Wnt3/Rhoa/ROCK Signaling Pathway Is Involved in Adhesion-Mediated Drug Resistance of Multiple Myeloma in an Autocrine Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Wnt3/Rhoa/ROCK Signaling Pathway Is Involved in Adhesion-Mediated Drug Resistance of Multiple Myeloma in an Autocrine Mechanism 1774 Wnt3/RhoA/ROCK signaling pathway is involved in adhesion-mediated drug resistance of multiple myeloma in an autocrine mechanism Masayoshi Kobune,1,2 Hiroki Chiba,1,2 Junji Kato,1 kinase pathway signal.This CAM-DR was also significantly Kazunori Kato,2 Kiminori Nakamura,2 reduced by Wnt3 small interfering RNA transfer to KMS-5. Yutaka Kawano,1 Kohichi Takada,1 These results indicate that Wnt3 contributes to VLA-6– Rishu Takimoto,1 Tetsuji Takayama,1 mediated CAM-DR via the Wnt/RhoA/ROCK pathway of Hirofumi Hamada,2 and Yoshiro Niitsu1 myeloma cells in an autocrine manner.Thus, the Wnt3 signaling pathway could be a promising molecular target to 1Fourth Department of Internal Medicine and 2Department of overcome CAM-DR of myeloma cells.[Mol Cancer Ther Molecular Medicine, Sapporo Medical University School of 2007;6(6):1774–84] Medicine, Sapporo, Japan Introduction Abstract Multiple myeloma is an end-stage B-cell neoplasia charac- Adhesion of myeloma cells to bone marrow stromal cells is terized by localization of malignant plasma cells in the bone now considered to play a critical role in chemoresistance. marrow and not in other locations. Despite tremendous However, little is known about the molecular mechanism efforts in developing effective treatment modalities such as governing cell adhesion–mediated drug resistance (CAM- autologous stem cell transplantation, exploring new mo- DR) of myeloma cells.In this study, we focused our interests lecular targeting drugs, etc., the disease still remains on the implication of the Wnt signal in CAM-DR.We first incurable, mainly due to the ultimate acquisition of drug screened the expression of Wnt family in myeloma cell lines resistance (1–7). and found that Wnt3 was overexpressed in all the myeloma One of the main mechanisms underlying the drug cells examined.KMS-5 and ARH77, which highly expressed resistance has been ascribed to the adhesive property of Wnt3 protein, tightly adhered to human bone marrow myeloma cells to the extracellular matrix or stromal cells in stromal cells, and accumulation of B-catenin and GTP- bone marrow (8–11). We and others have reported that in bounded RhoA was observed in these myeloma cell lines. various hematologic malignancies, including multiple Conversely, RPMI8226 and MM1S, which modestly myeloma, molecules responsible for the adhesive nature expressed Wnt3 protein, rather weakly adhered to human of tumor cells were integrins such as VLA-4 and VLA-5 bone marrow stromal.We then examined the relevance of (12–14). Through the interaction of integrins with their Wnt3 expression to adhesive property to stromal cells and ligands, up-regulation of antiapoptotic bcl-2 family mem- multidrug resistant gene 1 to CAM-DR of myeloma cells.KMS-5 and ARH-77 exhibited bers and/or overexpression of are induced, thereby causing tumor cells to become unrespon- apparent CAM-DR against doxorubicin.This CAM-DR was sive to anticancer drugs (12, 13, 15). This cell adhesion– significantly reduced by anti-integrin B antibody, anti- 1 mediated drug resistance (CAM-DR) has been overcome integrin A antibody and a Wnt-receptor competitor, 6 in vitro and in vivo by a combination of chemotherapy with secreted Frizzled-related protein-1, and Rho kinase inhibitor anti-integrin antibodies or inhibitors to drug resistance– Y27632, but not by the specific inhibitor of canonical related intracellular signal pathways (16). Furthermore, signaling (Dickkopf-1), indicating that Wnt-mediated CAM- recent studies have revealed that various humoral factors DR that is dependent on integrin A /B (VLA-6)–mediated 6 1 from tumor cells and/or stromal cells were implicated in attachment to stromal cells is induced by the Wnt/RhoA/Rho the adhesion and motility of myeloma plasma cells by their autocrine or paracrine action (17–21). Among the humoral factors, Wnt family members, which play a Received 11/7/06; revised 3/23/07; accepted 5/1/07. crucial role in differentiation and proliferation of normal Grant support: Ministry of Education, Culture, Sports, Science and Technology of Japan (H. Hamada) and Ministry of Health, Labour and and malignant cells in addition to the motility or adhesion Welfare of Japan (M. Kobune). mentioned above, are often activated in both bone marrow The costs of publication of this article were defrayed in part by the stromal cells and B-cell neoplasia including multiple payment of page charges. This article must therefore be hereby marked myeloma (4, 22–26). On the basis of these notions, in advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. the present study, we elucidated if any Wnt family Note: M. Kobune and H. Chiba contributed equally to this work. members are involved in CAM-DR of multiple myeloma. Requests for reprints: Yoshiro Niitsu, Fourth Department of Internal Medicine, Sapporo Medical University, Chuo-ku S1, W17, Sapporo, Materials and Methods 060-8556, Japan. Phone: 81-11-611-2111, ext. 3254; Fax: 81-11-612-7987. E-mail: [email protected] Cell Lines and Human Stromal Cells Copyright C 2007 American Association for Cancer Research. Human myeloma cell lines RPMI8226, EBV-transformed doi:10.1158/1535-7163.MCT-06-0684 ARH-77 (27, 28), MM1S, and KMS-5 (29, 30); lymphoma cell MolCancerTher2007;6(6).June2007 Downloaded from mct.aacrjournals.org on September 25, 2021. © 2007 American Association for Cancer Research. Molecular Cancer Therapeutics 1775 lines Ramos, PEER, and Molt-4; and leukemia cell lines were electrophoresed on an agarose gel and visualized by KG-1, HL-60, and U937 were cultured in RPMI 1640 ethidium bromide staining. containing 10% heat-inactivated FCS (Life Technologies), Transfection of Small Interfering RNA 2 mmol/L L-glutamine, 0.1% penicillin (100 units/mL), and Dicer substrate RNA duplexes for use in RNA interfer- streptomycin (100 mg/mL). hTERT gene–transduced ence against Wnt3 (NM_ 030753) were obtained from human stromal cells (hTERT-stromal cells) were generated iGENE Therapeutics. The sequences of dsRNA synthesized as previously described (31, 32) and were cultured in long- newly were as follows: sense, 5¶-ACGGAGAAGCGGAAG- term culture medium containing MEM-a, 12.5% horse GAAAAAUGCCAG-3¶; antisense, 5¶-UAUGCCUCUUCG- À serum (Life Technologies), 12.5% FCS, 1  10 6 mol/L CCUUCCUUUUUACGG-3¶. The non-silencing control À hydrocortisone (Sigma), 1  10 4 mol/L h-mercaptoetha- small interfering RNA (siRNA) for human was purchased nol (Sigma), 2 mmol/L L-glutamine, 0.1% penicillin from iGENE Therapeutics. (100 units/mL), and streptomycin (100 mg/mL). RNA duplexes specific for the human Wnt3 were Antibodies, Wnt Antagonists, and Chemical Reagents transfected into KMS-5 or ARH-77 cells using the DeliverX The specific antibody for h-catenin (clone 14) was transfection kit (Panomics) according to provided proto- purchased from BD. The specific antibodies for Wnt3 (sc- cols. Briefly, 5 Amol/L working stocks of siRNA were 5212), RhoA (sc-418), and Cdc42 (sc-8401) were from Santa diluted with Buffer-1, and siRNA Transfection Reagent was Cruz Biotechnology. The specific antibody for Rac (clone diluted with Buffer-2. Both solutions were mixed well and 23A8) was from Upstate, and the specific antibody for incubated at 37jC for 20 min to form working siRNA/ Wnt5a was purchased from R&D Systems. Function- siRNA transfection reagent complex. Cells were pelleted in h a  blocking anti-integrin 1 antibody 4B4, anti-integrin 4 a microtube (Falcon) by spinning for 5 min at 400 g. Cells a  antibody HP2/1, and anti-integrin 5 antibody SAM1were were washed thrice by PBS and pelleted again at 400 g obtained from Coulter, and anti-integrin ar AMF7, anti- for 5 min. After aspiration of the PBS, cells were a a a A integrin 2 Gi9, anti-integrin 3 C3, and anti-integrin 6 resuspended with 300 L of working siRNA/siRNA GoH3 (33) were obtained from Immunotech. Isotype transfection reagent complex and incubated at room control mouse IgG1antibody MOPC21(Sigma) and rat temperature for 5 min. After adding 300 AL of Opti-MEM IgG2a antibody DD13 (Chemicon) was used in the control (Invitrogen) to the microtubes, 600 AL of cells/transfection experiments. Recombinant secreted Frizzled-related pro- complex were transferred into one well of a six-well plate. tein-1 (sFRP-1) and Dickkopf-1 (DKK-1) were obtained Final concentration of Wnt3 siRNA in the sample well was from R&D Systems. Rho kinase (ROCK) inhibitor Y-27632 30 nmol/L. Cells/transfection complex was incubated for j and GRGDS (H-Gly-Arg-Gly-Asp-Ser-OH) peptide were 4 h at 37 C and 5% CO2. Subsequently, 1mL of complete purchased from Calbiochem. Doxorubicin was obtained growth media was added and incubated overnight. Next from Sigma and dissolved in sterile double-distilled water day, after cells were washed once, and cells were washed to before use. remove transfection complex and cultured in complete j Reverse Transcription-PCR growth media at 37 C and 5% CO2 before use. One microgram of total RNA was reverse transcribed by PlasmidVectors, GeneTransduction, andWnt3 Condi- SuperScript II (Invitrogen) and amplified using TaKaRa Ex tioned Medium Taq (TAKARA BIO, Inc.), with the primers described below. The CA promoter (chicken h-actin promoter with All PCR reactions were done using a PTC-200 Peltier cytomegalovirus enhancer)–based plasmid vector pCAcc Thermal Cycler (MJ Japan). PCR amplification using specific was employed in this study. Human Wnt3 cDNA contain- R primers for Wnt1 (5-GCTCCTGCTCAGAAGGTTCCAT-3, ing plasmid, pCR 2.1-hWnt3, was previously described R 5-GTCCGCTGTACGTGCAGAAGTT-3), Wnt2B (5- (34). To construct pCAcc-hWnt3, pCR 2.1-hWnt3 was GTAGCCAGGGTGAACTGAGTGT-3, 5-CTAGGGAAC- digested with EcoRI and ligated in pCAcc. The integrity CTGCAGCCTTGT-3), Wnt3 (5-ATCATAAGGGG- of the pCAcc-Wnt3 was confirmed by restriction endonu- CCGCCTGGCGAA-3, 5-CTTGCAGGTGTGCACGTCG- clease digestion and DNA sequencing.
Recommended publications
  • Paracrine and Autocrine Functions of PDGF in Malignant Disease
    ! " #$ %&#'( )*#+& (%( ,'-./'%(%' (+'.,' (+( 00 Paracrine and autocrine functions of PDGF in malignant disease BY TOBIAS SJÖBLOM Dissertation for the Degree of Doctor of Philosophy (Faculty of Medicine) in Molecular Cell Biology presented at Uppsala University in 2002. ABSTRACT Sjöblom T. 2002. Paracrine and autocrine functions of PDGF in malignant disease. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1190. 62pp. Uppsala. ISBN 91-554-5420-8. Growth factors and their receptors are frequently activated by mutations in human cancer. Platelet-derived growth factor (PDGF)-B and its tyrosine kinase receptor, the PDGF β- receptor, have been implicated in autocrine transformation as well as paracrine stimulation of tumor growth. The availability of clinically useful antagonists motivates evaluation of PDGF inhibition in these diseases. In chronic myelomonocytic leukemia with t(5;12), parts of the transcription factor TEL and the PDGF β-receptor are fused, generating a constitutively signaling protein. Oligomerization and unique phosphorylation pattern of TEL-PDGFβR was demonstrated, as well as the transforming activity of TEL-PDGFβR, which was sensitive to PDGF β-receptor kinase inhibition. Dermatofibrosarcoma protuberans (DFSP) is characterized by a translocation involving the collagen Iα1 and PDGF B-chain genes. The COLIA1-PDGFB fusion protein was processed to mature PDGF-BB and transformed fibroblasts in culture. The PDGF antagonist STI571 inhibited growth of COLIA1-PDGFB transfected cells and primary DFSP cells in vitro and in vivo through induction of apoptosis. Paracrine effects of PDGF-DD, a ligand for the PDGF β-receptor, were evaluated in a murine model of malignant melanoma. PDGF-DD production accelerated tumor growth and altered the vascular morphology in experimental melanomas.
    [Show full text]
  • Epha Receptors and Ephrin-A Ligands Are Upregulated by Monocytic
    Mukai et al. BMC Cell Biology (2017) 18:28 DOI 10.1186/s12860-017-0144-x RESEARCHARTICLE Open Access EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/ maturation and promote cell adhesion and protrusion formation in HL60 monocytes Midori Mukai, Norihiko Suruga, Noritaka Saeki and Kazushige Ogawa* Abstract Background: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/ spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/ macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. Results: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16− monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and β2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and β1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand- coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes.
    [Show full text]
  • WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of Hescs
    WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Jiang, Wei, Donghui Zhang, Nenad Bursac, and Yi Zhang. 2013. “WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs.” Stem Cell Reports 1 (1): 46-52. doi:10.1016/j.stemcr.2013.03.003. http:// dx.doi.org/10.1016/j.stemcr.2013.03.003. Published Version doi:10.1016/j.stemcr.2013.03.003 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877118 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Stem Cell Reports Report WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs Wei Jiang,1,2,3,* Donghui Zhang,6 Nenad Bursac,6 and Yi Zhang1,2,3,4,5,* 1Howard Hughes Medical Institute 2Program in Cellular and Molecular Medicine 3Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital 4Department of Genetics Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA 5Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA 6Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC 27708, USA *Correspondence: [email protected] (W.J.), [email protected] (Y.Z.) http://dx.doi.org/10.1016/j.stemcr.2013.03.003 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
    G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis.
    [Show full text]
  • Extrinsic Regulators of Mrna Translation in Developing Brain: Story of Wnts
    cells Article Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs Yongkyu Park * , Midori Lofton , Diana Li and Mladen-Roko Rasin * Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (M.L.); [email protected] (D.L.) * Correspondence: [email protected] (Y.P.); [email protected] (M.-R.R.) Abstract: Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neo- cortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also dis- rupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation.
    [Show full text]
  • Crosstalk Between Integrin and Receptor Tyrosine Kinase Signaling in Breast Carcinoma Progression
    BMB reports Mini Review Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression Young Hwa Soung, John L. Clifford & Jun Chung* Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130 This review explored the mechanism of breast carcinoma pro- cancer originates from breast epithelial cells that are trans- gression by focusing on integrins and receptor tyrosine kinases formed into metastatic carcinomas. Metastatic potential and re- (or growth factor receptors). While the primary role of integrins sponsiveness to treatment vary depending on the expression of was previously thought to be solely as mediators of adhesive hormone receptors such as estrogen receptor and progesterone interactions between cells and extracellular matrices, it is now receptor (5), RTKs such as ErbB-2, epidermal growth factor re- believed that integrins also regulate signaling pathways that ceptor (EGFR), and hepatocyte growth factor receptor, c-Met control cancer cell growth, survival, and invasion. A large (6), and integrins (7). Major integrins expressed on breast epi- body of evidence suggests that the cooperation between in- thelial cells include α2β1, α3β1, αvβ3, αvβ5, αvβ6, α5β1, tegrin and receptor tyrosine kinase signaling regulates certain α6β1, and α6β4 (7). Among these, this review focuses on signaling functions that are important for cancer progression. αvβ3, α5β1, and α6β4, all of which are upregulated in in- Recent developments on the crosstalk between integrins and vasive breast carcinoma and have well established relation- receptor tyrosine kinases, and its implication in mammary tu- ships with RTKs (8). These integrins serve as receptors for vi- mor progression, are discussed.
    [Show full text]
  • Wnt11 Regulates Cardiac Chamber Development and Disease During Perinatal Maturation
    Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma, … , Brian Reemtsen, Yibin Wang JCI Insight. 2017;2(17):e94904. https://doi.org/10.1172/jci.insight.94904. Research Article Cardiology Genetics Ventricular chamber growth and development during perinatal circulatory transition is critical for functional adaptation of the heart. However, the chamber-specific programs of neonatal heart growth are poorly understood. We used integrated systems genomic and functional biology analyses of the perinatal chamber specific transcriptome and we identified Wnt11 as a prominent regulator of chamber-specific proliferation. Importantly, downregulation of Wnt11 expression was associated with cyanotic congenital heart defect (CHD) phenotypes and correlated with O2 saturation levels in hypoxemic infants with Tetralogy of Fallot (TOF). Perinatal hypoxia treatment in mice suppressed Wnt11 expression and induced myocyte proliferation more robustly in the right ventricle, modulating Rb1 protein activity. Wnt11 inactivation was sufficient to induce myocyte proliferation in perinatal mouse hearts and reduced Rb1 protein and phosphorylation in neonatal cardiomyocytes. Finally, downregulated Wnt11 in hypoxemic TOF infantile hearts was associated with Rb1 suppression and induction of proliferation markers. This study revealed a previously uncharacterized function of Wnt11-mediated signaling as an important player in programming the chamber-specific growth of the neonatal heart. This function influences the chamber-specific development and pathogenesis in response to hypoxia and cyanotic CHDs. Defining the underlying regulatory mechanism may yield chamber-specific therapies for infants born with CHDs. Find the latest version: https://jci.me/94904/pdf RESEARCH ARTICLE Wnt11 regulates cardiac chamber development and disease during perinatal maturation Marlin Touma,1,2 Xuedong Kang,1,2 Fuying Gao,3 Yan Zhao,1,2 Ashley A.
    [Show full text]
  • Wnt Signaling in Cancer: Not a Binary ON:OFF Switch
    Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Wnt signaling in cancer: not a binary ON:OFF switch Dustin J. Flanagan1, Elizabeth Vincan2,# and Toby J. Phesse3,*. 1 Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK 2 University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia and School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia. 3 European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK and Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. *Corresponding author: Toby J. Phesse. Mailing address; European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK. Email; [email protected]. Phone number: +44 (0)29 2068 8495. # Corresponding author: Elizabeth Vincan. Mailing address; University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. Email: [email protected], Phone number: +61 3 9035 3555. The authors declare no potential conflicts of interest. Running Title: Wnt signaling in Apc mutant cells 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract In the March 1st issue of Cancer Research, we identified the Wnt receptor Fzd7 as an attractive therapeutic target for the treatment of gastric cancer.
    [Show full text]
  • Wnt11 and Ret/Gdnf Pathways Cooperate in Regulating Ureteric Branching During Metanephric Kidney Development
    Development 130, 3175-3185 3175 © 2003 The Company of Biologists Ltd doi:10.1242/dev.00520 Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development Arindam Majumdar1, Seppo Vainio2, Andreas Kispert3, Jill McMahon1 and Andrew P. McMahon1,* 1Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA 2Biocenter Oulu and Department of Biochemistry, Faculties of Science and Medicine, University of Oulu, FIN-90014, Oulu, Finland 3Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany *Author for correspondence (e-mail: [email protected]) Accepted 1 April 2003 SUMMARY Reciprocal cell-cell interactions between the ureteric (Gdnf). Gdnf encodes a mesenchymally produced ligand for epithelium and the metanephric mesenchyme are needed to the Ret tyrosine kinase receptor that is crucial for normal drive growth and differentiation of the embryonic kidney to ureteric branching. Conversely, Wnt11 expression is completion. Branching morphogenesis of the Wolffian duct reduced in the absence of Ret/Gdnf signaling. Consistent derived ureteric bud is integral in the generation of ureteric with the idea that reciprocal interaction between Wnt11 and tips and the elaboration of the collecting duct system. Ret/Gdnf regulates the branching process, Wnt11 and Ret Wnt11, a member of the Wnt superfamily of secreted mutations synergistically interact in ureteric branching glycoproteins, which
    [Show full text]
  • 1 Adhesion and Growth Factor Receptor Crosstalk Mechanisms
    Adhesion and Growth Factor Receptor Crosstalk Mechanisms Controlling Cell Migration Joanna R. Thomas1,2, Nikki R. Paul3, Mark R. Morgan1† 1. Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK. 2. Present Address: Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 3. Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK. † Corresponding author Correspondence to: Dr Mark R. Morgan, PhD, Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK. Tel: [+44](0)151-795-4992 / e-mail: [email protected] / Twitter: @M_MorganLab Keywords: Integrin, Growth Factor Receptor, Syndecan, Migration, Adhesion, Trafficking, Endocytosis, Signalling, Abbreviations: AKT - AKT Serine/Threonine Kinase c-MET - Hepatocyte growth factor receptor ECM - Extracellular matrix EGF - Epidermal growth factor FAK - Focal adhesion kinase EGFR - Epidermal growth factor receptor FAK - Focal Adhesion Kinase FGFR - Fibroblast growth factor receptor GFR - Growth factor receptor HSPG - heparan sulfate proteoglycans IAC - Integrin-associated complex MAPK - Mitogen activated protein kinase PI3K - Phosphoinositide 3-kinase PKC - Protein kinase C RCP - Rab-coupling protein RTK - Receptor tyrosine kinase TCPTP - T-cell protein tyrosine phosphatase / PTPN2 TGFβ - Transforming growth factor β TGFβR2 - Transforming growth factor β receptor 2 VEGFR2 - Vascular endothelial growth factor receptor 1 Abstract Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals.
    [Show full text]
  • Network Analysis Reveals Abberant Cell Signaling In
    NETWORK ANALYSIS REVEALS ABBERANT CELL SIGNALING IN MURINE DIABETIC KIDNEY By PRIYANKA GOPAL Submitted in partial fulfillment of the requirements Master of Science Thesis Advisor: Michael Simonson PhD Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2015 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Priyanka Gopal Candidate for the degree of Master of Science Committee Chair Dr. William P. Schilling, PhD Committee Member Dr. Christopher P. Ford, PhD Committee Member Dr. Jeffrey L. Garvin, PhD Committee Member Dr. Michael S. Simonson, PhD Date of Defense 03/16/2015 *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents………………………………………………………………………...iii List of Tables……………………………………………………………………………..iv List of Figures…………………………………………………………………………….v Acknowledgements………………………………………………………………………vi List of Abbreviations…………………………………………………………………....vii Abstract…………………………………………………………………..........................x Introduction…………….……………………………………………...............................1 Research Objectives and Specific Aims………………………………………………….5 Materials and Methods……………………………………………………………………6 Results……………………………………………………………………………………11 Discussion………………………………………………………………………………..16 Summary and Future Directions…………………………………………………………21 Bibliography……………………………………………………………………………..37 iii List of Tables Table 1 Quantitative PCR measurements of mRNA for putative first messengers altered in 16 week
    [Show full text]
  • Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
    HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned.
    [Show full text]