Delaware River Management Plan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DETERMINATION of TRAVELTIME in the DELAWARE RIVER, HANCOCK, NEW YORK, to the DELAWARE WATER GAP by USE of a CONSERVATIVE DYE TRACER by Kirk E
DETERMINATION OF TRAVELTIME IN THE DELAWARE RIVER, HANCOCK, NEW YORK, TO THE DELAWARE WATER GAP BY USE OF A CONSERVATIVE DYE TRACER by Kirk E. White and Todd W. Kratzer__________________ U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 93-4203 Prepared in cooperation with the DELAWARE RIVER BASIN COMMISSION Lemoyne, Pennsylvania 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBIT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsh, Acting Director For additional information Copies of this report may be write to: purchased from: U.S. Geological Survey Earth Science Information Center District Chief Open-File Reports Section U.S. Geological Survey Box 25286, MS 517 840 Market Street Denver Federal Center Lemoyne, Pennsylvania 17043-1586 Denver, Colorado 80225 CONTENTS Page Abstract....................................................................................1 Introduction ................................................................................1 Purpose and scope....................................................................1 Acknowledgments....................................................................4 Description of study reach .............................................................5 Methods of data collection and analysis .................................................5 Field and laboratory procedures.................................................5 Data analysis .................................................................8 River discharge.............................................................................16 -
Delaware River Basin Wild and Scenic River Values
DELAWARE RIVER BASIN NATIONAL PARK SERVICE | NATIONAL WILD AND SCENIC RIVERS SYSTEM | US DEPARTMENT OF THE INTERIOR NATIONAL WILD AND SCENIC RIVER VALUES DELAWARE RIVER BASIN | NATIONAL WILD AND SCENIC RIVER VALUES DELAWARE RIVER BASIN DELAWARE | NATIONAL WILD AND SCENIC RIVER VALUES NATIONAL Photo: David B. Soete PENNSYLVANIA • NEW YORK • NEW JERSEY EXPERIENCE YOUR AMERICA NATIONAL PARK SERVICE | NATIONAL WILD AND SCENIC RIVERS SYSTEM | US DEPARTMENT OF THE INTERIOR DELAWARE RIVER BASIN CONTENTS WILD AND SCENIC RIVER VALUES PENNSYLVANIA, NEW YORK, AND NEW JERSEY Overview ....................................... 2 Lower Delaware National Wild and Scenic River ....... 48 Dear friends of the Delaware River Basin, The Wild and Scenic Rivers Act . 5 ° Cultural . 50 Outstandingly Remarkable Values . 8 ~ Lower Delaware River (including Tinicum Creek, What comes to mind when you think about the Delaware River and its tributaries? Tohickon Creek, and Paunacussing Creek) . 50 ° Cultural Values . 10 Do you think of a beautiful river valley where one can experience solitude in nature and Ecological Values . 12 ° Ecological . 51 enjoy the incredible scenery of the meandering river and forested hillsides? A family friendly ° ~ Lower Delaware River . 51 destination that provides great opportunities for boating, fi shing, and picnicking? A rare example ° Geological Values . 14 ~ Tinicum Creek . 52 of a large, undammed river that allows continual natural migration of native fi sh from the sea to ° Recreational Values . 16 the river headwaters and back? An intact network of aquatic and riparian habitat that supports Scenic Values . 17 ~ Tohickon Creek . 52 abundance and diversity of plants, fi sh, birds, and other animals? A waterway and valley with an ° ~ Paunacussing Creek . -
Ecology of Upland Snake Communities in Managed Montane Longleaf Pine Habitats of Georgia Miranda Gulsby Kennesaw State University
Kennesaw State University DigitalCommons@Kennesaw State University Department of Ecology, Evolution, and Organismal Master of Science in Integrative Biology Theses Biology Summer 7-25-2019 Ecology of Upland Snake Communities in Managed Montane Longleaf Pine Habitats of Georgia Miranda Gulsby Kennesaw State University Follow this and additional works at: https://digitalcommons.kennesaw.edu/integrbiol_etd Part of the Integrative Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Gulsby, Miranda, "Ecology of Upland Snake Communities in Managed Montane Longleaf Pine Habitats of Georgia" (2019). Master of Science in Integrative Biology Theses. 48. https://digitalcommons.kennesaw.edu/integrbiol_etd/48 This Thesis is brought to you for free and open access by the Department of Ecology, Evolution, and Organismal Biology at DigitalCommons@Kennesaw State University. It has been accepted for inclusion in Master of Science in Integrative Biology Theses by an authorized administrator of DigitalCommons@Kennesaw State University. For more information, please contact [email protected]. Ecology of Upland Snake Communities in Managed Montane Longleaf Pine Habitats of Georgia Miranda Louise Gulsby A Thesis Presented in Partial Fulfillment of Requirements of the Master of Science in Integrative Biology for the Department of Evolution, Ecology, and Organismal Biology Kennesaw State University 1000 Chastain Road Kennesaw, Ga 30144 July 2019 Major Advisor: Thomas McElroy, Ph. D. Committee Members: Joel McNeal, Ph. -
Significant New Records of Amphibians and Reptiles from Georgia, USA
GEOGRAPHIC DISTRIBUTION 597 Herpetological Review, 2015, 46(4), 597–601. © 2015 by Society for the Study of Amphibians and Reptiles Significant New Records of Amphibians and Reptiles from Georgia, USA Distributional maps found in Amphibians and Reptiles of records for a variety of amphibian and reptile species in Georgia. Georgia (Jensen et al. 2008), along with subsequent geographical All records below were verified by David Bechler (VSU), Nikole distribution notes published in Herpetological Review, serve Castleberry (GMNH), David Laurencio (AUM), Lance McBrayer as essential references for county-level occurrence data for (GSU), and David Steen (SRSU), and datum used was WGS84. herpetofauna in Georgia. Collectively, these resources aid Standard English names follow Crother (2012). biologists by helping to identify distributional gaps for which to target survey efforts. Herein we report newly documented county CAUDATA — SALAMANDERS DIRK J. STEVENSON AMBYSTOMA OPACUM (Marbled Salamander). CALHOUN CO.: CHRISTOPHER L. JENKINS 7.8 km W Leary (31.488749°N, 84.595917°W). 18 October 2014. D. KEVIN M. STOHLGREN Stevenson. GMNH 50875. LOWNDES CO.: Langdale Park, Valdosta The Orianne Society, 100 Phoenix Road, Athens, (30.878524°N, 83.317114°W). 3 April 1998. J. Evans. VSU C0015. Georgia 30605, USA First Georgia record for the Suwannee River drainage. MURRAY JOHN B. JENSEN* CO.: Conasauga Natural Area (34.845116°N, 84.848180°W). 12 Georgia Department of Natural Resources, 116 Rum November 2013. N. Klaus and C. Muise. GMNH 50548. Creek Drive, Forsyth, Georgia 31029, USA DAVID L. BECHLER Department of Biology, Valdosta State University, Valdosta, AMBYSTOMA TALPOIDEUM (Mole Salamander). BERRIEN CO.: Georgia 31602, USA St. -
Reptiles in Arkansas
Terrestrial Reptile Report Carphophis amoenus Co mmon Wor msnake Class: Reptilia Order: Serpentes Family: Colubridae Priority Score: 19 out of 100 Population Trend: Unknown Global Rank: G5 — Secure State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Arkansas Valley Ouachita Mountains South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plain Carphophis amoenus Common Wormsnake 1079 Terrestrial Reptile Report Habitat Map Habitats Weight Crowley's Ridge Loess Slope Forest Obligate Lower Mississippi Flatwoods Woodland and Forest Suitable Problems Faced KNOWN PROBLEM: Habitat loss due to conversion Threat: Habitat destruction or to agriculture. conversion Source: Agricultural practices KNOWN PROBLEM: Habitat loss due to forestry Threat: Habitat destruction or practices. conversion Source: Forestry activities Data Gaps/Research Needs Genetic analyses comparing Arkansas populations with populations east of the Mississippi River and the Western worm snake. Conservation Actions Importance Category More data are needed to determine conservation actions. Monitoring Strategies More information is needed to develop a monitoring strategy. Carphophis amoenus Common Wormsnake 1080 Terrestrial Reptile Report Comments Trauth and others (2004) summarized the literature and biology of this snake. In April 2005, two new geographic distribution records were collected in Loess Slope Forest habitat within St. Francis National Forest, south of the Mariana -
Ecological Studies of the Smooth Earth Snake and Redbelly Snake, and Niche Modeling of Forest Species in Eastern Kansas
Ecological Studies of the Smooth Earth Snake and Redbelly Snake, and Niche Modeling of Forest Species in Eastern Kansas August 12, 2014 William H. Busbya, George R. Pisania, E. Townsend Petersonb, and Narayani Barveb aKansas Biological Survey 2101 Constant Avenue Lawrence, KS 66047-3759 bBiodiversity Institute University of Kansas Lawrence, KS 66045 Submitted to: Kansas Department of Wildlife, Parks and Tourism 512 SE 25th Avenue Pratt, KS 67124-5911 1 Table of Contents Chapter I. Ecological Studies of the Smooth Earth Snake and Redbelly Snake in Eastern Kansas Acknowledgments............................................................................................................................3 Introduction ......................................................................................................................................4 Methods............................................................................................................................................6 Results ..............................................................................................................................................8 Discussion ......................................................................................................................................11 Specific Proposal Questions Addressed by New Work ............................................................16 Northeast Kansas Habitats ........................................................................................................16 Reproduction -
Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state. -
ACTION: Original DATE: 01/29/2010 1:24 PM
ACTION: Original DATE: 01/29/2010 1:24 PM TO BE RESCINDED 1501:31-25-04 Reptiles and amphibians regulations. (A) "Native" reptiles or amphibians are those taxa listed in Ohio Revised Code section 1531.01 (WW) and (XX) and includes any individual, parts, eggs, tadpoles, or offspring dead or alive. (B) No endangered reptile or amphibian designated as such may be possessed, bred, sold, offered for sale, traded or bartered except in accordance with Ohio Revised Code section 1531.25 and Ohio Administrative Code rules 1501:31-23-01 and 1501:31-25-04 (this rule). (C) Except as provided in paragraph (B) of this rule, an Ohio resident, with a propagating license, may possess native reptiles or amphibians, live or dead which have been wild captured, legally obtained from out of state or captively produced. The following are exceptions to this rule: (1) The following taxa shall be taken, bought and/or sold in accordance with Ohio Administrative Code rule 1501:31-13-05: Bullfrog (Rana catesbeiana) Green frog (Rana clamitans) Snapping turtle (Chelydra serpentina serpentina) Spiny softshell turtle (Apalone spinifera spinifera) Smooth softshell turtle (Apalone mutica mutica) (2) Except as provided in paragraph (B) of this rule and paragraph (B) of rule 1501:31-13-05 of the Administrative Code, an Ohio resident 17 years of age or younger may possess without a propagating license not more than four individuals or 25 eggs, tadpoles, or larvae of each native reptile or amphibian, live or dead which have been taken from the wild, legally obtained from out of state or captively produced. -
A Guide to Missouri's Snakes
A GUIDE TO MISSOURI’S SNAKES MISSOURI DEPARTMENT OF CONSERVATION A Guide to Missouri’s Snakes by Jeffrey T. Briggler, herpetologist, and Tom R. Johnson, retired herpetologist, Missouri Department of Conservation Photographs by Jeffrey T. Briggler, Richard Daniel, Tom R. Johnson, and Jim Rathert Edited by Larry Archer Design by Susan Ferber Front cover: Eastern milksnake. Photo by Jim Rathert. mdc.mo.gov Copyright © 2017 by the Conservation Commission of the State of Missouri Published by the Missouri Department of Conservation PO Box 180, Jefferson City, Missouri 65102–0180 Equal opportunity to participate in and benefit from programs of the Missouri Depart- ment of Conservation is available to all individuals without regard to their race, color, religion, national origin, sex, ancestry, age, sexual orientation, veteran status, or disability. Questions should be directed to the Department of Conser- vation, PO Box 180, Jefferson City, MO 65102, 573-751-4115 (voice) or 800-735-2966 (TTY), or to Chief, Public Civil Rights, Office of Civil Rights, U.S. Department of the Interior, 1849 C Street, NW, Washington, D.C. 20240. GET TO KNOW MISSOURI’S SNAKES Snakes have generated more fear and misunderstanding than any other group of animals. Psychologists have proven that a fear of snakes (called ophidiophobia) is acquired; we are not born with it. Once people learn some of the interesting facts about snakes and discover that most of them are harmless and beneficial, their aversion may diminish. With patience and understanding, almost anyone can overcome a dread of snakes and actually enjoy studying them. One thing is certain — even people with a well-developed fear of snakes are curious about them. -
Eastern Wormsnake Carphophis Amoenus
Natural Heritage Eastern Wormsnake & Endangered Species Carphophis amoenus Program State Status: Threatened www.mass.gov/nhesp Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: Eastern Wormsnakes are small, glossy, thin snakes, and range from 18-37 cm (7-14.5 inches) in length. The body is unpatterned, gray or tan to dark brown. Distinguishing characteristics include a slightly flattened and pointed nose, small eyes, and a pink venter. Venter coloration extends onto sides of body to include 1st to 2nd scale rows. The tail length is short and has a blunt spine-like tip. The body typically has 13 scale rows. The scales are unkeeled and the annual plate is divided. They are a non-venomous snake in the Coluidae family. Based on research conducted in Kentucky, females Eastern Wormsnakes are slightly larger than males (mass: F = about 6.6g, M = about 4.6g); number of ventral scales (F = 112-150, M = 106-138). However, Copyright J.D.Wilson, 2006; www.discoverlife.org males have a longer tail length/body length (F = 11.3- 20.3, M = 13.4-20.4) and greater average number of SIMILAR SPECIES IN MASSACHUSETTS: There subcaudal scales (F = 14-36, M = 25-40). are three small snakes in Massachusetts that may be confused with the Eastern Wormsnake. The little brown Juveniles look like adults but the pattern is darker brown snake (Storeria dekayi) has a faint pattern of parallel and the venter brighter pink. spotting on the dorsum and lacks a pointed snout. The ring-necked snake (Diadophis punctatus) has a distinct cream or yellow colored ring across the neck and a cream colored venter; some have black crescent-shaped spots down the mid-venter. -
Development and Assessment of a Wildlife Habitat Relationship Model for Terrestrial Vertebrates in the State of Maryland
DEVELOPMENT AND ASSESSMENT OF A WILDLIFE HABITAT RELATIONSHIP MODEL FOR TERRESTRIAL VERTEBRATES IN THE STATE OF MARYLAND by Robert John Northrop A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Wildlife Ecology Spring 2009 Copyright 2009 Robert John Northrop All Rights Reserved DEVELOPMENT AND ASSESSMENT OF A WILDLIFE HABITAT RELATIONSHIP MODEL FOR TERRESTRIAL VERTEBRATES IN THE STATE OF MARYLAND by Robert John Northrop Approved: __________________________________________________________ Jacob L. Bowman, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Douglas W. Tallamy, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: __________________________________________________________ Robin Morgan, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ Debra Hess Norris, M.S. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I thank Dr. Jacob Bowman for his patience and continuing support over the past several years. Thanks to Dr. Roland Roth who originally asked me to teach at the University of Delaware in 1989. The experience of teaching wildlife conservation and management at the University for 14 years has changed the way I approach my professional life as a forest ecologist. I also offer a big thank – you to all my students at the University I have learned more from you than you can imagine. I am grateful to the U.S. Forest Service, Dr. Mark Twery and Scott Thomasma, for funding the initial literature review and research, and for ongoing database support as we use this work to build a useful conservation tool for planners and natural resource managers in Maryland. -
Monitoring of Tributaries
SCENIC RIVERS MONITORING PROGRAM FOR THE NON-TIDAL DELAWARE RIVER: QUALITY ASSURANCE PROJECT PLAN 2008-2009 DELAWARE RIVER BASIN COMMISSION DRBC Project Officer: Thomas J. Fikslin Date DRBC Quality Assurance Officer: Edward D. Santoro Date DRBC Program Officer Robert L. Limbeck Date USEPA Project Officer Patricia Iraci Date Table of Contents 1 TABLE OF CONTENTS .................................................................................................................................... 1 2 PROJECT MANAGEMENT ELEMENTS .................................................................................................. 1-1 2.1 DISTRIBUTION LIST .................................................................................................................................... 1-1 2.2 PROJECT / TASK ORGANIZATION ................................................................................................................ 1-2 2.3 PROBLEM DEFINITION AND BACKGROUND ................................................................................................. 1-4 2.4 PROJECT / TASK DESCRIPTION .................................................................................................................... 1-7 2.5 QUALITY OBJECTIVES AND CRITERIA ......................................................................................................... 1-7 2.5.1 Precision ............................................................................................................................................ 1-7 2.5.2 Accuracy ...........................................................................................................................................