Size and Reproduction of Exploited Reef Fishes at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langs

Total Page:16

File Type:pdf, Size:1020Kb

Size and Reproduction of Exploited Reef Fishes at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langs Size and Reproduction of Exploited Reef Fishes at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langston, Holly Bolick, and Utula Kondio Honolulu, Hawaii November 2013 COVER A bird’s eye view of the shoreline inhabited by most residents of Kamiali Wildlife Management Area. Photo: Ross Langston. Size and Reproduction of Exploited Reef Fishes at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker1, Ross Langston1, Holly Bolick1, and Utula Kondio2 (1) Pacific Biological Survey Bishop Museum Honolulu, Hawaii 96817, USA (2) Kamiali Wildlife Management Area Lababia, Morobe Province, PNG Bishop Museum Technical Report 62 Honolulu, Hawaii November 2013 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2013 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2013-008 to the Pacific Biological Survey Contents LIST OF TABLES.......................................................................................................................... 7 LIST OF FIGURES ........................................................................................................................ 8 EXECUTIVE SUMMARY .......................................................................................................... 11 INTRODUCTION ........................................................................................................................ 13 Kala Pronunciation Guide......................................................................................................... 13 General Background ................................................................................................................. 13 Fishery Surveys......................................................................................................................... 14 Reproductive Analysis.............................................................................................................. 14 Size-at-maturity..................................................................................................................... 14 Batch Fecundity and Sex-ratios ............................................................................................ 16 Catch Characteristics ................................................................................................................ 16 Purpose...................................................................................................................................... 17 METHODS ................................................................................................................................... 18 Study Area ................................................................................................................................ 18 Rapid Reproductive Analysis ................................................................................................... 18 Catch Characteristics ................................................................................................................ 19 Fishery Surveys......................................................................................................................... 19 Time Series ............................................................................................................................... 22 RESULTS ..................................................................................................................................... 22 Reproductive Analysis.............................................................................................................. 22 Luduŋ mai (Caesio cuning)................................................................................................... 22 Kada maba (Lethrinus erythropterus) .................................................................................. 23 Imbilĩ tombo gabo (Myripristis adusta)................................................................................ 23 Ikula su tatalõ (Plectropomus oligacanthus)........................................................................ 23 Length-Weight Relationships ................................................................................................... 24 Fishery Surveys......................................................................................................................... 25 Species Accounts ...................................................................................................................... 37 Acanthuridae......................................................................................................................... 37 Acanthurus lineatus (iwiliya)............................................................................................ 37 Ctenochaetus tominiensis (aloweya yayã)........................................................................ 37 Naso hexacanthus (biaŋgawe suwi).................................................................................. 37 Naso lopezi (biaŋgawe talõ) ............................................................................................. 38 Naso vlamingii (biaŋgawe tumi)....................................................................................... 38 Balistidae............................................................................................................................... 39 Canthidermis maculata (labaikã suwi)............................................................................. 39 Caesionidae........................................................................................................................... 39 Caesio cuning (luduŋ mai)................................................................................................ 39 Carangidae ............................................................................................................................ 40 Carangoides bajad (imaŋalẽ babaura)............................................................................. 40 Carangoides plagiotaenia (imaŋalẽ tombo gabo) ............................................................ 40 Caranx melampygus (imaŋalẽ talã).................................................................................. 41 Caranx papuensis (imaŋalẽ labrã kulĩ) ............................................................................ 42 Carcharhinidae ...................................................................................................................... 43 Carcharhinus amblyrhynchos (kapa ii) ............................................................................ 43 3 Carcharhinus melanopterus.............................................................................................. 43 Triaenodon obesus (kapa bage bula)................................................................................ 44 Ephippidae ............................................................................................................................ 44 Platax orbicularis ............................................................................................................. 44 Platax pinnatus (ibuŋgi taro)............................................................................................ 44 Platax teira (ibuŋgi).......................................................................................................... 44 Haemulidae ........................................................................................................................... 45 Diagramma pictum (godobo manibarã/taro) ................................................................... 45 Plectorhinchus chaetodonoides ........................................................................................ 45 Plectorhinchus lineatus (iyabua sa).................................................................................. 45 Plectorhinchus vittatus (iyabua kurĩ naba)....................................................................... 46 Holocentridae........................................................................................................................ 46 Myripristis adusta (imbilĩ tombo gabo) ............................................................................ 46 Myripristis berndti (imbilĩ yakẽ yayã) .............................................................................. 47 Myripristis kuntee (imbilĩ godõ nambĩ) ............................................................................ 47 Myripristis pralinia (imbilĩ yakẽ suwi) ............................................................................. 48 Myripristis violacea (imbilĩ yakẽ bumbu)......................................................................... 48 Myripristis vittata (imbilĩ yakẽ suwi)................................................................................ 49 Neoniphon sammara (imbilĩ sa)........................................................................................ 50 Sargocentron caudimaculatum (imbilĩ yasai)................................................................... 51 Sargocentron melanospilos............................................................................................... 51 Kyphosidae ........................................................................................................................... 52 Kyphosus cinerascens (italawe)........................................................................................ 52 Kyphosus vaigiensis (italawe talabopia) .........................................................................
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • CAESIONIDAE Fusiliers by K.E
    click for previous page Perciformes: Percoidei: Caesonidae 2919 CAESIONIDAE Fusiliers by K.E. Carpenter iagnostic characters: Oblong to fusiform, moderately compressed, medium-sized to small (to about D50 cm) lutjanoid fishes; longitudinal axis from tip of snout to middle of caudal fin passing through centre of eye. Eye moderately large, its diameter longer than snout length. Mouth small and highly protrusible; 1 or 2 finger-like postmaxillary processes on dorsoposterior surface of premaxilla (Figs 1 and 2); angle of jaw oblique, about 40° to horizontal. Dentition variously reduced; small or minute conical teeth; premaxillae, vomer, and palatines with or without teeth. Caudal fin deeply forked. Margin of dorsal and anal fins more or less evenly sloping; third or fourth dorsal-fin spines longest; second or third anal-fin spines longest, remaining spines and rays gradually decreasing in length (except in Dipterygonotus with dorsal fin profile not evenly sloping, last IV-V dorsal-fin spines small and nearly separate, connected only at their bases by membrane, and dorsal-fin rays much longer than these spines). Dorsal fin with X to XV slender weak spines and 8 to 22 soft rays; anal fin with III spines and 9 to 13 soft rays;pelvicfins with I spine and 5 soft rays; pectoral fins with 16 to 24 rays; caudal fin distinctly forked, with pointed lobes. Branchiostegal rays 7. Scales moderate to small, weakly ctenoid; lateral-line scales 45 to 88; scale rows on body running horizontally; dorsal and anal fins with scales except for Gymnocaesio gymnoptera and Dipterygonotus balteatus. Ascending premaxillary process a separate ossification from premaxilla; ethmo-maxillary ligament absent; a separate A1’ section of the adductor mandibulae which originates on the subocular shelf.
    [Show full text]
  • Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
    Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters.
    [Show full text]
  • C.9. Ctenochaetus Binotatus (Itingan) C.9.1. General Biology C.9.2. Size
    C.9. Ctenochaetus binotatus (Itingan) C.9.1. General Biology Inhabits coral and rubble areas of deep lagoon and seaward reefs. Usually solitary, grazing on surface algae. Feeds by scooping film of detritus and unicellular algae (e.g. dinoflagellate Gambierdiscus toxicus) that produce ciguatera toxin making this species a key link in the ciguatera food chain. Commonly caught by nets. Distributed in Indo-Pacific: East Africa to the Tuamoto Islands, north to southern Japan, south to Figure xx. The target species, Ctenochaetus inotatus central New South Wales (Australia) and New Caledonia. Not known from the Red Sea, Gulf of Oman, the Gulf, the Hawaiian Islands, Marquesas, Rapa, Pitcairn Islands, and Easter Island. (source: FishBase) C.9.2. Size Distribution A total of 162 fish individuals of Ctenochaetus binotatus were measured to the nearest centimeter. Measured length were from both the weekly measurements of the enumerators and biological samples brought Figure xx. Size distribution of Ctenochaetus binotatus with corresponding Lm50 of C. striatus of this study. to the lab. The smallest individual measured 7.0 cm SL and the largest is 17.0 cm SL. Approximately 30% of the total catch is below the computed Lm50 of C. striatus of this study. Since, there is no available data and literatures regarding the length at which it reaches maturity, we will use the estimated Lm50 and Lm95 of C. striatus. C.9.3. Gonadal Maturation and Maturation Curve Only 5 biological specimens were brought to the lab for examination. Out of 5 samples, 4 were males and only 1 female. All were staged as mature.
    [Show full text]
  • Capture, Identification and Culture Techniques of Coral Reef Fish Larvae
    COMPONENT 2A - Project 2A1 PCC development February 2009 TRAINING COURSE REPORT CCapture,apture, iidentidentifi ccationation aandnd ccultureulture ttechniquesechniques ooff ccoraloral rreefeef fi sshh llarvaearvae ((FrenchFrench PPolynesia)olynesia) AAuthor:uthor: VViliameiliame PitaPita WaqalevuWaqalevu Photo credit: Eric CLUA The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management The CRISP Programme comprises three major compo- T of Coral Reefs in the Pacifi c (CRISP), sponsored nents, which are: by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project Component 1A: Integrated Coastal Management and from 2002 onwards, aims to develop a vision for the Watershed Management future of these unique ecosystems and the communi- - 1A1: Marine biodiversity conservation planning ties that depend on them and to introduce strategies - 1A2: Marine Protected Areas and projects to conserve their biodiversity, while de- - 1A3: Institutional strengthening and networking veloping the economic and environmental services - 1A4: Integrated coastal reef zone and watershed that they provide both locally and globally. Also, it is management designed as a factor for integration between deve- Component 2: Development of Coral Ecosystems loped countries (Australia, New Zealand, Japan and - 2A: Knowledge, benefi cial use and management USA), French overseas territories and Pacifi c Island de- of coral ecosytems veloping countries.
    [Show full text]
  • Estimation of Fatty Acid Profile and Proximate
    ESTIMATION OF FATTY ACID PROFILE AND PROXIMATE COMPOSITION OF CANTHIDERMIS MACULATA (BLOCH, 1786) (TETRADONTIFORMES, BALISTIDAE) COLLECTED FROM SOUTHERN COAST OF SRI LANKA 1WILLIAMS S.S., 2MUNASINGHE D.H.N. 1,2Department of Zoology, University of Ruhuna,Sri Lanka. E-mail: [email protected], [email protected] Abstract - Rough oceanic triggerfish Canthidermis maculata (Bloch, 1786) belongs to family Balistidae and has year round availability as the main by-catch species in tuna fishery industry. Due to high availability and low market value, this species gain low demand in the local market. Further, the society believes that the taste of this fish species is similar to chicken and therefore chicken dishes are prepared with the substitution of C. maculata. Due to lack of knowledge gap of nutritional value of this species, the objective of current study was to estimate nutritional components of C. maculata in order to popularize it as a food source to fulfill nutritional requirement of the society. Fish samples were collected from fish landing sites of three regions (Mirissa, Dondra and Tangalle) in the southern coast of Sri Lanka. Samples from commercially demanded fish species Cephalopholis sonnerati (Tomato Hind) and chicken (Gallus gallus domesticus) were analyzed in order to compare the proximate values of C. maculata. Samples were collected from three individuals of each species and each sample was analyzed in triplicates. Fatty acid profile of C. maculata was determined by Fatty acid methyl ester (FAME) Test with gas chromatographic technique. Analyses revealed that flesh samples of C. maculata contained important fatty acids such as Eicosapentaenoic acid and Docosahexaenoic acid in high amounts with other essential fatty acids.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Life History Compendium of Exploited Hawaiian Fishes
    Life History Compendium of Exploited Hawaiian Fishes Prepared for Fisheries Local Action Strategy and Division of Aquatic Resources Prepared by K. Longenecker Hawai‘i Biological Survey Bishop Museum 1525 Bernice Street Honolulu, Hawai‘i 96817 R. Langston Windward Community College 45-720 Keahaala Road Kaneohe, Hawai‘i 96744 July 2008 1 Table of Contents INTRODUCTION .......................................................................................................................... 3 METHODS ..................................................................................................................................... 3 Description of life history parameters: ....................................................................................... 4 RESULTS ....................................................................................................................................... 6 HOLOCENTRIDAE ................................................................................................................... 7 Myripristis amaena (Castelnau, 1873) [3] .............................................................................. 7 Sargocentron diadema (Lacepède, 1802) [13] ..................................................................... 10 CARANGIDAE ........................................................................................................................ 13 Caranx ignobilis (Forsskål, 1775) [17] ................................................................................. 13 Caranx melampygus
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Orientation of Pelagic Larvae of Coral-Reef Fishes in the Ocean
    MARINE ECOLOGY PROGRESS SERIES Vol. 252: 239–253, 2003 Published April 30 Mar Ecol Prog Ser Orientation of pelagic larvae of coral-reef fishes in the ocean Jeffrey M. Leis*, Brooke M. Carson-Ewart Ichthyology, and Centre for Biodiversity and Conservation Research, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia ABSTRACT: During the day, we used settlement-stage reef-fish larvae from light-traps to study in situ orientation, 100 to 1000 m from coral reefs in water 10 to 40 m deep, at Lizard Island, Great Barrier Reef. Seven species were observed off leeward Lizard Island, and 4 species off the windward side. All but 1 species swam faster than average ambient currents. Depending on area, time, and spe- cies, 80 to 100% of larvae swam directionally. Two species of butterflyfishes Chaetodon plebeius and Chaetodon aureofasciatus swam away from the island, indicating that they could detect the island’s reefs. Swimming of 4 species of damselfishes Chromis atripectoralis, Chrysiptera rollandi, Neo- pomacentrus cyanomos and Pomacentrus lepidogenys ranged from highly directional to non- directional. Only in N. cyanomos did swimming direction differ between windward and leeward areas. Three species (C. atripectoralis, N. cyanomos and P. lepidogenys) were observed in morning and late afternoon at the leeward area, and all swam in a more westerly direction in the late after- noon. In the afternoon, C. atripectoralis larvae were highly directional in sunny conditions, but non- directional and individually more variable in cloudy conditions. All these observations imply that damselfish larvae utilized a solar compass. Caesio cuning and P.
    [Show full text]