The Use of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Graduate School Professional Papers 2010 The seU of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities Joshua Bryant Phillips The University of Montana Let us know how access to this document benefits ouy . Follow this and additional works at: https://scholarworks.umt.edu/etd Recommended Citation Phillips, Joshua Bryant, "The sU e of Natural Product Substrates for the Synthesis of Libraries of Biologically Active, New Chemical Entities" (2010). Graduate Student Theses, Dissertations, & Professional Papers. 1100. https://scholarworks.umt.edu/etd/1100 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES by Joshua Bryant Phillips B.S. Chemistry, Northern Arizona University, 2002 B.S. Microbiology (health pre-professional), Northern Arizona University, 2002 Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry The University of Montana June 2010 Phillips, Joshua Bryant Ph.D., June 2010 Chemistry THE USE OF NATURAL PRODUCT SUBSTRATES FOR THE SYNTHESIS OF LIBRARIES OF BIOLOGICALLY ACTIVE, NEW CHEMICAL ENTITIES Advisor: Dr. Nigel D. Priestley Chairperson: Dr. Bruce Bowler ABSTRACT Since Alexander Fleming first noted the killing of a bacterial culture by a mold, antibiotics have revolutionized medicine, being able to treat, and often cure life-threatening illnesses and making surgical procedures possible by eliminating the possibility of opportunistic infection. However, during the past 30 years many of the infections that were once easily cured by the proper antibiotic are no longer so due to a precipitous rise in multi- drug resistant organisms. This rise in multi-drug resistant organisms poses a grave threat to the medical advances that have been made in the past century and underscores the need for new antibiotics. We have developed two promising candidates for pharmaceutical applications, compounds 72 and 71, which are derived from nonactin, a biologically active natural product. Nonactin 40, an ionophore macrotetrolide antibiotic that is produced by Streptomyces griseus ETH A7796, is an ideal candidate for the synthesis of new antimicrobial drugs. This secondary metabolite is composed of two units of (+)-nonactic acid 49 and two units of (–)- nonactic acid 50. Whereas nonactin does not possess a synthetically useful chemical „handle‟, the nonactic acid subunits do. Through methanolysis of this structure and the separation of the two enantiomers, followed by a series of transformations, easily ii diversifiable scaffolds have been synthesized, which allows for the relatively rapid synthesis of chemically diverse libraries. From a small library of compounds that were synthesized, the compounds, 72 and 71 were found to show promising activities against vancomycin-resistant Enterococcus faecalis (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). Compounds 88 and 90 were shown to be the active enantiomers. It was also shown by making the 1,4-substituted triazoles and the 1,5-substituted triazoles 91, 92 that only the 1,4-substituted triazoles gave the aforementioned activities. These results illustrate the vital importance of stereochemistry and regiochemistry. To establish the importance of the nonactic acid moiety itself in the triazoloester compounds, analogues of these compounds were made by replacing the nonactic acid moiety with a cyclohexane moiety, specifically starting with both trans and cis 4-cyclohexanol- carboxylic acid. Neither the cis nor the trans analogues 131, 132, 142, 143, 151, 152, 160, 161 of either of the regioisomers of the compounds made to mimic 72 and 71 gave the activities of their nonactate-containing counterparts. As an alternative to chemical synthesis we investigated biotransformation of nonactic acid analogs by Streptomyces griseus. While we were unable to generate new nonactin analogues we did discover an inhibitor of nonactin biosynthesis 186 and we were able to set limits on precursor directed biosynthesis in S. griseus. iii The Missing Piece In the fire the stone, Turned in the pyre a bone, Seasoned with the spice of ash. In the hearth the cauldron, Melted in the crucible this dust, Out of the brazen kettle, Arose a thing of brain, bone, and flesh. And in the dark stumbled „round, Until the morning light was found, Though by all this amalgam had every part, It fell at the door to dust for lack of a heart. Joshua Bryant Phillips iv Acknowledgements It has been my distinct honor of working with some of the best professionals in the field and I would be truly without merit or consequence if I did not mention nor paid heed to the guidance, knowledge, and humor they have been kind and patient enough to bestow on me. First and foremost I would like to thank Dr. Nigel D. Priestley, my advisor, who has bore the brunt of my daily tribulations in organic chemistry and so eloquently provided much needed insight into its intricacy. I thank you for your generous support during this long and difficult endeavor. The Priestley group, through all its metamorphoses, has been as a charm through my studies, without which none of this would have been possible. I would like to offer my sincere and abiding gratitude to my fellows and friends. James Cox has provided valuable assistance in my research, provided through great labors, methyl (±) nonactate, enantiomerically enriched, enantiomerically pure methyl nonactate, and methyl homononactate, the starting materials in this project, and who taught me a great deal of synthesis. Of Bradley A. Bassette Jr. who is a man of unconquerable vigor and humor and, truly, a man that can be counted upon to come through in a clinch. Brian Kusche has also provided me with a great deal of methyl nonactate and nonactic acid. By imparting his understanding of synthesis and the procedures therein, he has left an indelible mark on my education; for his humor, a smile on face. It would be wantonly neglectful of me not to mention the herculean efforts of the most fair and eminent Ladies, Adrienne E. Smith, Dr. Erin S. Bolstad, and Dr. Brooke Martin who I am grateful to for the testing of these libraries despite their own vast amounts of works before them. It is their unparalleled skill that has v left me envious and pushed me to be ever greater. Rong Jian, a man with a wry and understated humor, who has seen fit to impart to me a wider view of the world. Of P. Whitney Swain III, who has taken pains in helping me with my research, and without who nothing would have been quite the same. And not in the least, Heather Ewing, a great friend, a skilled chemist, and truly a student I have felt proud to have had. I would also like to express my gratitude to my committee members, both past and present who have had great patience with me and have served to push me in the right direction. To Dr.‟s Bruce Bowler, Michelle McGuirl, Holly Thompson, Brooke Martin, Ed Waali, Chris Palmer, and Don Kiely, you have my sincere esteem and thanks for your efforts. And to the faculty, I have appreciated your kindness, your knowledge, and your invaluable wisdom that has led me to where I am today. I would especially like to thank Dr. Earle Adams for his work for the NMR 2D-NOE spectra for the determination of the regiochemistry of the compounds that constitute the triazoloester library. Of course, none of this would have been possible without the love and support of my family through these many years of education. My accomplishments, whatever they may be, either great or small, are also theirs in full measure. For my family, friends, and teachers, thank you for everything. vi TABLE OF CONTENTS LIST OF ABBREVIATIONS………………………………………………………...x LIST OF FIGURES…………………………………………………………………..xi LIST OF SCHEMES………………………………………………………………..xiii LIST OF TABLES…………………………………………………………………..xv 1. INTRODUCTION AND BACKGROUND OF ANTIBIOTICS………………….1 1.1 Origin and history of antibiotics………………………………………………........1 1.1.A Definitions………………………………………………………………………........1 1.1.B Arsenicals and sulfonamides: development of the first synthetic antibiotics…...2 1.1.C Beta-lactam antibiotics……………….……...………………………….…………...5 1.1.D Cephalosporins…………………………………………………………………........8 1.1.E Carbacephems………………………………………………………........................9 1.1.F Carbapenems…………………………………………………………………….….10 1.1.G Monobactams……………………………………………………………………….11 1.1.H Aminoglycosides…………………………………………………………………….11 1.1.I. Macrolides………………………………………………………………………..…12 1.1.J. Ansamycins……………………………………………………………………........16 1.1.K. Tetracyclines……………………………………………………………………...…17 1.1.L. Tigecycline…………………………………………………………………………...19 1.1.M. Glycopeptides…………………………………………………………………….…20 1.1.N. A lipopetide antibiotic, daptomycin…………………………………………….....21 1.1.O. Quinolones and fluoroquinolones……………………………………………….…22 1.1.P. Oxazolidinones……………………………………………………………………...25 1.1.Q. Polypeptide antibiotics…………………………………………………………......26 1.1.R. Chloramphenicol……………………………………………………………………29 1.1.S. Trimethoprim…………………………………………………………………..…...30 1.2 Rise of antibiotic resistant strains…………………………………………..……..30
Recommended publications
  • WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/179249 Al 26 November 2015 (26.11.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/11 (2006.01) A61K 38/08 (2006.01) kind of national protection available): AE, AG, AL, AM, C12N 15/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US2015/031213 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 15 May 2015 (15.05.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/000,43 1 19 May 2014 (19.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/129,746 6 March 2015 (06.03.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicants : GELLER, Bruce, L.
    [Show full text]
  • Applications of Pueraria Lobata in Treating Diabetics and Reducing Alcohol Drinking
    Chinese Herbal Medicines 11 (2019) 141–149 Contents lists available at ScienceDirect Chinese Herbal Medicines journal homepage: www.elsevier.com/locate/chmed Review Applications of Pueraria lobata in treating diabetics and reducing alcohol drinking ∗ Jing Liu a, Yeu-Ching Shi b, David Yue-Wei Lee a, a Bio-Organic and Natural Products Research Laboratory, Mailman Research Center, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA b Taiwan Indigena Botanica, Taipei 10684, China a r t i c l e i n f o a b s t r a c t Article history: Pueraria lobata is one of the most important medicinal herbs used traditionally in China. According to Received 31 January 2018 Shanghan Lun ( Treatise on Exogenous Febrile Disease ), it has been used traditionally to relieve body heat, Revised 29 June 2018 eye soring, dry mouth, headache associated with high blood pressure, and stiff neck problems. Modern Accepted 19 December 2018 studies in the 1970s revealed that isoflavonoids extracted from P. lobata were the bioactive components Available online 5 April 2019 of an herbal remedy namely Yufeng Ningxin Tablets for the treatment of patients after stroke. This article Keywords: reviews recent application of P. lobota in the treatment of diabetics and in reducing alcohol drinking. In diabetics view of its low toxicity profile, P. lobota stands an excellent chance to be developed as a phytomedicine Pueraria lobata (Willd) Ohwi for treating human diseases. reducing alcohol drinking ©2019 Tianjin Press of Chinese Herbal Medicines. Published by Elsevier B.V. All rights reserved. Contents 1. Historical use of Pueraria lobata .
    [Show full text]
  • Quantitative Analysis of Spectinomycin and Lincomycin in Poultry Eggs by Accelerated Solvent Extraction Coupled with Gas Chromatography Tandem Mass Spectrometry
    foods Article Quantitative Analysis of Spectinomycin and Lincomycin in Poultry Eggs by Accelerated Solvent Extraction Coupled with Gas Chromatography Tandem Mass Spectrometry Bo Wang 1,2, Yajuan Wang 2,3, Xing Xie 4, Zhixiang Diao 2,3, Kaizhou Xie 2,3,*, Genxi Zhang 2,3 , Tao Zhang 2,3 and Guojun Dai 2,3 1 College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; [email protected] 2 Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; [email protected] (Y.W.); [email protected] (Z.D.); [email protected] (G.Z.); [email protected] (T.Z.); [email protected] (G.D.) 3 College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China 4 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China; [email protected] * Correspondence: [email protected]; Tel.: +86-139-5275-0925 Received: 30 March 2020; Accepted: 13 May 2020; Published: 18 May 2020 Abstract: A method based on accelerated solvent extraction (ASE) coupled with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed for the quantitative analysis of spectinomycin and lincomycin in poultry egg (whole egg, albumen and yolk) samples. In this work, the samples were extracted and purified using an ASE350 instrument and solid-phase extraction (SPE) cartridges, and the parameters of the ASE method were experimentally optimized. The appropriate SPE cartridges were selected, and the conditions for the derivatization reaction were optimized. After derivatization, the poultry egg (whole egg, albumen and yolk) samples were analyzed by GC-MS/MS.
    [Show full text]
  • Oxazolidinones for TB
    Oxazolidinones for TB: Current Status and Future Prospects 12th International Workshop on Clinical Pharmacology of Tuberculosis Drugs London, UK 10 September 2019 Lawrence Geiter, PhD Disclosures • Currently contract consultant with LegoChem Biosciences, Inc., Daejeon, Korea (LCB01-0371/delpazolid) • Previously employed with Otsuka Pharmaceutical Development and Commercialization, Inc. (delamanid, OPC-167832, LAM assay) What are Oxazolidinones • A family of antimicrobials mostly targeting an early step in protein synthesis • Cycloserine technically oxazolidinone but 2-oxazolidinone different MOA and chemical properties • New generation oxazolidinones bind to both 50S subunit and 30S subunit • Linezolid (Zyvox) and Tedizolid (Sivestro) approved for drug resistant skin infections and community acquired pneumonia Cycloserine • Activity against TB demonstrated in non- clinical and clinical studies • Mitochondrial toxicity >21 days limits use in TB treatment Linezolid Developing Oxazolidinones for TB Compound Generic Brand Sponsor Development Status TB Code- Activity/Trials PNU-100766 Linezolid Zyvox Pfizer Multiple regimen Yes/Yes TR-201 Tedizolid Sivextro Merck Pre-clinical efficacy Yes/No PNU-100480 Sutezolid Pfizer Multiple regimen studies Sequella Yes/Yes (PanACEA) TB Alliance LCB01-0371 Delpazolid LegoChem Bio EBA trial recruitment completed Yes/Yes TBI-223 - Global Alliance SAD trial launched Yes/Yes AZD5847 Posizolid AstraZenica Completed EBA Yes/No RX-1741 Radezolid Melinta IND for vaginal infections ?/No RBX-7644 Ranbezolid Rabbaxy None found ?/No MRX-4/MRX-1 Contezolid MicuRx Skin infections Yes/No U-100592 Eperezolid ? No clinical trials ?/No PK of Oxazolidinones in Development for TB Steady State PK Parameters Parameter Linezolid 600 Delpazolid 800 mg QD2 mg QD3 Cmax (mg/L) 17.8 8.9 Cmin (mg/L) 2.43 0.1 Tmax (h) 0.87 0.5 T1/2 (h) 3.54 1.7 AUC0-24 (µg*h/mL) 84.5 20.1 1 MIC90 (µg/mL) 0.25 0.5 References 1.
    [Show full text]
  • Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and Its Application
    Infect Dis Ther (2017) 6:57–67 DOI 10.1007/s40121-016-0144-8 REVIEW Use of Ceftaroline Fosamil in Children: Review of Current Knowledge and its Application Juwon Yim . Leah M. Molloy . Jason G. Newland Received: November 10, 2016 / Published online: December 30, 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com ABSTRACT infections, CABP caused by penicillin- and ceftriaxone-resistant S. pneumoniae and Ceftaroline is a novel cephalosporin recently resistant Gram-positive infections that fail approved in children for treatment of acute first-line antimicrobial agents. However, bacterial skin and soft tissue infections and limited data are available on tolerability in community-acquired bacterial pneumonia neonates and infants younger than 2 months (CABP) caused by methicillin-resistant of age, and on pharmacokinetic characteristics Staphylococcus aureus, Streptococcus pneumoniae in children with chronic medical conditions and other susceptible bacteria. With a favorable and those with invasive, complicated tolerability profile and efficacy proven in infections. In this review, the microbiological pediatric patients and excellent in vitro profile of ceftaroline, its mechanism of action, activity against resistant Gram-positive and and pharmacokinetic profile will be presented. Gram-negative bacteria, ceftaroline may serve Additionally, clinical evidence for use in as a therapeutic option for polymicrobial pediatric patients and proposed place in therapy is discussed. Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/ 1F47F0601BB3F2DD. Keywords: Antibiotic resistance; Ceftaroline J. Yim (&) fosamil; Children; Methicillin-resistant St. John Hospital and Medical Center, Detroit, MI, Staphylococcus aureus; Streptococcus pneumoniae USA e-mail: [email protected] L.
    [Show full text]
  • Empiric Antimicrobial Therapy for Diabetic Foot Infection
    Empiric Antimicrobial Therapy for Diabetic Foot Infection (NB Provincial Health Authorities Anti-Infective Stewardship Committee, September 2019) Infection Severity Preferred Empiric Regimens Alternative Regimens Comments Mild Wound less than 4 weeks duration:d Wound less than 4 weeks duration:e • Outpatient management • Cellulitis less than 2 cm and • cephalexin 500 – 1000 mg PO q6h*,a OR • clindamycin 300 – 450 mg PO q6h (only if recommended ,a • cefadroxil 500 – 1000 mg PO q12h* severe delayed reaction to a beta-lactam) without involvement of deeper • Tailor regimen based on culture tissues and susceptibility results and True immediate allergy to a beta-lactam at MRSA Suspected: • Non-limb threatening patient response risk of cross reactivity with cephalexin or • doxycycline 200 mg PO for 1 dose then • No signs of sepsis cefadroxil: 100 mg PO q12h OR • cefuroxime 500 mg PO q8–12h*,b • sulfamethoxazole+trimethoprim 800+160 mg to 1600+320 mg PO q12h*,f Wound greater than 4 weeks duration:d Wound greater than 4 weeks duratione • amoxicillin+clavulanate 875/125 mg PO and MRSA suspected: q12h*,c OR • doxycycline 200 mg PO for 1 dose then • cefuroxime 500 mg PO q8–12h*,b AND 100 mg PO q12h AND metroNIDAZOLE metroNIDAZOLE 500 mg PO q12h 500 mg PO q12h OR • sulfamethoxazole+trimethoprim 800+160 mg to 1600/320 mg PO q12h*,f AND metroNIDAZOLE 500 mg PO q12h Moderate Wound less than 4 weeks duration:d Wound less than 4 weeks duration:e • Initial management with • Cellulitis greater than 2 cm or • ceFAZolin 2 g IV q8h*,b OR • levoFLOXacin 750
    [Show full text]
  • Cefalexin in the WHO Essential Medicines List for Children Reject
    Reviewer No. 1: checklist for application of: Cefalexin In the WHO Essential Medicines List for Children (1) Have all important studies that you are aware of been included? Yes No 9 (2) Is there adequate evidence of efficacy for the proposed use? Yes 9 No (3) Is there evidence of efficacy in diverse settings and/or populations? Yes 9 No (4) Are there adverse effects of concern? Yes 9 No (5) Are there special requirements or training needed for safe/effective use? Yes No 9 (6) Is this product needed to meet the majority health needs of the population? Yes No 9 (7) Is the proposed dosage form registered by a stringent regulatory authority? Yes 9 No (8) What action do you propose for the Committee to take? Reject the application for inclusion of the following presentations of cefalexin: • Tablets/ capsules 250mg • Oral suspensions 125mg/5ml and 125mg/ml (9) Additional comment, if any. In order to identify any additional literature, the following broad and sensitive search was conducted using the PubMed Clinical Query application: (cephalexin OR cefalexin AND - 1 - pediatr*) AND ((clinical[Title/Abstract] AND trial[Title/Abstract]) OR clinical trials[MeSH Terms] OR clinical trial[Publication Type] OR random*[Title/Abstract] OR random allocation[MeSH Terms] OR therapeutic use[MeSH Subheading]) Only one small additional study was identified, which looked at the provision of prophylactic antibiotics in patients presenting to an urban children's hospital with trauma to the distal fingertip, requiring repair.1 In a prospective randomised control trial, 146 patients were enrolled, of which 69 were randomised to the no-antibiotic group, and 66 were randomised to the antibiotic (cefalexin) group.
    [Show full text]
  • Aldrich Vapor
    Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2-
    [Show full text]
  • In Vitro and in Vivo Study of Fosfomycin in Methicillin-Resistant Staphylococcus Aureus Septicaemia
    J. Ilyg., Camb. (1980), 96, 419-423 419 Printed in Great Britain In vitro and in vivo study of fosfomycin in methicillin-resistant Staphylococcus aureus septicaemia BY W. Y. LAU, C. H. TEOH-CHAN,* S. T. FAN AND K. F. LAU* Government Surgical Unit, Queen Mary Hospital, and * Department of Microbiology, University of Hong Kong {Received 15 October 19S5; accepted 12 December 19S5) SUMMARY Five hundred strains of methicillin-resistant Staphylococcus aureus were tested against various anti-staphylococcal agents. Vancomycin, fusidic acid and fosfo- mycin were found to be the most effective. Only 1 strain out of 500 was resistant to fosfomycin. Three patients with methicillin-resistant Staphylococcus aureus septicaemia were successfully treated by fosfomycin. We conclude that fosfomycin could be the drug of choice for methicillin-resistant Staphylococcns aureus infection. INTRODUCTION Outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) infection are causing increasing problems in centres all over the world (Thompson & Wenzel, 1982; Editorial, 1983). There has been a gradual increase in the incidence of MRSA in our hospital in Hong Kong from 317 in 1982 (18-7% of all S. aureus isolated) to 511 in 1983 (32-7%) and 833 in 1984 (34-9%). In vitro, resistance of MRSA is often demonstrated to many anti-staphylococcal agents including the penicillins, first-generation cephalosporins, aminoglycosides, erythromycin, clindamycin and chloramphenicol (Peacock et al. 1981). Second- and third-generation cephalosporins also have poor activity in vitro (Thompson, Fisher & Wenzel, 1982) though many MRSA strains have been found to be susceptible to rifampicin, trimethoprim- sulphamethoxazole and fusidic acid (Watanakunakorn, 1983). However, clinical experience of treating serious staphylococeal infection with rifampicin and trimethoprim-siilphamethoxazole is limited (Guenther & Wenzel, 1984) and fully resistant organisms may emerge rapidly after exposure to fusidic acid in vitro and in vivo (Watanakunakorn, 1983).
    [Show full text]
  • B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
    b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4].
    [Show full text]
  • Who Expert Committee on Specifications for Pharmaceutical Preparations
    WHO Technical Report Series 902 WHO EXPERT COMMITTEE ON SPECIFICATIONS FOR PHARMACEUTICAL PREPARATIONS A Thirty-sixth Report aA World Health Organization Geneva i WEC Cover1 1 1/31/02, 6:35 PM The World Health Organization was established in 1948 as a specialized agency of the United Nations serving as the directing and coordinating authority for international health matters and public health. One of WHO’s constitutional functions is to provide objective and reliable information and advice in the field of human health, a responsibility that it fulfils in part through its extensive programme of publications. The Organization seeks through its publications to support national health strat- egies and address the most pressing public health concerns of populations around the world. To respond to the needs of Member States at all levels of development, WHO publishes practical manuals, handbooks and training material for specific categories of health workers; internationally applicable guidelines and standards; reviews and analyses of health policies, programmes and research; and state-of-the-art consensus reports that offer technical advice and recommen- dations for decision-makers. These books are closely tied to the Organization’s priority activities, encompassing disease prevention and control, the development of equitable health systems based on primary health care, and health promotion for individuals and communities. Progress towards better health for all also demands the global dissemination and exchange of information that draws on the knowledge and experience of all WHO’s Member countries and the collaboration of world leaders in public health and the biomedical sciences. To ensure the widest possible availability of authoritative information and guidance on health matters, WHO secures the broad international distribution of its publica- tions and encourages their translation and adaptation.
    [Show full text]
  • Aldrich Raman
    Aldrich Raman Library Listing – 14,033 spectra This library represents the most comprehensive collection of FT-Raman spectral references available. It contains many common chemicals found in the Aldrich Handbook of Fine Chemicals. To create the Aldrich Raman Condensed Phase Library, 14,033 compounds found in the Aldrich Collection of FT-IR Spectra Edition II Library were excited with an Nd:YVO4 laser (1064 nm) using laser powers between 400 - 600 mW, measured at the sample. A Thermo FT-Raman spectrometer (with a Ge detector) was used to collect the Raman spectra. The spectra were saved in Raman Shift format. Aldrich Raman Index Compound Name Index Compound Name 4803 ((1R)-(ENDO,ANTI))-(+)-3- 4246 (+)-3-ISOPROPYL-7A- BROMOCAMPHOR-8- SULFONIC METHYLTETRAHYDRO- ACID, AMMONIUM SALT PYRROLO(2,1-B)OXAZOL-5(6H)- 2207 ((1R)-ENDO)-(+)-3- ONE, BROMOCAMPHOR, 98% 12568 (+)-4-CHOLESTEN-3-ONE, 98% 4804 ((1S)-(ENDO,ANTI))-(-)-3- 3774 (+)-5,6-O-CYCLOHEXYLIDENE-L- BROMOCAMPHOR-8- SULFONIC ASCORBIC ACID, 98% ACID, AMMONIUM SALT 11632 (+)-5-BROMO-2'-DEOXYURIDINE, 2208 ((1S)-ENDO)-(-)-3- 97% BROMOCAMPHOR, 98% 11634 (+)-5-FLUORODEOXYURIDINE, 769 ((1S)-ENDO)-(-)-BORNEOL, 99% 98+% 13454 ((2S,3S)-(+)- 11633 (+)-5-IODO-2'-DEOXYURIDINE, 98% BIS(DIPHENYLPHOSPHINO)- 4228 (+)-6-AMINOPENICILLANIC ACID, BUTANE)(N3-ALLYL)PD(II) CL04, 96% 97 8167 (+)-6-METHOXY-ALPHA-METHYL- 10297 ((3- 2- NAPHTHALENEACETIC ACID, DIMETHYLAMINO)PROPYL)TRIPH 98% ENYL- PHOSPHONIUM BROMIDE, 12586 (+)-ANDROSTA-1,4-DIENE-3,17- 99% DIONE, 98% 13458 ((R)-(+)-2,2'- 963 (+)-ARABINOGALACTAN BIS(DIPHENYLPHOSPHINO)-1,1'-
    [Show full text]