Control of Wnt5b Secretion by Wntless Modulates Chondrogenic Cell Proliferation Through Fine-Tuning Fgf3 Expression Bo-Tsung Wu1,2, Shih-Hsien Wen1,2, Sheng-Ping L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. -
The Sec14-Like Phosphatidylinositol Transfer Proteins Sec14l3/SEC14L2
RESEARCH ARTICLE The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling Bo Gong, Weimin Shen, Wanghua Xiao, Yaping Meng, Anming Meng*, Shunji Jia* State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China Abstract The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC). Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos. Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cd4a (Plcd4a); subsequently, Plcd4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release. Furthermore, Plcd4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP. Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction. DOI: 10.7554/eLife.26362.001 *For correspondence: mengam@ mail.tsinghua.edu.cn (AM); jiasj@ mail.tsinghua.edu.cn (SJ) Competing interests: The Introduction authors declare that no Wnt ligands, a large family of secreted lipoglycoproteins, control a large number of developmental competing interests exist. -
Wnt11 Regulates Cardiac Chamber Development and Disease During Perinatal Maturation
Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma, … , Brian Reemtsen, Yibin Wang JCI Insight. 2017;2(17):e94904. https://doi.org/10.1172/jci.insight.94904. Research Article Cardiology Genetics Ventricular chamber growth and development during perinatal circulatory transition is critical for functional adaptation of the heart. However, the chamber-specific programs of neonatal heart growth are poorly understood. We used integrated systems genomic and functional biology analyses of the perinatal chamber specific transcriptome and we identified Wnt11 as a prominent regulator of chamber-specific proliferation. Importantly, downregulation of Wnt11 expression was associated with cyanotic congenital heart defect (CHD) phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Perinatal hypoxia treatment in mice suppressed Wnt11 expression and induced myocyte proliferation more robustly in the right ventricle, modulating Rb1 protein activity. Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse hearts and reduced Rb1 protein and phosphorylation in neonatal cardiomyocytes. Finally, downregulated Wnt11 in hypoxemic TOF infantile hearts was associated with Rb1 suppression and induction of proliferation markers. This study revealed a previously uncharacterized function of Wnt11-mediated signaling as an important player in programming the chamber-specific growth of the neonatal heart. This function influences the chamber-specific development and pathogenesis in response to hypoxia and cyanotic CHDs. Defining the underlying regulatory mechanism may yield chamber-specific therapies for infants born with CHDs. Find the latest version: https://jci.me/94904/pdf RESEARCH ARTICLE Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma,1,2 Xuedong Kang,1,2 Fuying Gao,3 Yan Zhao,1,2 Ashley A. -
Wnt11 and Ret/Gdnf Pathways Cooperate in Regulating Ureteric Branching During Metanephric Kidney Development
Development 130, 3175-3185 3175 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00520 Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development Arindam Majumdar1, Seppo Vainio2, Andreas Kispert3, Jill McMahon1 and Andrew P. McMahon1,* 1Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA 2Biocenter Oulu and Department of Biochemistry, Faculties of Science and Medicine, University of Oulu, FIN-90014, Oulu, Finland 3Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany *Author for correspondence (e-mail: [email protected]) Accepted 1 April 2003 SUMMARY Reciprocal cell-cell interactions between the ureteric (Gdnf). Gdnf encodes a mesenchymally produced ligand for epithelium and the metanephric mesenchyme are needed to the Ret tyrosine kinase receptor that is crucial for normal drive growth and differentiation of the embryonic kidney to ureteric branching. Conversely, Wnt11 expression is completion. Branching morphogenesis of the Wolffian duct reduced in the absence of Ret/Gdnf signaling. Consistent derived ureteric bud is integral in the generation of ureteric with the idea that reciprocal interaction between Wnt11 and tips and the elaboration of the collecting duct system. Ret/Gdnf regulates the branching process, Wnt11 and Ret Wnt11, a member of the Wnt superfamily of secreted mutations synergistically interact in ureteric branching glycoproteins, which -
Activation of Thewnt–Яcatenin Pathway in a Cell Population on The
The Journal of Neuroscience, September 5, 2007 • 27(36):9757–9768 • 9757 Development/Plasticity/Repair Activation of the Wnt–Catenin Pathway in a Cell Population on the Surface of the Forebrain Is Essential for the Establishment of Olfactory Axon Connections Ambra A. Zaghetto,1 Sara Paina,1 Stefano Mantero,1 Natalia Platonova,1 Paolo Peretto,2 Serena Bovetti,2,3 Adam Puche,3 Stefano Piccolo,4 and Giorgio R. Merlo1 1Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy, 2Department of Animal and Human Biology, University of Torino, 10123 Torino, Italy, 3Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, and 4Department of Histology, Microbiology, and Medical Biotechnologies, School of Medicine, University of Padova, 35122 Padova, Italy A variety of signals governing early extension, guidance, and connectivity of olfactory receptor neuron (ORN) axons has been identified; however, little is known about axon–mesoderm and forebrain (FB)–mesoderm signals. Using Wnt–catenin reporter mice, we identify a novel Wnt-responsive resident cell population, located in a Frizzled7 expression domain at the surface of the embryonic FB, along the trajectory of incoming ORN axons. Organotypic slice cultures that recapitulate olfactory-associated Wnt–catenin activation show that the catenin response depends on a placode-derived signal(s). Likewise, in Dlx5Ϫ/Ϫ embryos, in which the primary connections fail to form, Wnt–catenin response on the surface of the FB is strongly reduced. The olfactory placode expresses a number of catenin- activating Wnt genes, and the Frizzled7 receptor transduces the “canonical” Wnt signal; using Wnt expression plasmids we show that Wnt5a and Wnt7b are sufficient to rescue catenin activation in the absence of incoming axons. -
WNT3 Hypopethylation Counteracts Low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia
WNT3 Hypopethylation Counteracts low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia Linlin Zhang ( [email protected] ) Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital https://orcid.org/0000-0003-0204-7972 Min Sang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Ying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yingying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Lijun Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Wenli Shi Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yangyang Yuan Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Bo Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Peifeng Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Research Article Keywords: Preeclampsia, Placentas, WNT3 gene, Hypopethylation, β-Catenin Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-609900/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/26 Abstract Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling pathway genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro. -
Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome
Vol. 10, 5785–5791, September 1, 2004 Clinical Cancer Research 5785 Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome Carmen Rodriguez,1 Luke Hughes-Davies,2 INTRODUCTION He´le`ne Valle`s,1 Be´atrice Orsetti,1 DNA amplification is a common mechanism of oncogenic Marguerite Cuny,1 Lisa Ursule,1 activation in human tumors, and band q13 of chromosome 11 is a frequent site of genetic aberration in a number of human Tony Kouzarides,2 and Charles Theillet1 malignancies, particularly breast and head and neck cancers (1). 1 Ge´notype et Phe´notypes Tumoraux E 229 INSERM, Centre Val Several candidate oncogenes have been proposed, among which d’Aurelle, Montpellier, France; 2Cancer Research UK/Wellcome Institute, Cambridge, United Kingdom only CCND1 and EMS1 meet the criteria for genes activated by DNA amplification (2). Both genes map to chromosome 11q13.3, 0.8 Mb apart, with CCND1 occupying a more centro- ABSTRACT meric position than EMS1 (3). Because CCND1 is frequently DNA amplification at band q13 of chromosome 11 is rearranged by chromosomal translocations in hematologic ma- common in breast cancer, and CCND1 and EMS1 remain lignancies and overexpressed in several human tumors, this gene the strongest candidate genes. However, amplification pat- has been considered the principal target for DNA amplification terns are consistent with the existence of four cores of am- at 11q13 (4). However, some findings suggested that 11q13 plification, suggesting the involvement of additional genes. amplification could be more complex. On the basis of the Here we present evidence strongly suggesting the involve- recently completed genome map, the 11q13 amplification do- ment of the recently characterized EMSY gene in the for- main spans up to 7 Mb and the existence of four distinct cores mation of the telomeric amplicon. -
Wnt5a and Wnt11 Inhibit the Canonical Wnt Pathway and Promote Cardiac Progenitor Development Via the Caspase-Dependent Degradation of AKT
Developmental Biology 398 (2015) 80–96 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT Joseph A. Bisson a,b, Bradley Mills a,b, Jay-Christian Paul Helt a,b, Thomas P. Zwaka c,d, Ethan David Cohen a,b,n a Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA b Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA c Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA d Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA article info abstract Article history: Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent Received 17 June 2014 transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second Received in revised form heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, 12 November 2014 activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise Accepted 13 November 2014 control over β-catenin signaling during heart development. We recently reported that two non- Available online 5 December 2014 canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that Keywords: would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/ Wnt signaling Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt β-Catenin pathway are unclear. -
Integrative Genomic Analyses of WNT11: Transcriptional Mechanisms Based on Canonical WNT Signals and GATA Transcription Factors
247-251 17/6/2009 01:23 ÌÌ Page 247 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 24: 247-251, 2009 247 Integrative genomic analyses of WNT11: Transcriptional mechanisms based on canonical WNT signals and GATA transcription factors MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center, Tokyo 104-0045, Japan Received April 22, 2009; Accepted May 29, 2009 DOI: 10.3892/ijmm_00000227 Abstract. We and others previously cloned and characterized activates the Ca2+-MAP3K7-NLK signaling cascade to break vertebrate WNT11 orthologs, which are involved in gastrulation, the canonical WNT signaling. Canonical WNT-to-WNT11 neurulation, cardiogenesis, nephrogenesis, and chondrogenesis signaling loop is involved in cellular migration during embryo- during fetal development. WNT11 orthologs activate both genesis as well as tumor invasion during carcinogenesis. canonical and non-canonical WNT signaling cascades depending on the expression profile of WNT receptors, such Introduction as Frizzled family members, LRP6, ROR2, and RYK. Human WNT11 is expressed in breast cancer, gastric cancer, esophageal WNT family members are secreted proteins with glycolipid cancer, colorectal cancer, neuroblastoma, Ewing sarcoma, and modifications, which are involved in embryogenesis, adult- prostate cancer. Canonical WNT signals and GATA family tissue homeostasis, and carcinogenesis (1-5). WNT1, WNT2, members are involved in WNT11 transcription during embryo- WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, genesis of model animals; however, precise mechanisms of WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT11 expression remain unclear. Here, refined integrative WNT10A, WNT10B, WNT11, and WNT16 genes are conserved genomic analyses of WNT11 are carried out to elucidate the in the mammalian genomes (6), whereas additional wnt family mechanisms of WNT11 transcription. -
A Canonical to Non-Canonical Wnt Signalling Switch in Haematopoietic Stem-Cell Ageing
LETTER doi:10.1038/nature12631 A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing Maria Carolina Florian1, Kalpana J. Nattamai2, Karin Do¨rr1, Gina Marka1, Bettina U¨berle1, Virag Vas1, Christina Eckl3, Immanuel Andra¨4, Matthias Schiemann4, Robert A. J. Oostendorp3, Karin Scharffetter-Kochanek1, Hans Armin Kestler5, Yi Zheng2 & Hartmut Geiger1,2 Many organs with a high cell turnover (for example, skin, intestine LT-HSCs presented with a reduced level and primarily cytoplasmic loca- and blood) are composed of short-lived cells that require continuous lization of b-catenin (Fig. 1d, e and Supplementary Video 3). Reduced replenishment by somatic stem cells1,2. Ageing results in the inability levels of b-catenin upon ageing were specific to the LT-HSC compart- of these tissues to maintain homeostasis and it is believed that somatic ment, as more differentiated LKs (Lin2c-Kit1Sca-12 cells), LSKs stem-cell ageing is one underlying cause of tissue attrition with age (Lin2Sca-11c-Kit1 cells), lymphoid-primed multipotent progenitors or age-related diseases. Ageing of haematopoietic stem cells (HSCs) (LMPPs; Lin2c-Kit1Sca-12CD341Flk21 cells) and short-term (ST)- is associated with impaired haematopoiesis in the elderly3–6. Despite HSCs (Lin2c-Kit1Sca-12CD341Flk22 cells) (Extended Data Fig. 1h) a large amount of data describing the decline of HSC function on showed similar levels of b-catenin upon ageing (Fig. 1g and Extended ageing, the molecular mechanisms of this process remain largely Data Fig. 1i). Axin2 (an established direct downstream target of cano- unknown, which precludes rational approaches to attenuate stem- nical Wnt signalling9,15) transcript levels in aged LT-HSCs were mark- cell ageing. -
Induction of Apoptosis Increases Expression of Non-Canonical WNT Genes in Myeloid Leukemia Cell Lines
1563-1569 7/11/07 19:04 Page 1563 ONCOLOGY REPORTS 18: 1563-1569, 2007 Induction of apoptosis increases expression of non-canonical WNT genes in myeloid leukemia cell lines HAKKI OGUN SERCAN1, MELEK PEHLIVAN1, OZLENEN SIMSEK1, HALIL ATES2 and ZEYNEP SERCAN1 Depatments of 1Medical Biology and Genetics, 2Hematology/Oncology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey Received May 3, 2007; Accepted July 20, 2007 Abstract. With the aim of determining the differential and cyclin D. The presence or exclusion of co-receptors (low expression of WNT and FZD genes, before and after density lipoprotein receptor-related protein 5 and 6-LRP5/6) induction of apoptosis in BCR-ABL positive cells, we treated or secreted Wnt antagonists (soluble frizzled related proteins the myeloid cell line K562 and control cell line HL60 with - sFRPs- and Dickkopf proteins) increases the complexity of imatinib mesylate and etoposide, and analyzed relative the molecular mechanisms underlying cellular outcomes. mRNA expression levels of WNT, FZD and sFRP genes Non-canonical pathway activation is independent of ß- under normal and apoptotic conditions by real-time RT-PCR. catenin. Two non-canonical pathways have also been defined: We observed marked increase in mRNA levels of FZD4, the planar cell polarity (PCP) and the Wnt/Ca2+ pathways (3-6). FZD5, FZD7 and WNT5b, correlating with apoptotic activity There is an overlap of proposed Wnt and Fzd proteins and and independent of the agent or cell line used. Our results secondary messengers participating in these non-canonical suggest the involvement of non-canonical Wnt signaling in pathways, complicating further the interpretation of experi- executing programmed cell death in myeloid cell lines. -
Role of Canonical Wnt Signaling in Endometrial Carcinogenesis
THD EME ARTICLE y Gynecologic Cancer Review For reprint orders, please contact [email protected] Role of canonical Wnt signaling in endometrial carcinogenesis Expert Rev. Anticancer Ther. 12(1), 51–62 (2012) Thanh H Dellinger*1, While the role of Wnt signaling is well established in colorectal carcinogenesis, its function in Kestutis Planutis2, gynecologic cancers has not been elucidated. Here, we describe the current state of knowledge Krishnansu S Tewari1 of canonical Wnt signaling in endometrial cancer (EC), and its implications for future therapeutic b and Randall F targets. Deregulation of the Wnt/ -catenin signaling pathway in EC occurs by inactivating 2 b-catenin mutations in approximately 10–45% of ECs, and via downregulation of Wnt antagonists Holcombe by epigenetic silencing. The Wnt pathway is intimately involved with estrogen and progesterone, 1Divison of Gynecologic Oncology, and emerging data implicate it in other important signaling pathways, such as mTOR and Department of Obstetrics and Gynecology, University of California, Hedgehog. While no therapeutic agents targeting the Wnt signaling pathway are currently in Irvine,Medical Center, 101 The City clinical trials, the preclinical data presented suggest a role for Wnt signaling in uterine Drive, Building 56, Room 260, Orange, carcinogenesis, with further research warranted to elucidate the mechanism of action and to CA 92868, USA proceed towards targeted cancer drug development. 2Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute of Mount Sinai School KEYWORDS: b-catenin • canonical Wnt signaling • carcinogenesis • endometrial cancer • novel therapeutic targets of Medicine, New York, NY 10029, • Wnt antagonists USA *Author for correspondence: Endometrial cancer (EC) is the most common predict prognosis based on a surgical pathology Tel.: +1 714 456 8020 Fax: +1 714 456 7754 gynecologic malignancy in the USA, with an study carried out by the Gynecologic Oncology [email protected] estimated 46,470 cases diagnosed in 2011 [1].