fragment ions fragmentation information for structure determination of small molecules, specifically alcohol functions present on the compounds, specific absorption of photons generated unique pulsed Q-switching mode, where the laser energy is released in a pulse when reaching a threshold, which may also undergo subsequent fragmentation events generating several generations of phenylpropanoids and chalconoids. fragmentation. Several of these fragment ions were not observed in HCD at any energy level frequency doubling of the pulses can be used to obtain shorter wavelengths.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • Tommann Tuntimahon At
    TOMMANNUS009909137B2TUNTIMAHON AT THE (12 ) United States Patent ( 10 ) Patent No. : US 9 , 909 , 137 B2 Fist (45 ) Date of Patent: *Mar . 6 , 2018 ( 54 ) PAPAVER SOMNIFERUM STRAIN WITH OTHER PUBLICATIONS HIGH CONCENTRATION OF THEBAINE Allen , R . S . , et al . , “Metabolic engineering of morphinan alkaloids (71 ) Applicant: Tasmanian Alkaloids Pty . Ltd ., by over -expression and RNAi suppression of salutaridinol 7 - 0 Westbury , Tasmania ( AU ) acetyltransferase in opium poppy ” Plant Biotechnology Journal; Jan . 2008 , vol. 6 , pp . 22 - 30 . (72 ) Inventor : Anthony J . Fist , Norwood (AU ) Patra , N . K . and Chavhan S . P ., “ Morphophysiology and geneticsof induced mutants expressed in the M1 generation in opium poppies , ” ( 73 ) Assignee : Tasmanian Alkaloids Pty . Ltd . , The Journal of Heredity ( 1990 ) ; 81( 5 ) pp . 347 - 350 . Crane , F . A . and Fairburn J . W . , “ Alkaloids in the germinating Westbury , Tasmania (AU ) seedling of poppy " , Transactions of the Illinois State Academy of Science . ( 1970 ) vol. 63 , No . 1 , 11 pp . 86 - 92 . ( * ) Notice : Subject to any disclaimer, the term of this Kutchan , T . M . and Dittrich H ., “ Characterization and mechanism of patent is extended or adjusted under 35 the berberine bridge enzyme, a covalently flavivated oxidase of U . S . C . 154 (b ) by 69 days . benzophenanthridine alkaloid biosynthesis in plants, ” ( 1995 ) vol. 270 , No. 41 Issue Oct. 13 ; pp . 24475 - 24481 . This patent is subject to a terminal dis Facchini, P . J . et al ., “ Molecular characterization of berberine bridge claimer. enzyme genes from opium poppy, ” ( 1996 ) Plant Physiol. 112: pp . 1669 - 1677 . De- Eknamkul W . and Zenk M . H ., “ Enzymatic formulation of (21 ) Appl . No. : 14 /816 ,639 ( R ) - reticuline from 1 , 2 - dehydroreticuline in the opium poppy plant, ” ( 1990 ) Tetradedron Lett 31 ( 34 ) , 4855 - 8 .
    [Show full text]
  • Phenolics in Human Health
    International Journal of Chemical Engineering and Applications, Vol. 5, No. 5, October 2014 Phenolics in Human Health T. Ozcan, A. Akpinar-Bayizit, L. Yilmaz-Ersan, and B. Delikanli with proteins. The high antioxidant capacity makes Abstract—Recent research focuses on health benefits of polyphenols as an important key factor which is involved in phytochemicals, especially antioxidant and antimicrobial the chemical defense of plants against pathogens and properties of phenolic compounds, which is known to exert predators and in plant-plant interferences [9]. preventive activity against infectious and degenerative diseases, inflammation and allergies via antioxidant, antimicrobial and proteins/enzymes neutralization/modulation mechanisms. Phenolic compounds are reactive metabolites in a wide range of plant-derived foods and mainly divided in four groups: phenolic acids, flavonoids, stilbenes and tannins. They work as terminators of free radicals and chelators of metal ions that are capable of catalyzing lipid oxidation. Therefore, this review examines the functional properties of phenolics. Index Terms—Health, functional, phenolic compounds. I. INTRODUCTION In recent years, fruits and vegetables receive considerable interest depending on type, number, and mode of action of the different components, so called as “phytochemicals”, for their presumed role in the prevention of various chronic diseases including cancers and cardiovascular diseases. Plants are rich sources of functional dietary micronutrients, fibers and phytochemicals, such
    [Show full text]
  • Placenta, Pericarp, and Seeds of Tabasco Chili Pepper Fruits Show a Contrasting Diversity of Bioactive Metabolites
    H OH metabolites OH Article Placenta, Pericarp, and Seeds of Tabasco Chili Pepper Fruits Show a Contrasting Diversity of Bioactive Metabolites Felipe Cervantes-Hernández, Paul Alcalá-González, Octavio Martínez and José Juan Ordaz-Ortiz * Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Km. 9.6, Libramiento Norte Carretera Irapuato-León, Irapuato, Gto. 36824, Mexico; [email protected] (F.C.-H.); [email protected] (P.A.-G.); [email protected] (O.M.) * Correspondence: [email protected] Received: 26 August 2019; Accepted: 23 September 2019; Published: 28 September 2019 Abstract: Chili pepper (Capsicum spp.) is one of the most important horticultural crops worldwide, and its unique organoleptic properties and health benefits have been established for centuries. However, there is little knowledge about how metabolites are distributed throughout fruit parts. This work focuses on the use of liquid chromatography coupled with high resolution mass spectrometry (UHPLC-ESI-HRMS) to estimate the global metabolite profiles of the pericarp, placenta, and seeds of Tabasco pepper fruits (Capsicum frutescens L.) at the red mature stage of ripening. Our main results putatively identified 60 differential compounds between these tissues and seeds. Firstly, we found that pericarp has a higher content of glycosides, showing on average a fold change of 5 and a fold change of 14 for terpenoids when compared with other parts of the fruit. While placenta was the richest tissue in capsaicinoid-related compounds, alkaloids, and tocopherols, with a 35, 3, and 7 fold change, respectively. However, the seeds were richer in fatty acids and saponins with fold changes of 86 and 224, respectively.
    [Show full text]
  • Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-2010 Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L. Pirone Florida International University, [email protected] DOI: 10.25148/etd.FI10122201 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, and the Botany Commons Recommended Citation Pirone, Cary L., "Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders" (2010). FIU Electronic Theses and Dissertations. 336. https://digitalcommons.fiu.edu/etd/336 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BILIRUBIN: AN ANIMAL PIGMENT IN THE ZINGIBERALES AND DIVERSE ANGIOSPERM ORDERS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Cary Lunsford Pirone 2010 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Cary Lunsford Pirone, and entitled Bilirubin: An Animal Pigment in the Zingiberales and Diverse Angiosperm Orders, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ______________________________________ Bradley C. Bennett ______________________________________ Timothy M. Collins ______________________________________ Maureen A. Donnelly ______________________________________ John. T. Landrum ______________________________________ J. Martin Quirke ______________________________________ David W. Lee, Major Professor Date of Defense: November 5, 2010 The dissertation of Cary Lunsford Pirone is approved.
    [Show full text]
  • Alkaloids Used As Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look
    molecules Review Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity—An Update and Forward Look Michael Heinrich 1,2,* , Jeffrey Mah 1 and Vafa Amirkia 1 1 Research Group ‘Pharmacognosy and Phytotherapy’, UCL School of Pharmacy, University of London, 29–39 Brunswick Sq., London WC1N 1AX, UK; [email protected] (J.M.); [email protected] (V.A.) 2 Graduate Institute of Integrated Medicine, College of Chinese Medicine, and Chinese Medicine Research Center, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung 406040, Taiwan * Correspondence: [email protected]; Tel.: +44-20-7753-5844 Abstract: Selecting candidates for drug developments using computational design and empirical rules has resulted in a broad discussion about their success. In a previous study, we had shown that a species’ abundance [as expressed by the GBIF (Global Biodiversity Information Facility)] dataset is a core determinant for the development of a natural product into a medicine. Our overarching aim is to understand the unique requirements for natural product-based drug development. Web of Science was queried for research on alkaloids in combination with plant systematics/taxonomy. All alkaloids containing species demonstrated an average increase of 8.66 in GBIF occurrences between 2014 and 2020. Medicinal Species with alkaloids show higher abundance compared to non-medicinal alkaloids, often linked also to cultivation. Alkaloids with high biodiversity are often simple alkaloids found in multiple species with the presence of ’driver species‘ and are more likely to be included in early-stage drug development compared to ‘rare’ alkaloids. Similarly, the success of an alkaloid Citation: Heinrich, M.; Mah, J.; Amirkia, V.
    [Show full text]
  • South Cameroon)
    Plant Ecology and Evolution 152 (1): 8–29, 2019 https://doi.org/10.5091/plecevo.2019.1547 CHECKLIST Mine versus Wild: a plant conservation checklist of the rich Iron-Ore Ngovayang Massif Area (South Cameroon) Vincent Droissart1,2,3,8,*, Olivier Lachenaud3,4, Gilles Dauby1,5, Steven Dessein4, Gyslène Kamdem6, Charlemagne Nguembou K.6, Murielle Simo-Droissart6, Tariq Stévart2,3,4, Hermann Taedoumg6,7 & Bonaventure Sonké2,3,6,8 1AMAP Lab, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France 2Missouri Botanical Garden, Africa and Madagascar Department, P.O. Box 299, St. Louis, Missouri 63166-0299, U.S.A. 3Herbarium et Bibliothèque de Botanique africaine, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, BE-1050 Brussels, Belgium 4Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, BE-1860 Meise, Belgium 5Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium 6Plant Systematics and Ecology Laboratory, Higher Teachers’ Training College, University of Yaoundé I, P.O. Box 047, Yaoundé, Cameroon 7Bioversity International, P.O. Box 2008 Messa, Yaoundé, Cameroon 8International Joint Laboratory DYCOFAC, IRD-UYI-IRGM, BP1857, Yaoundé, Cameroon *Author for correspondence: [email protected] Background and aims – The rapid expansion of human activities in South Cameroon, particularly mining in mountainous areas, threatens this region’s exceptional biodiversity. To comprehend the effects of land- use change on plant diversity and identify conservation priorities, we aim at providing a first comprehensive plant checklist of the Ngovayang Massif, focusing on the two richest plant families, Orchidaceae and Rubiaceae.
    [Show full text]