Deep Venous Thrombosis with Suspected Pulmonary Embolism

Total Page:16

File Type:pdf, Size:1020Kb

Deep Venous Thrombosis with Suspected Pulmonary Embolism Thoracic Imaging Peter A. Loud, MD Deep Venous Thrombosis Douglas S. Katz, MD Dennis A. Bruce, MD with Suspected Pulmonary Donald L. Klippenstein, MD Zachary D. Grossman, MD Embolism: Detection with Combined CT Venography Index terms: Computed tomography (CT), 1 angiography, 9*.129142, and Pulmonary Angiography 9*.12915, 9*.12916 Embolism, pulmonary, 60.72 Pulmonary angiography, 944.12914, 944.12915, 944.12916 PURPOSE: To determine the frequency and location of deep venous thrombosis at Veins, thrombosis, 9*.751, 9*.12914 computed tomographic (CT) venography after CT pulmonary angiography in a large series of patients clinically suspected of having pulmonary embolism and to Radiology 2001; 219:498–502 compare the accuracy of CT venography with lower-extremity venous sonography. Abbreviation: MATERIALS AND METHODS: Venous phase images were acquired from the DVT ϭ deep venous thrombosis diaphragm to the upper calves after completion of CT pulmonary angiography in 650 patients (373 women, 277 men; age range, 18–99 years; mean age, 63 years) 1 From the Department of Radiology, to determine the presence and location of deep venous thrombosis. Results of CT Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY 14263 (P.A.L., venography were compared with those of bilateral lower-extremity venous sonog- D.L.K., Z.D.G.), and the Department raphy in 308 patients. of Radiology, Winthrop University Hospital, Mineola, NY (D.S.K., D.A.B.). RESULTS: A total of 116 patients had pulmonary embolism and/or deep venous From the 1999 RSNA scientific assem- thrombosis, including 27 patients with pulmonary embolism alone, 31 patients with bly. Received July 7, 2000; revision re- quested August 19; revision received deep venous thrombosis alone, and 58 patients with both. Among 89 patients with October 4; accepted October 11. Ad- deep venous thrombosis, thrombosis was bilateral in 26, involved the abdominal or dress correspondence to P.A.L. (e- pelvic veins in 11, and was isolated to the abdominal or pelvic veins in four. In mail: [email protected]). patients in whom sonographic correlation was available, CT venography had a 2 9*. Vascular system, location unspec- sensitivity of 97% and a specificity of 100% for femoropopliteal deep venous ified. thrombosis. © RSNA, 2001 CONCLUSION: Combined CT venography and pulmonary angiography can accu- rately depict the femoropopliteal deep veins, permitting concurrent testing for venous thrombosis and pulmonary embolism. CT venography also defines pelvic or abdominal thrombus, which was seen in 17% of patients with deep venous throm- bosis. Pulmonary thromboembolism is a feared complication of deep venous thrombosis (DVT). The mortality rate in untreated cases is 25%–30%, whereas the mortality rate in treated cases decreases to 5%–8% (1). More than 90% of pulmonary emboli arise from deep veins of the legs and pelvis, and the primary risk factor for recurrent pulmonary embolism is the Author contributions: Guarantors of integrity of entire study, presence of residual proximal venous thrombosis (2,3). P.A.L., D.S.K.; study concepts, P.A.L.; Unfortunately, both pulmonary embolism and DVT are conditions that are notoriously study design, P.A.L., D.S.K.; literature difficult to diagnose clinically. Diagnostic algorithms for the evaluation of suspected research, P.A.L.; clinical studies, P.A.L., thromboembolism have traditionally included ventilation-perfusion lung scanning and D.S.K.; data acquisition and analysis/ interpretation, P.A.L., D.S.K.; statistical conventional pulmonary angiography to evaluate the lungs and lower-extremity sonog- analysis, P.A.L.; manuscript prepara- raphy to evaluate the leg veins, but they have recently evolved to include computed tion and definition of intellectual con- tomography (CT) (4). CT pulmonary angiography is increasingly being used to evaluate tent, P.A.L.; manuscript editing and suspected pulmonary embolism because it accurately defines emboli to the level of seg- revision/review, all authors; manu- script final version approval, P.A.L., mental pulmonary arteries and reveals other nonembolic causes of thoracic symptoms D.S.K. (5–7). Because pulmonary embolism and venous thrombosis are different aspects of the same 498 disease, a single study that accurately de- with a section thickness of 3–5 mm and a Sensitivity, specificity, and positive fines both processes would be a valuable pitch of 1.8 or 2.0 from the diaphragm to and negative predictive values from CT addition to the diagnostic regimen. Com- the aortic arch during a single breath venography, compared with lower-ex- bined CT venography and pulmonary hold, beginning 20–25 seconds after the tremity venous sonography, were calcu- angiography was reported in 1998 (8). start of contrast medium infusion. At lated. Cases with CT-depicted DVT iso- This test, which consists of helical CT both hospitals, transverse venous images, lated to the calf veins, iliac veins, and pulmonary angiography followed by ve- 5–10 mm thick, were acquired at 5-cm vena cava were excluded from these cal- nous phase CT performed from the dia- intervals during approximately 40 sec- culations, as sonography of these areas phragm to the calves, allows concurrent onds from the diaphragm to the upper was not routinely performed. evaluation of pulmonary embolism and calves. At one hospital, the venous study DVT. This technique uses the venous en- began 31⁄2 minutes after the start of con- hancement that follows rapid peripheral trast material infusion and included im- RESULTS venous infusion of iodinated contrast ages acquired from the upper calves up to medium for helical CT pulmonary an- the diaphragm. At the other, the venous Among 650 patients examined, 534 giography and therefore requires no ad- study began 3 minutes after contrast ma- (82%) showed no evidence of pulmonary ditional contrast medium to image the terial administration and included im- embolism or DVT. Among 116 (18%) deep veins. Findings of several subse- ages acquired from the diaphragm to the with positive CT scans—that is, those quent studies (9–11) in which CT venog- upper calves. Both protocols, therefore, with evidence of pulmonary embolism raphy was compared with lower-extrem- were used to image the femoropopliteal and/or DVT—58 had both pulmonary ity sonography have indicated that it is veins between 3 and 4 minutes after the embolism and DVT (Fig 1), 27 had pul- accurate for the evaluation of femoro- administration of contrast material. A to- monary embolism without DVT, and 31 popliteal DVT. tal of 18–20 venous images were typi- had DVT without pulmonary embolism The purpose of this study was to deter- cally obtained. (Fig 2). mine the frequency and location of DVT All CT scans were evaluated for DVT by In 26 of the 89 patients with DVT, with combined CT venography and pul- one of three radiologists (P.A.L., D.S.K., thrombus in the lower extremities was monary angiography in 650 consecutive D.L.K.) blinded to the results of any pre- bilateral. The most proximal location of patients referred for evaluation of sus- vious venous imaging. All radiologists thrombus defined at CT venography was pected pulmonary embolism. In a subset were fellowship trained in body imaging the calf veins or popliteal vein in 25, the of 308 patients, we compared the results and had an additional 4–8 years in prac- superficial femoral vein in 18, the com- with those of lower-extremity venous son- tice. Criteria for a diagnosis of DVT were mon femoral vein in 31, the iliac veins in ography. an intraluminal filling defect or localized five, and the inferior vena cava in 10 (Fig nonopacification of a venous segment. 3). DVT was found only in the superficial The location of DVT was recorded in all femoral vein in one patient and only in MATERIALS AND METHODS patients. In 85 patients, pulmonary em- the common femoral vein in two. Four bolism was diagnosed at helical CT pul- patients had thrombus only in the iliac Between September 1997 and April 2000, monary angiography. veins or inferior vena cava. 650 consecutive patients suspected of hav- The results of all patients undergoing A total of 308 patients underwent bilat- ing pulmonary embolism (373 women, bilateral lower-extremity venous sonog- eral lower-extremity sonography within 24 277 men; age range, 18–99 years; mean raphy within 24 hours before or after CT hours of CT. In this group, femoropopli- age, 63 years) underwent CT venography examination were reviewed. Sonography teal DVT was found at CT in 63 patients, and pulmonary angiography. The two was performed as part of the patient’s and DVT was found at sonography in 65. participating institutions were Winthrop clinical evaluation and involved the use There were two false-negative CT scans. University Hospital, Mineola, NY, and of a standard compression and Doppler Undetected thrombus in the superficial Roswell Park Cancer Institute, Buffalo, technique from the popliteal trifurcation and common femoral veins in these pa- NY, which contributed 509 and 141 cases, to the inguinal level, which included the tients represented short areas of clot, pre- respectively. The patient population in- popliteal vein and the superficial, deep, sumably missed due to the 5-cm section cluded 71 patients from an earlier prelim- and common femoral veins (12). Sono- interval used. In both patients, pulmonary inary study (10). Other patients were graphic findings were considered positive embolism was seen at helical CT pulmo- excluded during that period due to contra- if thrombus prevented complete collapse nary angiography. The sonograms of four indications to contrast medium adminis- of the vein during manual compression patients were initially interpreted as neg- tration, such as allergy or renal insuffi- and caused a lack of flow at Doppler ex- ative for femoropopliteal DVT. The cor- ciency, and unavailable venous access.
Recommended publications
  • Spring Programme 2011
    Faculty of Radiologists Royal College of Surgeons in Ireland Combined Spring Meeting 8th & 9 th April 2011 Venue: Castlemartyr Hotel, Co. Cork. Programme Faculty of Radiologists, Royal College of Surgeons in Ireland CPD Credits Awarded: 5 Royal College of Radiologists credits are applied for. Friday 8 th April 2011 3.30-4.30pm Registration 4.30-5.30pm Stroke in 2011, Moderator: Dr. Ian Kelly, Waterford Regional Hospital 4.30-5.00pm Acute Stoke Imaging. Dr Noel Fanning, Cork University Hospital, Cork 5.00-5.30pm Stroke: A clinical perspective. Dr. George Pope, John Radcliffe Hospitals, Oxford 5.30-6.30pm Moderator: Dr. Adrian Brady, Dean, Faculty of Radiologists Belfast to Bosnia and Autopsy to Virtopsy Dr. Jack Crane, State Pathologist, NI 8pm Dinner Saturday 9 th April 2011 8.30-9.00am Registration 9.00-10.00am Liver hour. Moderator: Dr John Feeney, AMNCH, Dublin 9.00-9.30am Liver imaging pre metastatectomy. Dr. Peter MacEneaney, Mercy University Hospital, Cork 9.30-10.00am Parenchymal and focal liver biopsy - when and how. Dr Stephen J Skehan St Vincent's University Hospital, Dublin 10.00-11.00am Paediatric Hour. Moderator: Dr. Stephanie Ryan, The Children’s University Hospital Temple Street, Dublin 10.00-10.30am Paediatric Abdominal Emergencies. Dr Eoghan Laffan, The Children’s, University Hospital Temple Street, Dublin 10.30-11.00am Non Accidental Injury. Dr Conor Bogue, Cork University Hospital, Cork 11.00-11.30am Tea/Coffee Break and Poster Exhibition 11.30-12.30pm MSK Hour. Moderator: Dr Orla Buckley, AMNCH, Dublin 11.30-12.00pm Image guided joint interventions.
    [Show full text]
  • CT Venography: Technique and Indications
    VENOUS CT Venography: Technique and Indications A brief summary of how to perform indirect and direct CT venography and when this imaging modality can be helpful in diagnosing venous disease. BY ANA MARIJA ALDUK, MD, PHD, AND GERARD O’SULLIVAN, MD T venography (CTV) is not a particularly well- A B validated technique, with most data derived from anecdotal experience. For a variety of reasons, CTV has become the go-to imag- Cing modality for a quick and efficient answer to most venous problems. For example, we work in a trauma center with a large oncology population, and we have learned that oftentimes ultrasound simply doesn’t cut it, particularly in the context of intra-abdominal C D malignancy. Even in very experienced hands, things can be missed. CTV/contrast-enhanced CT provides multiple extra levels of information, including the presence or absence of inferior vena cava (IVC) filters; the condition of the IVC, renal veins, collaterals, and internal iliac veins; potential iliac vein compression or Figure 1. CTPA showing massive bilateral PE (A). Indirect CTV nutcracker syndromes; presence of pelvic varicosities; demonstrates acute IVC thrombosis (B), right external iliac as well as ovarian vein thrombosis and undiagnosed vein scarring due to previous DVT (C), and right common malignancy. femoral vein thrombosis (D). TECHNIQUE A C Indirect CTV Often combined with CT pulmonary angiography (CTPA) in the acute setting, indirect CTV is performed as a standard, nonoral, post–intravenous contrast- enhanced CT at approximately 120 to 150 seconds after injection of contrast, which is considerably later than portal venous phase.
    [Show full text]
  • 2Nd Quarter 2001 Medicare Part a Bulletin
    In This Issue... From the Intermediary Medical Director Medical Review Progressive Corrective Action ......................................................................... 3 General Information Medical Review Process Revision to Medical Record Requests ................................................ 5 General Coverage New CLIA Waived Tests ............................................................................................................. 8 Outpatient Hospital Services Correction to the Outpatient Services Fee Schedule ................................................................. 9 Skilled Nursing Facility Services Fee Schedule and Consolidated Billing for Skilled Nursing Facility (SNF) Services ............. 12 Fraud and Abuse Justice Recovers Record $1.5 Billion in Fraud Payments - Highest Ever for One Year Period ........................................................................................... 20 Bulletin Medical Policies Use of the American Medical Association’s (AMA’s) Current Procedural Terminology (CPT) Codes on Contractors’ Web Sites ................................................................................. 21 Outpatient Prospective Payment System January 2001 Update: Coding Information for Hospital Outpatient Prospective Payment System (OPPS) ......................................................................................................................... 93 he Medicare A Bulletin Providers Will Be Asked to Register Tshould be shared with all to Receive Medicare Bulletins and health care
    [Show full text]
  • (MRA) and Magnetic Resonance Venography (MRV) Medical Policy
    Magnetic Resonance Angiography (MRA) and Magnetic Resonance Venography (MRV) Medical Policy The content of this document is used by plans that do not utilize NIA review. Service: Magnetic Resonance Angiography (MRA) and Magnetic Resonance Venography (MRV) PUM 250-0027-1712 Medical Policy Committee Approval 12/11/2020 Effective Date 01/01/2021 Prior Authorization Needed Yes Description: Magnetic Resonance Angiography (MRA) and Magnetic Resonance Venography (MRV) use Magnetic resonance imaging (MRI) technology to produce detailed 2-dimensional or 3- dimensional images of the vascular system and may be tailored to assess arteries or veins. It is often used for vascular conditions where other types of imaging are considered inferior or contraindicated, and to decrease risk of cumulative radiation exposure and often instead of invasive procedures. Indications of Coverage: A. MRA/MRV is considered medically necessary for the anatomical regions listed below when the specific indications or symptoms described are documented: 1. Head/Brain: a. Suspected intracranial aneurysm (ICA) or arteriovenous malformation (AVM). Any of the following: 1. Acute severe headache, severe exertional headache, or sudden onset of explosive headache, in individuals with signs / symptoms highly suggestive of a leaking/ruptured internal carotid artery or arteriovenous malformation. 2. Known subarachnoid hemorrhage or diagnosis of spontaneous intracerebral hemorrhage with concern for underlying vascular abnormality. 3. Suspected arteriovenous malformation (AVM) or dural AV fistula in an individual with prior indeterminate imaging study 4. Thunderclap headache with question of underlying vascular abnormality AND prior negative workup to include EITHER i. negative brain MRI, OR ii. Negative brain CT and negative lumbar puncture Page 1 of 15 5.
    [Show full text]
  • Optos 200Tx and Heidelberg Spectralis
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 19, 2021 Performance evaluation of two fundus oculi angiographic imaging system: Optos 200Tx and Heidelberg Spectralis SHUANG LI, JING‑JING WANG, HONG‑YANG LI, WEI WANG, MENG TIAN, XU‑QIANG LANG and KANG WANG Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China Received December 15, 2018; Accepted October 29, 2019 DOI: 10.3892/etm.2020.9451 Abstract. The present study aimed to compare the imaging Introduction performance of two ultra‑wide‑field fluorescein angiog‑ raphy imaging systems, namely the OptosOptomap 200Tx Ultra‑wide‑field fluorescein angiography (UWFA) is a novel (Optos 200Tx) and the Heidelberg Spectralis (Spectralis). A total technology that has developed rapidly in recent years (1,2). of 18 patients (36 eyes) underwent angiography using the two As numerous pathological changes of fundus diseases occur systems at the Department of Ophthalmology, Beijing Friendship at the edge of the retina, the limitation of imaging leads to Hospital (Beijing, China) between January and June 2017. The insufficient diagnosis or underestimation of the severity of the images were obtained as a single shot centered on the macula. disease (3,4). Therefore, clear imaging of the edge of the retina The total area and area within each of four visualized quadrants is important for the diagnosis, monitoring and prognostication were calculated and compared. The averages of the total and of patients with ocular fundus diseases. The traditional fundus individual quadrant area captured by the Optos 200Tx were fluorescein angiography system may only provide a vision field all larger than those obtained with the Spectralis (P<0.05).
    [Show full text]
  • Initial Observations Comparing MDCT and 3.0T MRI Findings with Autopsy Findings
    Utility of Postmortem Autopsy via Whole- Body Imaging: Initial Observations Comparing MDCT and 3.0T MRI Findings with Autopsy Findings Jang Gyu Cha, MD1 Dong Hun Kim, MD1 Objective: We prospectively compared whole-body multidetector computed Dae Ho Kim, MD2 tomography (MDCT) and 3.0T magnetic resonance (MR) images with autopsy Sang Hyun Paik, MD1 findings. Jai Soung Park, MD1 Materials and Methods: Five cadavers were subjected to whole-body, 16- Seong Jin Park, MD1 channel MDCT and 3.0T MR imaging within two hours before an autopsy. A radi- Hae Kyung Lee, MD1 ologist classified the MDCT and 3.0T MRI findings into major and minor findings, Hyun Sook Hong, MD1 which were compared with autopsy findings. 3 Duek Lin Choi, MD Results: Most of the imaging findings, pertaining to head and neck, heart and 4 Kyung Moo Yang, MD vascular, chest, abdomen, spine, and musculoskeletal lesions, corresponded to 4 Nak Eun Chung, MD autopsy findings. The causes of death that were determined on the bases of 4 Bong Woo Lee, MD MDCT and 3.0T MRI findings were consistent with the autopsy findings in four of 4 Joong Seok Seo, MD five cases. CT was useful in diagnosing fatal hemorrhage and pneumothorax, as well as determining the shapes and characteristics of the fractures and the direc- Index terms: tion of external force. MRI was effective in evaluating and tracing the route of a Computed tomography (CT) metallic object, soft tissue lesions, chronicity of hemorrhage, and bone bruises. Magnetic resonance (MR) Whole-body imaging Conclusion: A postmortem MDCT combined with MRI is a potentially powerful Forensic autopsy tool, providing noninvasive and objective measurements for forensic investiga- DOI:10.3348/kjr.2010.11.4.395 tions.
    [Show full text]
  • Coders' Desk Reference for ICD-10-PCS Procedures
    2 0 2 DESK REFERENCE 1 ICD-10-PCS Procedures ICD-10-PCS for DeskCoders’ Reference Coders’ Desk Reference for ICD-10-PCS Procedures Clinical descriptions with answers to your toughest ICD-10-PCS coding questions Sample 2021 optum360coding.com Contents Illustrations ..................................................................................................................................... xi Introduction .....................................................................................................................................1 ICD-10-PCS Overview ...........................................................................................................................................................1 How to Use Coders’ Desk Reference for ICD-10-PCS Procedures ...................................................................................2 Format ......................................................................................................................................................................................3 ICD-10-PCS Official Guidelines for Coding and Reporting 2020 .........................................................7 Conventions ...........................................................................................................................................................................7 Medical and Surgical Section Guidelines (section 0) ....................................................................................................8 Obstetric Section Guidelines (section
    [Show full text]
  • APG Regulations
    FINAL as of 8/22/08 Pursuant to the authority vested in the Commissioner of Health by Section 2807(2-a) of the Public Health Law, Part 86 of Title 10 of the Official Compilation of Codes, Rules and Regulations of the State of New York, is amended by adding a new Subpart 86-8, to be effective upon filing with the Secretary of State, to read as follows: SUBPART 86-8 OUTPATIENT SERVICES: AMBULATORY PATIENT GROUP (Statutory authority: Public Health Law § 2807(2-a)(e)) Sec. 86-8.1 Scope 86-8.2 Definitions 86-8.3 Record keeping, reports and audits 86-8.4 Capital reimbursement 86-8.5 Administrative rate appeals 86-8.6 Rates for new facilities during the transition period 86-8.7 APGs and relative weights 86-8.8 Base rates 86-8.9 Diagnostic coding and rate computation 86-8.10 Exclusions from payment 86-8.11 System updating 86-8.12 Payments for extended hours of operation § 86-8.1 Scope (a) This Subpart shall govern Medicaid rates of payments for ambulatory care services provided in the following categories of facilities for the following periods: (1) outpatient services provided by general hospitals on and after December 1, 2008; (2) emergency department services provided by general hospitals on and after January 1, 2009; (3) ambulatory surgery services provided by general hospitals on and after December 1, 2008; (4) ambulatory services provided by diagnostic and treatment centers on and after March 1, 2009; and (5) ambulatory surgery services provided by free-standing ambulatory surgery centers on and after March 1, 2009.
    [Show full text]
  • Indocyanine Green Fluorography in Plastic Surgery and Microvascular Surgery
    48 The Open Surgical Oncology Journal, 2010, 2, 48-56 Open Access Indocyanine Green Fluorography in Plastic Surgery and Microvascular Surgery Ryuichi Azuma*,1, Megumi Takikawa1, Shinichirou Nakamura1, Kaoru Sasaki1, Satoshi Yanagibayashi1, Naoto Yamamoto1, Tomoharu Kiyosawa1 and Yuji Morimoto2 1Department of Plastic Surgery, Natinal Defense Medical College, Japan 2Department of Integrative Physiology and Bio-Nano Medicine National Defense Medical College, Japan Abstract: Indocyanine green (ICG) fluorography which is used to visualize the arteries, veins, and lymphatic vessels through the skin surface has recently been developed. This article includes an overview of our clinical experiences as well as descriptions of the latest knowledge on the utilization of ICG fluorography in the fields of plastic surgery and microvascular surgery. Imaging of the Capillary Blood Flow: To predict the future survival and necrosis, ICG fluorography is useful in various situations such as to examine injured limbs, skin flaps with a poor blood flow or ischemic limbs due to arteriosclerosis obliterans. Imaging of the Arteries: Practical pictures of a subcutaneous artery can be obtained for preoperative evaluations of the nutrient vessels of a skin flap and the blood flow within a skin flap. It is particularly useful for planning the use of a perforator-based flap. Imaging of the Lymphatic Vessels: ICG lymphography makes it possible to easily detect the functional lymphatic vessels in lymphaticovenous anastomosis for lymphedema of the extremities after either a surgical lymph node dissection or radiotherapy. Imaging of the Veins: With near-infrared skin imaging after the systemic administration of ICG, a clear picture of the subcutaneous veins, approximately 1 to 2 cm from the surface, can be obtained.
    [Show full text]
  • Consent for Adrenal Venography and Adrenal Vein Blood Sampling
    University of Pennsylvania Health System Department of Radiology Division of Vascular And Interventional Radiology Consent for Adrenal Venography and Adrenal Vein Blood Sampling INTRODUCTION: RISKS: Your physician has requested that you undergo an Risks associated with the procedure include, but are not adrenal vein blood sampling to determine the cause limited to, pain or discomfort at the catheter insertion of the elevated hormone aldosterone in your blood. site, bleeding at the site, injury to a blood vessel, Based on the findings of this study, a decision infection which may result in an infection of the blood between medical therapy and surgery can be made. stream, the development of a blood clot (embolization), We are asking you to read and sign this form so that and stroke. Risks associated with the x-ray contrast we can be sure you understand the procedure and material include an allergic reaction and reduced kidney potential benefits, along with the associated function. The medications used for the moderate potential risks, complications, alternatives, the sedation are associated with the risks of aspiration likelihood of achieving the goals, and the (inhaling food or liquid into your lungs) or respiratory recuperative process. Please ask questions about depression. In addition to these potential risks anything on this form that you do not understand. associated with the procedure, the x-ray contrast material, and the moderate sedation medications, there may PROCEDURE: be other unpredictable risks including death. An adrenal venogram involves the placement of a (Complete this paragraph if applicable or document “NA”) plastic tube (catheter) into a vein in your leg near the Due to your additional medical history of hip.
    [Show full text]
  • Optical Coherence Tomography Angiography in Papilledema Compared with Pseudopapilledema
    Eye Movements, Strabismus, Amblyopia and Neuro-Ophthalmology Optical Coherence Tomography Angiography in Papilledema Compared With Pseudopapilledema Masoud Aghsaei Fard,1 Alireza Sahraiyan,1 Jalil Jalili,2 Marjane Hejazi,2 Yanin Suwan,3 Robert Ritch,4 and Prem S. Subramanian5 1Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran 2Department of Medical Physics and Biomedical Engineering, Research Center for Molecular and Cellular in Imaging, School of Medicine, Tehran University of Medical Science, Tehran, Iran 3Department of Ophthalmology, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand 4Einhorn Clinical Research Center, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, United States 5Department of Ophthalmology, University of Colorado, School of Medicine, Aurora, Colorado, United States Correspondence: Masoud Aghsaei PURPOSE. The purpose of this study is to evaluate differences in optical coherence tomography Fard, Qazvin Square, Farabi Eye angiography (OCT-A) findings between patients with papilledema and pseudopapilledema. Hospital, Tehran University of Medi- cal Science, Tehran 13366, Iran; METHODS. In this prospective, comparative study, 41 eyes of 21 subjects with papilledema, 27 [email protected]. eyes of 15 subjects with pseudopapilledema, and 44 eyes of 44 healthy normal subjects were included and were imaged using OCT-A. In addition to peripapillary total vasculature maps Submitted: August 4, 2018 Accepted: November 25, 2018 obtained with commercial vessel density mapping, major vessel removal using customized image analysis software was also used to measure whole image capillary density and Citation: Fard MA, Sahraiyan A, Jalili J, peripapillary capillary density (PCD). Peripapiilary retinal nerve fiber layer (RNFL) and et al. Optical coherence tomography macular ganglion cell complex (GCC) were recorded.
    [Show full text]
  • Diagnostic and Interventional Venous Procedures (Lower Extremity)
    Coding and Medicare national payment guide 2018 Diagnostic and interventional venous procedures (lower extremity) All coding, coverage, billing and payment information provided herein by Philips is gathered from third-party sources and is subject to change. The information is intended to serve as a general reference guide and does not constitute reimbursement or legal advice. For all coding, coverage and reimbursement matters or questions about the information contained in this material, Philips recommends that you consult with your payers, certified coders, reimbursement specialists and/or legal counsel. Philips does not guarantee that the use of any particular codes will result in coverage or payment at any specific level. Coverage for these procedures may vary by Payer. Philips recommends that providers verify coverage prior to date of service. This information may include some codes for procedures for which Philips currently offers no cleared or approved products. In those instances, such codes have been included solely in the interest of providing users with comprehensive coding information and are not intended to promote the use of any products. The selection of a code must reflect the procedure(s) documented in the medical record. Providers are responsible for determining medical necessity, the proper place of service, and for submitting accurate claims. Payment amounts set forth herein are 2018 Medicare national averages; local Medicare payment amounts and private payer rates will vary. Page 2 See page 2 for important information about the uses and limitations of this guide and page 10 for all third-party sources. Hospital inpatient 1 Hospitals are reimbursed by Medicare for inpatient procedures and services under the FY2018 Inpatient Prospective Payment System (IPPS), which utilizes the Medicare Severity Diagnosis Related Group (MS-DRG) system.
    [Show full text]