Role of Canonical Wnt Signaling in Endometrial Carcinogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detailed Review Paper on Retinoid Pathway Signalling
1 1 Detailed Review Paper on Retinoid Pathway Signalling 2 December 2020 3 2 4 Foreword 5 1. Project 4.97 to develop a Detailed Review Paper (DRP) on the Retinoid System 6 was added to the Test Guidelines Programme work plan in 2015. The project was 7 originally proposed by Sweden and the European Commission later joined the project as 8 a co-lead. In 2019, the OECD Secretariat was added to coordinate input from expert 9 consultants. The initial objectives of the project were to: 10 draft a review of the biology of retinoid signalling pathway, 11 describe retinoid-mediated effects on various organ systems, 12 identify relevant retinoid in vitro and ex vivo assays that measure mechanistic 13 effects of chemicals for development, and 14 Identify in vivo endpoints that could be added to existing test guidelines to 15 identify chemical effects on retinoid pathway signalling. 16 2. This DRP is intended to expand the recommendations for the retinoid pathway 17 included in the OECD Detailed Review Paper on the State of the Science on Novel In 18 vitro and In vivo Screening and Testing Methods and Endpoints for Evaluating 19 Endocrine Disruptors (DRP No 178). The retinoid signalling pathway was one of seven 20 endocrine pathways considered to be susceptible to environmental endocrine disruption 21 and for which relevant endpoints could be measured in new or existing OECD Test 22 Guidelines for evaluating endocrine disruption. Due to the complexity of retinoid 23 signalling across multiple organ systems, this effort was foreseen as a multi-step process. -
WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. -
Wnt/Β-Catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish
Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand A dissertation Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy University of Washington 2016 Reading Committee: Randall Moon, Chair Neil Nathanson Ronald Kwon Program Authorized to Offer Degree: Pharmacology ©Copyright 2016 Nicholas Stockton Strand University of Washington Abstract Wnt/β-catenin Signaling Regulates Regeneration in Diverse Tissues of the Zebrafish Nicholas Stockton Strand Chair of the Supervisory Committee: Professor Randall T Moon Department of Pharmacology The ability to regenerate tissue after injury is limited by species, tissue type, and age of the organism. Understanding the mechanisms of endogenous regeneration provides greater insight into this remarkable biological process while also offering up potential therapeutic targets for promoting regeneration in humans. The Wnt/β-catenin signaling pathway has been implicated in zebrafish regeneration, including the fin and nervous system. The body of work presented here expands upon the role of Wnt/β-catenin signaling in regeneration, characterizing roles for Wnt/β-catenin signaling in multiple tissues. We show that cholinergic signaling is required for blastema formation and Wnt/β-catenin signaling initiation in the caudal fin, and that overexpression of Wnt/β-catenin ligand is sufficient to rescue blastema formation in fins lacking cholinergic activity. Next, we characterized the glial response to Wnt/β-catenin signaling after spinal cord injury, demonstrating that Wnt/β-catenin signaling is necessary for recovery of motor function and the formation of bipolar glia after spinal cord injury. Lastly, we defined a role for Wnt/β-catenin signaling in heart regeneration, showing that cardiomyocyte proliferation is regulated by Wnt/β-catenin signaling. -
Genome‐Wide Analysis of Canonical Wnt Target Gene Regulation in Xenopus Tropicalis Challenges Β‐Catenin Paradigm
Review genesis DOI 10.1002/dvg.22991 Title Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges βcatenin paradigm Authors Yukio Nakamura and Stefan Hoppler Affiliations Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK Telephone +44 1224 437383 Email [email protected] Running head Context-specific Wnt target gene regulation Keywords Wnt signaling; βcatenin; Xenopus; gastrula; ChIP-seq; RNA-seq This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/dvg.22991 © 2017 Wiley Periodicals, Inc. Received: Oct 27, 2016; Accepted: Oct 30, 2016 This article is protected by copyright. All rights reserved. genesis Page 2 of 21 Abstract Wnt/β-catenin signaling is an important cell-to-cell signaling mechanism that controls gene expression during embryonic development and is critically implicated in human diseases. Developmental, cellular, and transcriptional responses to Wnt signaling are remarkably context-specific in different biological processes. While nuclear localization of βcatenin is the key to activation of the Wnt/βcatenin pathway and target gene expression, the molecular mechanisms of how the same Wnt/β-catenin signaling pathway induces specific responses remain undetermined. Recent advances in high- throughput sequencing technologies and the availability of genome information for Xenopus tropicalis have enabled us to uncover a genome-wide view of Wnt/βcatenin signaling in early vertebrate embryos, which challenges previous concepts about molecular mechanisms of Wnt target gene regulation. -
Wnt11 Regulates Cardiac Chamber Development and Disease During Perinatal Maturation
Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma, … , Brian Reemtsen, Yibin Wang JCI Insight. 2017;2(17):e94904. https://doi.org/10.1172/jci.insight.94904. Research Article Cardiology Genetics Ventricular chamber growth and development during perinatal circulatory transition is critical for functional adaptation of the heart. However, the chamber-specific programs of neonatal heart growth are poorly understood. We used integrated systems genomic and functional biology analyses of the perinatal chamber specific transcriptome and we identified Wnt11 as a prominent regulator of chamber-specific proliferation. Importantly, downregulation of Wnt11 expression was associated with cyanotic congenital heart defect (CHD) phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Perinatal hypoxia treatment in mice suppressed Wnt11 expression and induced myocyte proliferation more robustly in the right ventricle, modulating Rb1 protein activity. Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse hearts and reduced Rb1 protein and phosphorylation in neonatal cardiomyocytes. Finally, downregulated Wnt11 in hypoxemic TOF infantile hearts was associated with Rb1 suppression and induction of proliferation markers. This study revealed a previously uncharacterized function of Wnt11-mediated signaling as an important player in programming the chamber-specific growth of the neonatal heart. This function influences the chamber-specific development and pathogenesis in response to hypoxia and cyanotic CHDs. Defining the underlying regulatory mechanism may yield chamber-specific therapies for infants born with CHDs. Find the latest version: https://jci.me/94904/pdf RESEARCH ARTICLE Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma,1,2 Xuedong Kang,1,2 Fuying Gao,3 Yan Zhao,1,2 Ashley A. -
Wnt11 and Ret/Gdnf Pathways Cooperate in Regulating Ureteric Branching During Metanephric Kidney Development
Development 130, 3175-3185 3175 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00520 Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development Arindam Majumdar1, Seppo Vainio2, Andreas Kispert3, Jill McMahon1 and Andrew P. McMahon1,* 1Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA 2Biocenter Oulu and Department of Biochemistry, Faculties of Science and Medicine, University of Oulu, FIN-90014, Oulu, Finland 3Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany *Author for correspondence (e-mail: [email protected]) Accepted 1 April 2003 SUMMARY Reciprocal cell-cell interactions between the ureteric (Gdnf). Gdnf encodes a mesenchymally produced ligand for epithelium and the metanephric mesenchyme are needed to the Ret tyrosine kinase receptor that is crucial for normal drive growth and differentiation of the embryonic kidney to ureteric branching. Conversely, Wnt11 expression is completion. Branching morphogenesis of the Wolffian duct reduced in the absence of Ret/Gdnf signaling. Consistent derived ureteric bud is integral in the generation of ureteric with the idea that reciprocal interaction between Wnt11 and tips and the elaboration of the collecting duct system. Ret/Gdnf regulates the branching process, Wnt11 and Ret Wnt11, a member of the Wnt superfamily of secreted mutations synergistically interact in ureteric branching glycoproteins, which -
Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned. -
Control of Wnt5b Secretion by Wntless Modulates Chondrogenic Cell Proliferation Through Fine-Tuning Fgf3 Expression Bo-Tsung Wu1,2, Shih-Hsien Wen1,2, Sheng-Ping L
© 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 128, 2328-2339 doi:10.1242/jcs.167403 RESEARCH ARTICLE Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression Bo-Tsung Wu1,2, Shih-Hsien Wen1,2, Sheng-Ping L. Hwang3, Chang-Jen Huang1,2 and Yung-Shu Kuan1,2,4,* ABSTRACT activities to achieve the proper proliferation, differentiation or Wnts and Fgfs regulate various tissues development in migration responses is still relatively limited. β vertebrates. However, how regional Wnt or Fgf activities are In vertebrates, the -catenin-mediated canonical and the non- established and how they interact in any given developmental canonical Wnt signaling pathways have both been shown to be event is elusive. Here, we investigated the Wnt-mediated involved in the processes of craniofacial skeleton formation. In craniofacial cartilage development in zebrafish and found that mice, previous observations have indicated that Wnts can either fgf3 expression in the pharyngeal pouches is differentially reduced stimulate chondrogenesis by promoting survival and differentiation along the anteroposterior axis in wnt5b mutants and wntless (wls) of migrating neural crest cells (NCCs), or inhibit chondrogenesis by morphants, but its expression is normal in wnt9a and wnt11 repressing BMP2-induced chondrocyte gene expression, depending morphants. Introducing fgf3 mRNAs rescued the cartilage defects on the developmental stage and the local tissue context (Brault et al., in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous 2001; Liu et al., 2008; Reinhold et al., 2006; Yang et al., 2003). In Wls expression is not detectable but maternally deposited Wls is zebrafish, wnt4a and wnt11r have been shown to regulate the present in eggs, which might account for the lack of axis defects in formation of pharyngeal pouches, whereas wnt5b, wnt9a and wnt11 wls morphants. -
WNT3 Hypopethylation Counteracts Low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia
WNT3 Hypopethylation Counteracts low Activity of the Wnt Signaling Pathway in the Placenta of Preeclampsia Linlin Zhang ( [email protected] ) Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital https://orcid.org/0000-0003-0204-7972 Min Sang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Ying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yingying Li Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Lijun Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Wenli Shi Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Yangyang Yuan Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Bo Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Peifeng Yang Zhengzhou University Third Hospital and Henan Province Women and Children's Hospital Research Article Keywords: Preeclampsia, Placentas, WNT3 gene, Hypopethylation, β-Catenin Posted Date: June 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-609900/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/26 Abstract Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling pathway genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro. -
Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome
Vol. 10, 5785–5791, September 1, 2004 Clinical Cancer Research 5785 Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome Carmen Rodriguez,1 Luke Hughes-Davies,2 INTRODUCTION He´le`ne Valle`s,1 Be´atrice Orsetti,1 DNA amplification is a common mechanism of oncogenic Marguerite Cuny,1 Lisa Ursule,1 activation in human tumors, and band q13 of chromosome 11 is a frequent site of genetic aberration in a number of human Tony Kouzarides,2 and Charles Theillet1 malignancies, particularly breast and head and neck cancers (1). 1 Ge´notype et Phe´notypes Tumoraux E 229 INSERM, Centre Val Several candidate oncogenes have been proposed, among which d’Aurelle, Montpellier, France; 2Cancer Research UK/Wellcome Institute, Cambridge, United Kingdom only CCND1 and EMS1 meet the criteria for genes activated by DNA amplification (2). Both genes map to chromosome 11q13.3, 0.8 Mb apart, with CCND1 occupying a more centro- ABSTRACT meric position than EMS1 (3). Because CCND1 is frequently DNA amplification at band q13 of chromosome 11 is rearranged by chromosomal translocations in hematologic ma- common in breast cancer, and CCND1 and EMS1 remain lignancies and overexpressed in several human tumors, this gene the strongest candidate genes. However, amplification pat- has been considered the principal target for DNA amplification terns are consistent with the existence of four cores of am- at 11q13 (4). However, some findings suggested that 11q13 plification, suggesting the involvement of additional genes. amplification could be more complex. On the basis of the Here we present evidence strongly suggesting the involve- recently completed genome map, the 11q13 amplification do- ment of the recently characterized EMSY gene in the for- main spans up to 7 Mb and the existence of four distinct cores mation of the telomeric amplicon. -
Wnt5a and Wnt11 Inhibit the Canonical Wnt Pathway and Promote Cardiac Progenitor Development Via the Caspase-Dependent Degradation of AKT
Developmental Biology 398 (2015) 80–96 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT Joseph A. Bisson a,b, Bradley Mills a,b, Jay-Christian Paul Helt a,b, Thomas P. Zwaka c,d, Ethan David Cohen a,b,n a Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA b Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA c Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA d Department of Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA article info abstract Article history: Wnt proteins regulate cell behavior via a canonical signaling pathway that induces β-catenin dependent Received 17 June 2014 transcription. It is now appreciated that Wnt/β-catenin signaling promotes the expansion of the second Received in revised form heart field (SHF) progenitor cells that ultimately give-rise to the majority of cardiomyocytes. However, 12 November 2014 activating β-catenin can also cause the loss of SHF progenitors, highlighting the necessity of precise Accepted 13 November 2014 control over β-catenin signaling during heart development. We recently reported that two non- Available online 5 December 2014 canonical Wnt ligands, Wnt5a and Wnt11, act cooperatively to attenuate canonical Wnt signaling that Keywords: would otherwise disrupt the SHF. While these data reveal the essential role of this anti-canonical Wnt5a/ Wnt signaling Wnt11 signaling in SHF development, the mechanisms by which these ligands inhibit the canonical Wnt β-Catenin pathway are unclear. -
Integrative Genomic Analyses of WNT11: Transcriptional Mechanisms Based on Canonical WNT Signals and GATA Transcription Factors
247-251 17/6/2009 01:23 ÌÌ Page 247 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 24: 247-251, 2009 247 Integrative genomic analyses of WNT11: Transcriptional mechanisms based on canonical WNT signals and GATA transcription factors MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center, Tokyo 104-0045, Japan Received April 22, 2009; Accepted May 29, 2009 DOI: 10.3892/ijmm_00000227 Abstract. We and others previously cloned and characterized activates the Ca2+-MAP3K7-NLK signaling cascade to break vertebrate WNT11 orthologs, which are involved in gastrulation, the canonical WNT signaling. Canonical WNT-to-WNT11 neurulation, cardiogenesis, nephrogenesis, and chondrogenesis signaling loop is involved in cellular migration during embryo- during fetal development. WNT11 orthologs activate both genesis as well as tumor invasion during carcinogenesis. canonical and non-canonical WNT signaling cascades depending on the expression profile of WNT receptors, such Introduction as Frizzled family members, LRP6, ROR2, and RYK. Human WNT11 is expressed in breast cancer, gastric cancer, esophageal WNT family members are secreted proteins with glycolipid cancer, colorectal cancer, neuroblastoma, Ewing sarcoma, and modifications, which are involved in embryogenesis, adult- prostate cancer. Canonical WNT signals and GATA family tissue homeostasis, and carcinogenesis (1-5). WNT1, WNT2, members are involved in WNT11 transcription during embryo- WNT2B, WNT3, WNT3A, WNT4, WNT5A, WNT5B, WNT6, genesis of model animals; however, precise mechanisms of WNT7A, WNT7B, WNT8A, WNT8B, WNT9A, WNT9B, WNT11 expression remain unclear. Here, refined integrative WNT10A, WNT10B, WNT11, and WNT16 genes are conserved genomic analyses of WNT11 are carried out to elucidate the in the mammalian genomes (6), whereas additional wnt family mechanisms of WNT11 transcription.