La Componente Spaziale Nella Difesa

Total Page:16

File Type:pdf, Size:1020Kb

La Componente Spaziale Nella Difesa Centro Militare di Studi Strategici - Roma La componente spaziale nella difesa Francesco Borrini (University of Minho Portugal) Rubbettino Copyright © by CeMiSS Centro Militare di Studi Strategici Piazza della Rovere, 83 - 00165 Roma (RM) e-mail: [email protected] © 2006 - Rubbettino Editore 88049 Soveria Mannelli - Viale Rosario Rubbettino, 10 -Tel. (0968) 662034 www.rubbettino.it Sommario Lista degli acronimi 9 1. Sommario 13 2. Executive Summary 17 3. Cenni di diritto internazionale 21 4. Satelliti e sistemi di lancio 25 4.1.Telecomunicazioni 25 4.1.1. Problematiche generali 25 4.1.2. Le origini del SICRAL 27 4.1.3. Le scelte gestionali ed operative 32 4.1.4. Il Sistema SICRAL oggi 34 4.1.5. Il futuro delle comunicazioni militari 37 Allegato 1: Il Sistema SICRAL 43 Il satellite 43 Informazioni generali 43 La carrozza 44 Il Payload 46 Le reti instaurabili dal sistema SICRAL 48 Rete SHF/EHF FDMA PAMA 48 Rete SHF/EHF CDMA PAMA 49 Rete SHF/EHF SCPC DAMA 49 Rete a stella SHF/EHF - UHF TDMA DAMA 50 Rete a maglia UHF - UHF TDMA DAMA 50 Rete UHF - UHF non TDMA 50 Broadcasting aeronavale EHF - UHF 51 Capacità di traffico 51 5 4.2.Osservazione 52 4.2.1. Cenni storici 52 4.2.2. Le attività in Europa 56 4.2.3. Il Programma COSMO-SkyMed 59 4.2.4. Prospettive future 63 Allegato 1: Caratteristiche generali dei sensori SAR 66 Allegato 2: Il Sistema COSMO-SkyMed 68 Configurazione della costellazione 68 Orbita 68 Carrozza 70 Payload 71 Modi operativi 71 Allegato 3: Il Sistema Pleiades 73 Dati sui satelliti Pleiades 73 Dati orbitali 73 Carrozza 73 Payload 73 Modalità operative 74 4.3.Altri tipi di satelliti militari 74 4.3.1. Early Warning e SDI 74 4.3.2. ASAT 78 4.3.3. ELINT e SIGINT 80 4.3.4. Navigazione, localizzazione e soccorso 81 4.4.Sistemi di lancio 89 4.4.1. Problematiche del lancio dei satelliti 89 4.4.2. Lanciatori commerciali 94 4.4.3. Il problema dei costi di lancio 98 Propellenti solidi 98 Cannoni 99 Il sistema STS 101 Altre soluzioni 104 4.4.4. La scelta del poligono 107 4.4.5. Le capacità di lancio italiane 110 4.4.6. Possibili sistemi di lancio militari italiani 113 Allegato 1: Le orbite e le manovre orbitali 116 Considerazioni generali 116 Le leggi di Keplero 117 Prima legge di Keplero 117 Seconda legge di Keplero 118 6 Terza legge di Keplero 119 Gli elementi orbitali 119 Perturbazioni orbitali 121 Non sfericità della terra 121 Effetti degli altri corpi celesti 123 Effetto dell’atmosfera 124 Manovre orbitali 125 Manovre nel piano 126 Manovre fuori dal piano 127 Allegato 2: Sistemi di lancio disponibili sul mercato 128 Allegato 3: Il lanciatore italiano Vega 145 L’organizzazione 145 Il lanciatore 146 Prestazioni 149 5. L’uomo nello spazio 151 5.1.Astronavi militari 151 5.1.1. Gli studi effettuati 151 5.1.2. Possibili compiti di un’astronave militare 156 5.1.3. Possibili scelte per la Difesa 159 Allegato 1: Il programma italiano USV 164 5.2.Stazioni spaziali militari 165 5.2.1. I precedenti 165 5.2.2. Interesse delle stazioni spaziali militari 171 5.3.Il volo non orbitale 174 5.3.1. Premessa 174 5.3.2. Il volo suborbitale 176 5.3.3. Il volo ipospaziale 183 Bibliografia 189 7 Lista degli acronimi AAM AVUM Avionics Module APM AVUM Propulsion Module ASI Agenzia Spaziale Italiana AVUM Attitude and Vernier Upper Module BFN Beam Forming Network CCF Central Control Facility CCR Centro Controllo Reti (di telecomunicazione) CCS Centro Controllo Satellite CDMA Code Division Multiple Access CGC SICRAL Centro Gestione e Controllo SICRAL CIRA Centro Italiano Ricerche Aerospaziali COSMO-SkyMed COnstellation of Small Satellites for the Mediterranean ba- sin Observation DAMA on Demand Assigned Multiple Access DRS Data Relay Satellite DTFT Dropped Transonic Flight Test EELV Evolved Expendable Launch Vehicle EGNOS European Geostationary Navigation Overlay Service EHF Extra High Frequency ESA European Space Agency ET External Tank EVA Extra Vehicular Activity FDMA Frequency Division Multiple Access FFAA Forze Armate FTB Flying Test Bed GAS Gateway Special GBS Global Broadcasting System GNSS Global Navigation Satellite System GPS Global Positioning System 9 GSO Geo Synchronous Orbit GTO Geosynchronous Transfer Orbit HEO High Earth Orbit HF High Frequency (onde corte) IR Infra Red IRES Infra Red Earth Sensor ISS International Space Station IUS Inertial Upper Stage KH Keyhole LEO Low Earth Orbit LH2 Idrogeno liquido LNA Low Noise Amplifier LOX Ossigeno liquido MEO Medium Earth Orbit MMH Monometilidrazina NLS Navigation Land Earth Station NTO Tetrossido d’azoto N2 O4 ORFEO Optical and Radar Federation for Earth Observation ORT Orbital Re-entry Test PAM Payload Assist Module PAMA Permanently Assigned Multiple Access PISQ Poligono Interforze di Salto di Quirra R&S Ricerca e Sviluppo RCS Reaction Control System RIMS Ranging Integrity Monitory Stations RNI Rete Numerica Interforze della Difesa RX Ricezione, ricevente SAR Synthetic Aperture Radar SBS Satellite Broadcasting System SCPC Single Channel Per Carrier SHF Super High Frequency SICRAL Sistema Italiano Comunicazioni Riservate e ALlarmi; per le unità di volo, Satellite Italiano Comunicazioni Riserva- te e ALlarmi SICS Satellite Integrated Control System SRB Solid Rocket Booster SRT Sub-orbital Re-entry Test SSME Space Shuttle Main Engine SSO Sun Synchronous Orbit 10 SSPA Solid State Power Amplifier SSTO Single Stage To Orbit STS Space Transport System STS Space Transportation System TDMA Time Division Multiple Access TT&C Tracking, Telemetry and Control TWTA Travelling Wave Tube Amplifier TX Trasmissione, Trasmittente UAV Unmanned Aerial Vehicle UCAV Unmanned Combat Aerial Vehicle UDMH Dimetilidrazina asimmetrica UHF Ultra High Frequency USV Unmanned Space Vehicle VHF Very High Frequency 11 1. Sommario A meno di 50 anni dal lancio del primo Sputnik, evento che segnò l’inizio dell’Era Spaziale, la situazione è profondamente diversa da quella che a quei tempi si era immaginata. L’uomo ha messo piede sulla Luna, ma poi l’ha ab- bandonata, e i viaggi per Marte sono ancora un sogno; per contro, l’umanità si è saldamente installata nell’orbita terrestre, e i satelliti artificiali, da quelli meteorologici a quelli per trasmissioni televisive, si sono prepotentemente im- posti nella nostra vita quotidiana. Lo spazio è entrato di forza nella vita quo- tidiana; a volte ciò ci appare palese, come quando vediamo l’indicazione di un antifurto satellitare su di un furgone, talvolta è più occulto, come quando prendiamo una nuova medicina senza sapere che è il frutto anche di ricerche condotte su una stazione spaziale; ma, salvo qualche raro individuo, miliarda- rio e in ottima salute, l’uomo della strada rimane a terra. Sono i costi di lancio la causa di questa situazione: quando mettere in orbita un oggetto costa circa 20.000 $ per ogni kg lanciato, è chiaro che troppo lontano non si può andare. Agli inizi del XXI secolo, però, la situazione sta cambiando. L’Ansari X- prize, una gara per la realizzazione della prima astronave passeggeri comple- tamente privata, è stata vinta nel 2004 dal sistema Tier One e anche altri con- correnti, pur non essendosi aggiudicato il premio di 10 milioni di dollari, so- no intenzionati di contendere al vincitore un mercato che sta per aprirsi: quel- lo del turismo spaziale. Nessuna di queste “astronavi da turismo” ha la capa- cità di iniettare in orbita un satellite; ma sono un primo passo per consentire l’accesso allo spazio a basso costo, presentano un ricco ventaglio di nuove so- luzioni tecnologiche espressamente mirate all’economia, e potrebbero tra qualche anno evolversi in quella che fino ad oggi è apparsa una chimera: un trasporto orbitale capace di abbassare di ordini di grandezza i prezzi attuali. Il raggiungimento di questo obiettivo è la chiave per aprire, una volta per tut- te, la porta dello spazio. I militari sono, fin dagli inizi dell’era spaziale, tra i principali utenti dei si- stemi spaziali. Mentre astronavi e stazioni spaziali militari si sono fino ad ora 13 limitati, al massimo, a qualche esperimento, i satelliti militari hanno avuto grandissima diffusione; a partire dalla Guerra del Golfo, che ha visto l’impie- go di tutti i sistemi satellitari militari posseduti dagli Stati Uniti, non è oggi pensabile un’operazione militare che non veda anche l’impiego di sistemi spa- ziali. Anche in Italia la Difesa ha oggi a disposizione alcuni sistemi satellitari: per le telecomunicazioni (sistema SICRAL), per l’osservazione (Helios oggi, Cosmo-Skymed tra breve) e per la navigazione (GPS oggi, GPS e Galileo do- mani). L’approccio seguito dalla Difesa italiana per questi sistemi è fortemen- te differenziato: proprietà e controllo totale per le comunicazioni (SICRAL è un sistema tutto italiano, utilizzato solo dalla Difesa e gestito e controllato esclusivamente da militari); collaborazione con altri per l’osservazione (Helios è un sistema multinazionale, Cosmo-Skymed è un sistema nazionale ma aper- to all’impiego da altri paesi e a utilizzo sia civile che militare) e mantenendo in ambito militare solo gli elementi per la ricezione e l’elaborazione dell’infor- mazione; per la navigazione ci si è invece limitati all’impiego di un sistema già disponibile ed aperto a tutti gli utenti in tutto il mondo. Questi diversi approcci sono dovuti alla specificità e alle caratteristiche tecniche dei vari sistemi, nonché all’esigenza di contenere i costi di realizza- zione e operativi in termini accettabili. Realizzare e gestire un satellite geosta- zionario per telecomunicazioni non è eccessivamente difficile ed oneroso, e comporta il vantaggio operativo di consentire una stretta interazione tra con- trollori di satellite, controllori di rete e del carico utile ed utenza; gestire sa- telliti in orbita bassa è più complesso, richiede più stazioni (e quindi più per- sonale) e mantenere tutto in ambito militare non sarebbe probabilmente van- taggioso da un punto di vista costo/efficacia, almeno per il momento; la rea- lizzazione e la gestione di una costellazione di satelliti di navigazione sarebbe certamente al di là delle possibilità economiche delle nostre forze armate.
Recommended publications
  • Esa Bulletin 135 - August 2008 45 Vega
    Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009. The development of Vega passed major milestones in 2007 and 2008, providing essential results in terms of test data and design consolidation. These will lead to the Qualification Flight from Europe’s Spaceport in French Guiana at the end of 2009. This will be an important step in the implementation of the European strategy in the launcher sector and the guarantee of access to space for Europe, as endorsed by the ESA Ministerial Council in 2003. The ex p l o i t ation of this new ESA developed launcher will widen the range of launch services offered by launchers developed and produced by European industry and will improve launch flexibility by providing a more adapted response for a wide range of European institutional space missions, as well as an optimised family of launchers to serve commercial market needs. esa bulletin 135 - august 2008 45 Vega The former ELA-1 Ariane-1 launch pad at Kourou has Stefano Bianchi, Renato Lafranconi & been transformed for Vega. The Mobile Gantry is in place and the site almost complete. In the background, an Michel Bonnet Ariane-5 is seen being moved to its launch site ELA-3 Vega Programme, Directorate of Launchers, ESRIN, Frascati, Italy key element of the European launcher strategy for access to space, the Vega A small launcher is being preparing for its maiden flight in November 2009.
    [Show full text]
  • Space UK Earth’S Surface Water
    Issue #49 IN THIS ISSUE: Staring at the Sun MYSTERIOUS Helpline from Space Weightless in the Clouds MERCURY Contents News Cornwall Calling Space Weather Watcher Mapping the Route to Mars Honour for UK Astronaut New Satellite Tracks Pollution UK-France Space Deal In Pictures The Sun Features Mysterious Mercury Zero-G Science Helpline from Space Education Resources UK Space History Skylark Made in the UK Earth-i Info News Cornwall Calling The first Moon landing Cornwall Calling Credit: NASA Cornwall could soon be Antennas at Goonhilly beamed communicating with the Moon and images of the 1969 Moon landing Mars, following the announcement and, shortly after it was built in that the world’s first commercial deep 1985, the 32-metre Goonhilly-6 space communication base will be at antenna carried the historic Live Aid the Goonhilly Earth Station. concert broadcast to TV viewers An £8.4 million investment will see a around the world. two-year upgrade of the Goonhilly-6 A Space Industry Bill, announced antenna so it can communicate as part of the Queen’s speech in One of the large dishes at Goonhilly with future robotic and crewed 2017, will introduce new powers missions to the Moon and Mars. The to allow rocket and spaceplane Credit: Goonhilly Cornwall and Isles of Scilly Local launches from UK soil. Goonhilly is Enterprise Partnership’s Growth Deal also offering spacecraft tracking and the European Space Agency and communications facilities as (ESA) – which the UK Space Agency part of the Spaceport Cornwall contributes to – funded the contract, funding bid. which will allow Goonhilly to support “We see huge opportunities for ESA’s worldwide network of spacecraft the developing space sector in monitoring ground stations.
    [Show full text]
  • Les Fusées-Sondes De Sud-Aviation
    Les fusées-sondes de Sud-Aviation Jean-Jacques Serra Commission Histoire de la 3AF Origines : Centre national d'études des télécommunications (CNET) • Loi du 4 mai 1944, validée le 29 janvier 1945 • Demandes d'études - ministères (Guerre, Air, Marine), - Radiodiffusion française, - Comité d’action scientifique de la Défense nationale,... • Etudes sur la propagation radioélectrique plusieurs départements (Tubes et hyperfréquence, Transmission, Laboratoire national de radioélectricité) • Recherches sur la troposphère et sur l’ionosphère Programme spatial du CNET lancé en 1957 selon deux directions : • participation au lancement de fusées-sondes pour l’exploration de la haute atmosphère • traitement scientifique des données fournies par les signaux émis par les satellites artificiels Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 2 Contexte : Fusées-sondes existantes Fusées du CASDN pour l'AGI : • Véronique AGI : dérivée des Véronique N et NA (1952-1954) 60 kg à 210 km d'altitude • Monica IV et V : dérivées des Monica I à III (1955-1956) 15 kg à 80 km ou 140 km d'altitude Fusées de l'ONERA utilisées par le CEA : • Daniel : dérivé d'Ardaltex (1957-1959) 15 kg à 125 km d'altitude • Antarès : dérivé de l'engin d'essais de rentrée (1959-1961) 35 kg à 280 km d'altitude Samedis de l'Histoire de la 3AF Les fusées-sondes de Sud Aviation 15/10/2011 - 3 Définition des besoins du CNET Envoi d'une charge utile de 32 kg à 80 km, 120 km, 400 km et 1000 km d'altitude • fusées commandées à Sud Aviation • unité mobile construite
    [Show full text]
  • Pete Aldridge Well, Good Afternoon, Ladies and Gentlemen, and Welcome to the Fifth and Final Public Hearing of the President’S Commission on Moon, Mars, and Beyond
    The President’s Commission on Implementation of United States Space Exploration Policy PUBLIC HEARING Asia Society 725 Park Avenue New York, NY Monday, May 3, and Tuesday, May 4, 2004 Pete Aldridge Well, good afternoon, ladies and gentlemen, and welcome to the fifth and final public hearing of the President’s Commission on Moon, Mars, and Beyond. I think I can speak for everyone here when I say that the time period since this Commission was appointed and asked to produce a report has elapsed at the speed of light. At least it seems that way. Since February, we’ve heard testimonies from a broad range of space experts, the Mars rovers have won an expanded audience of space enthusiasts, and a renewed interest in space science has surfaced, calling for a new generation of space educators. In less than a month, we will present our findings to the White House. The Commission is here to explore ways to achieve the President’s vision of going back to the Moon and on to Mars and beyond. We have listened and talked to experts at four previous hearings—in Washington, D.C.; Dayton, Ohio; Atlanta, Georgia; and San Francisco, California—and talked among ourselves and we realize that this vision produces a focus not just for NASA but a focus that can revitalize US space capability and have a significant impact on our nation’s industrial base, and academia, and the quality of life for all Americans. As you can see from our agenda, we’re talking with those experts from many, many disciplines, including those outside the traditional aerospace arena.
    [Show full text]
  • Actes Du Colloque Du 2 Novembre 2005
    - 1 - ACTES DU COLLOQUE DU 2 NOVEMBRE 2005 « LA POLITIQUE SPATIALE EUROPÉENNE : QUELLES AMBITIONS POUR 2015 ? » ORGANISÉ PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ET M. CHRISTIAN CABAL, DÉPUTÉ, PRÉSIDENT DU GROUPE PARLEMENTAIRE SUR L’ESPACE - 2 - SOMMAIRE Pages I. INTERVENTIONS DE LA MATINÉE .................................................................................... 4 A. INTRODUCTION AU COLLOQUE PAR M. HENRI REVOL, SÉNATEUR, PRÉSIDENT DE L’OFFICE PARLEMENTAIRE D’ÉVALUATION DES CHOIX SCIENTIFIQUES ET TECHNOLOGIQUES ............................................................................. 4 B. INTERVENTION DE M. FRANÇOIS GOULARD, MINISTRE DÉLÉGUÉ À L’ENSEIGNEMENT SUPÉRIEUR ET À LA RECHERCHE. ................................................... 8 C. PREMIÈRE TABLE RONDE : L’AVENIR DE LA PROPULSION, LES LANCEURS DE DEMAIN ............................................................................................................................. 11 1. M. Viktor REMICHEVSKI, Directeur général adjoint de ROSKOSMOS ................................. 12 2. M. Kiyoshi HIGUCHI, Directeur exécutif de la JAXA (Japan Aerospace Exploration Agency .................................................................................................................................... 16 3. M. Jean-Yves LE GALL, Directeur général d’Arianespace ..................................................... 19 4. M. Michel EYMARD, Directeur des lanceurs du CNES..........................................................
    [Show full text]
  • Accesso Autonomo Ai Servizi Spaziali
    Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag.
    [Show full text]
  • Securing Japan an Assessment of Japan´S Strategy for Space
    Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • The President's Commission on Implementation of US Space Exploration Policy
    The President’s Commission on Implementation of US Space Exploration Policy Testimony By Philippe Berterottière Senior Vice President Sales, Marketing & Customer Programs Arianespace SA Arianespace - May 3, 2004 Who We Are • Founded in 1980 • The world’s 1st commercial launch services provider • Signed over 250 contracts • Launched majority of commercial satellites in orbit • >50% of our business is with US manufacturers/operators • Privately held European company with 44 Shareholders from 13 European nations • Arianespace is the prime contractor to ESA for marketing, sales, integration and launch of Europe’s family of vehicles Arianespace - May 3, 2004 2 Family of Launch Vehicles • Serves European launch policy to optimize resources and address all market segments • A contract with ESA provides Arianespace with the rights to operate Europe’s family of launch vehicles • Arianespace operates 3 systems from French Guiana The heavy-lift Ariane 5 (operational) The medium-lift Soyuz ST (from 2006) The light-lift Vega (from 2006) • Arianespace is currently involved in Soyuz operations from Baikonur through our sister company Starsem Arianespace - May 3, 2004 3 Ariane 5 Current Configurations & Capabilities LEO GTO Moon (mt) (mt) (mt) Ariane 5 Generic 6.8 Ariane 5 ECA 10 7.5 Ariane 5 ES/V 21 ARIANE 5 Configuration Under Evaluation Ariane 5 ECB 23 12 9 With the two solid propellant boosters and the central core of Ariane 5, there is a tool kit to build a super-heavy vehicle, should the need arise Arianespace - May 3, 2004 Facilities • We launch
    [Show full text]
  • Appunti Per La Storia Della Scuola Di Ingegneria Aerospaziale
    Filippo Graziani DALL’AERONAUTICA ALL’ASTRONAUTICA APPUNTI PER LA STORIA DELLA SCUOLA DI INGEGNERIA AEROSPAZIALE In occasione dell' 80.mo anniversario della fondazione della Scuola di Ingegneria Aerospaziale Roma, ottobre 2011 Sommario L’ambiente in cui è nata la Scuola. 3 Il momento aeronautico 5 Il momento aerospaziale 9 Il momento astronautico 17 La Scuola di Ingegneria Aerospaziale ritorna all’Aeroporto dell’Urbe 21 Conclusioni 22 Bibliografia 24 Appendice: De explorandis spatiis sideriis quae extra nos sunt et interiore homine qui intra nos est 25 1 2 L’ambiente in cui è nata la Scuola di Ingegneria Aerospaziale Siamo agli inizi del novecento, agli albori del volo aeronautico. Gaetano Arturo Crocco, appena trentenne, pilota su Roma, il 31 ottobre 1908, il dirigibile da lui costruito: andata e ritorno da Vigna di Valle (circa 80 km) in un’ ora e mezzo. E’ il primo volo sulla Capitale. Passa sul Campidoglio a 500 m di quota.(Figura 1 ) Figura 1 -Il dirigibile N1 di Gaetano Arturo Crocco, 31 Ottobre 1908 Qualche mese prima, a maggio 1 , era venuto a Roma, dalla Francia, Leone Delagrange con il suo biplano per mostrare a tutti che anche macchine più pesanti dell’aria potevano sollevarsi in volo. La sua impresa aveva avuto poco successo: il velivolo si era sollevato dal terreno della piazza d’Armi di Roma solo pochi centimetri (Figura 2).2 1 24 maggio 1908: centomila persone, 20 centesimi il biglietto 2 “ Sto fresco c’è venuto da la Francia Pé buggerà li sordi a noi Romani: Diceva de volà come un ucello E invece zampettava er sartarello.” (er Sor Capanna) 3 Figura 2 - Roma, Piazza d’Armi, Maggio 1908 A quei tempi il dirigibile andava bene, l’aereo ancora no, anche se già si intravedeva la possibilità di istituire le scuole di pilotaggio3.
    [Show full text]
  • Launch Uncertainty
    GRANT R. CATES Grant R. Cates is a senior engineering specialist at The Aerospace Corporation in Chantilly, Virginia. He has more than 30 years of experience in space launch and simulation modeling. His recent work and publications have focused on the use of discrete event simulation to advise the Air Force on future launch rates and NASA on the space shuttle, the International Space Station, human exploration of the solar system, and launch probability. Cates received a bachelor’s degree in engineering science from Colorado State University and a master’s degree and Ph.D. in industrial engineering from the University of Central Florida. DANIEL X. HOUSTON Daniel X. Houston is a senior project leader at The Aerospace Corporation in El Segundo, California. He applies qualitative and quantitative analytical methods, including statistics and simulation, to industrial and software engineering processes. Houston received a B.S. in mechanical engineering from The University of Texas at Austin and a master’s degree and Ph.D. in industrial engineering at Arizona State University. His publications include statistical modeling and simulation of software development processes, software process improvement, and the management of software projects, with a focus on risk, product quality, and economics. DOUGLAS G. CONLEY Douglas G. Conley is chief engineer of Launch Program Operations at The Aerospace Corporation in El Segundo, California. He has been engaged in domestic and international space launch programs spacecraft systems engineering, and mission assurance for over 35 years, mostly in the commercial realm before joining Aerospace in 2016. Conley received a B.S. in engineering and applied science from Caltech and a master’s degree in dynamics and control from the University of California, Los Angeles.
    [Show full text]
  • Space 2030 – Tackling Society's Challenges
    _it E d e it Space 2030 s io w n TACKLING SOCIETY’S CHALLENGES Spaceo 2030 r In coming decades, governments will increasingly be confronted with enduring ly societal challenges, including threats to the physical environment and B n the management of natural resources and issues relating to major trends that will TACKLING SOCIETY’S shape society at large: growing mobility and its consequences, increasing security O e D concerns, and a gradual shift to the information society. CHALLENGES d l C u Tackling these challenges effectively will not be easy. It will require consistent, a sustained, co-ordinated efforts over long periods of time. Space can help E e e in this regard. Indeed, space technology offers inherent strengths, such as O R s non-intrusive, ubiquitous coverage, dissemination of information over broad areas, rapid deployment and global navigation capability. Space systems may be able n e A r to provide effective support to public action, if appropriate space applications that tu fully meet users’ needs can be developed in a timely manner. L e c SPACE 2030 SPACE This book explores what this contribution might be. It discusses the challenges for developing space applications. It assesses the strengths and weaknesses of the institutional, legal and regulatory frameworks that currently govern space activities in the OECD area and beyond. Finally, it formulates an overall policy framework that OECD governments might use in drafting policies designed to : ensure that the potential that space has to offer is actually realised. Challenges Society’s Tackling OECD’s books, periodicals and statistical databases are now available via www.SourceOECD.org, our online library.
    [Show full text]