C.9. Ctenochaetus Binotatus (Itingan) C.9.1. General Biology C.9.2. Size

Total Page:16

File Type:pdf, Size:1020Kb

C.9. Ctenochaetus Binotatus (Itingan) C.9.1. General Biology C.9.2. Size C.9. Ctenochaetus binotatus (Itingan) C.9.1. General Biology Inhabits coral and rubble areas of deep lagoon and seaward reefs. Usually solitary, grazing on surface algae. Feeds by scooping film of detritus and unicellular algae (e.g. dinoflagellate Gambierdiscus toxicus) that produce ciguatera toxin making this species a key link in the ciguatera food chain. Commonly caught by nets. Distributed in Indo-Pacific: East Africa to the Tuamoto Islands, north to southern Japan, south to Figure xx. The target species, Ctenochaetus inotatus central New South Wales (Australia) and New Caledonia. Not known from the Red Sea, Gulf of Oman, the Gulf, the Hawaiian Islands, Marquesas, Rapa, Pitcairn Islands, and Easter Island. (source: FishBase) C.9.2. Size Distribution A total of 162 fish individuals of Ctenochaetus binotatus were measured to the nearest centimeter. Measured length were from both the weekly measurements of the enumerators and biological samples brought Figure xx. Size distribution of Ctenochaetus binotatus with corresponding Lm50 of C. striatus of this study. to the lab. The smallest individual measured 7.0 cm SL and the largest is 17.0 cm SL. Approximately 30% of the total catch is below the computed Lm50 of C. striatus of this study. Since, there is no available data and literatures regarding the length at which it reaches maturity, we will use the estimated Lm50 and Lm95 of C. striatus. C.9.3. Gonadal Maturation and Maturation Curve Only 5 biological specimens were brought to the lab for examination. Out of 5 samples, 4 were males and only 1 female. All were staged as mature. Constructing a graph and maturity curve was not possible. C.9.4. Growth Curve Since, there is no available data on the growth parameters and we will be using the Lm50 and Lm95 of C. striatus, the growth curve presented here is from C. striatus. Assuming the similar growth curve and the maturity parameters of the two species, the corresponding age of the estimated Lm50 (10.34 cm SL) of C. striatus in Looc and Lubang, Occidental Mindoro is about 13 months while the smallest mature (8.2 cm SL) specimen had a corresponding age of ~9 months while it will take Figure xx. Growth curve of C. striatus in Looc and Lubang, Occidental approximately 38 months in Mindoro during the sampling period order to reach Lm95 (17.36 cm SL). C.9.5. Length-Based Spawning Potential Ratio (LB-SPR) The estimated SPR of C. binotatus Table xx. Estimated Spawning potential ratio of C. binotatus in caught in the fishery in Looc and Looc and Lubang, Occidental Mindoro. Lubang, Occidental Mindoro is shown in Lc (cm) Spawning Potential Ratio Table xx. Note that growth parameters 15.41 (actual) 75% as well as Lm50 and Lm95 were taken from the parameters of C. striatus of this study. At present, SPR of the stock based on the 3- month monitoring data is 75.0%. This is a very high value and possible reasons are that the use of parameters was from different species and fishers using gears that targeted C. binotatus opted to use other gears that catches abundant fishes that time. C.9.6. Harvest Control Recommendations Based on the results of the 3-month monitoring the following are recommended: • Actual SPR value of the catches (75%) is well above the recommended value (20-30%). To further sustain the fishery, median size of the catches may be set at 15.41 cm SL. • Examine more fish covering as wide a size range as possible and covering an entire year in order to estimate the length at maturity. • Fish buyers should also be informed with the above recommendations. Buyers should be instructed to buy C. binotatus that are equal or greater than the presented size limit. Fishers will be discouraged to catch smaller individuals if they know that buyers will not buy smaller or less than the recommended size limit. C.10. Lethrinus lentjan (lugso) C.10.1. General Biology Juveniles and small adults often in aggregations over seagrass beds, mangrove swamps and shallow sandy areas; adults are generally solitary and found in deeper waters. Over sandy bottom in coastal areas, deep lagoons, and near coral reefs, to depths of about 50 m. Feeds mostly on crustaceans and molluscs, but echinoderms, polychaetes, and fishes are also consumed. Caught primarily by handline, traps, trawls, beach seines, and gill nets and marketed mostly fresh. Maximum size is about 50 cm total length; commonly to around 30 cm. Distributed Widespread Indo-West Pacfic, including Red Sea, Persian Gulf, East Africa to the Ryukus and Tonga. (source: FAO) C.10.2. Size Distribution Figure xx. Size Distribution of L. lentjan in Looc and Lubang, Occidental Mindoro caught by Panamaral and Hook and Line. Superimposed the Length at maturity by different literatures. A total of 2377 fish individuals were measured within the 3-month monitoring period (Figure xx). Two (2) gears targeted L. lentjan namely Panamaral (bottom-set gill net used primarily for siganids) and Hook and Line. The smallest individual caught measured 7.0 cm SL (size class 7.5) and the largest is 24.2 cm SL (size class 24.5). Comparing the distribution of the sizes in terms of gear used, catches from gill nets were smaller (10.5-13.5 cm SL) while those from hook and line caught larger fish (13.5-15.5 cm SL). C.10.3. Gonadal Maturation and Maturation Curve No computed Lm50 for the actual samples was estimated because all specimens brought back to lab were indeterminate. This is due to the small sizes of fish caught during the monitoring period. No estimates of size at maturity for this species is reported in the literature. Instead, estimates for similar species, Lethrinus harak in Southern Arabian Gulf (Grandcourt et al., 2011) and Kenyan coastal waters (Kulmiye et al., 2002) and for L. ornatus off Surigao del Sur (Campos et al., 2017), were used as approximate values. One hundred percent of the total catch is below these reported lengths at maturity. 19.4. Growth Curve Growth curve of L. lentjan is presented in figure xx with growth parameters (L inf and k) were obtained from different literatures (fishbase and Grandcourt et al, 2011). Based on a study by Grandcourt et al. (2011) the Figure xx. Growth Curve of L. lentjan in Looc and Lubang, Occidental Mindoro estimated age at first sexual maturity is about 1.8 years (20 months) for males and 2.4 years (28 months) for females. In the present growth curve, the estimation is a bit different because the growth parameter used in not the same. The age of the estimated Lm50 of L. harak presented by Kulmiye et al. (2002) in Kenyan coastal waters is approximately 23 months for both female and male while L. ornatus of Surigao in 2016 is approximately 17 and 19 months for Lm50 and Lm95. Even though the study was unable to compute for the length at first maturity of the actual samples, this can be a basis for growth rate of Lethrinus lentjan in Looc and Lubang, Occidental Mindoro. C.10.4. Length-Based Spawning Potential Ratio (LB-SPR) The estimated SPR of L. lentjan caught Table xx. Estimated Spawning potential ratio of Lethrinus in the fishery in Looc and Lubang, lantjan in Looc and Lubang, Occidental Mindoro. Occidental Mindoro is shown in Table Lc (cm) Spawning Potential Ratio xx. Note that the Lm50 and Lm95 were 10.28 (actual) 0% taken from the parameters of L. ornatus 18.51 20% from a similar study in Surigao, 2016. At 20.10 31% present, SPR of the stock based on the 3- month monitoring data is 0.0%. The catches of L. lentjan are dominated by juveniles, although this may be an artifact of the short monitoring period. Even catches from hook and line, although in the upper range of sizes, were also all immature. For this species, a longer study period will be necessary to determine size at maturity. The size distribution of catches (Fig. xx) clearly shows the difference in sizes of fish caught by gill nets and hook and line. Clearly, if the major harvest control reference point were size-related, the use of hook and line in reef areas would be most preferable C.10.5. Harvest Control Recommendations Based on the results of the 3-month monitoring the following are recommended: • Actual SPR value of the catches (0%) is very low. To increase the spawning potential ratio of the fishery of Lethrinus lentjan, the use of gill nets in reef areas should be limited and regularly monitored. • For hook and lines targeting L. lentjan, smaller individuals (< the recommended length-18.51 cm SL) should not be targeted. • In order to increase the SPR value, the median length should be set between 18.51-20.10 cm SL. • Examine more fish individuals in different size class in order to estimate the length at maturity. • Fish buyers should also be informed with the above recommendations. Buyers should be instructed to buy L. lentjan that are equal or greater than the presented size limit. Fishers will be discouraged to catch smaller individuals if they know that buyers will not buy smaller or less than the recommended size limit. C.11. Selar boops (matambaka/matang baka) C.11.1. General Biology Co-occurs with Selar crumenophthalmus on continental shelf waters of northern Australia where common between 20 and 100 m; also one confirmed record from off Portugal where trawled in 366 to 439 m. Feeds primarily on planktonic or benthic invertebrates, including shrimps, crabs, and foraminifers; also on fishes.
Recommended publications
  • Estimation of Fatty Acid Profile and Proximate
    ESTIMATION OF FATTY ACID PROFILE AND PROXIMATE COMPOSITION OF CANTHIDERMIS MACULATA (BLOCH, 1786) (TETRADONTIFORMES, BALISTIDAE) COLLECTED FROM SOUTHERN COAST OF SRI LANKA 1WILLIAMS S.S., 2MUNASINGHE D.H.N. 1,2Department of Zoology, University of Ruhuna,Sri Lanka. E-mail: [email protected], [email protected] Abstract - Rough oceanic triggerfish Canthidermis maculata (Bloch, 1786) belongs to family Balistidae and has year round availability as the main by-catch species in tuna fishery industry. Due to high availability and low market value, this species gain low demand in the local market. Further, the society believes that the taste of this fish species is similar to chicken and therefore chicken dishes are prepared with the substitution of C. maculata. Due to lack of knowledge gap of nutritional value of this species, the objective of current study was to estimate nutritional components of C. maculata in order to popularize it as a food source to fulfill nutritional requirement of the society. Fish samples were collected from fish landing sites of three regions (Mirissa, Dondra and Tangalle) in the southern coast of Sri Lanka. Samples from commercially demanded fish species Cephalopholis sonnerati (Tomato Hind) and chicken (Gallus gallus domesticus) were analyzed in order to compare the proximate values of C. maculata. Samples were collected from three individuals of each species and each sample was analyzed in triplicates. Fatty acid profile of C. maculata was determined by Fatty acid methyl ester (FAME) Test with gas chromatographic technique. Analyses revealed that flesh samples of C. maculata contained important fatty acids such as Eicosapentaenoic acid and Docosahexaenoic acid in high amounts with other essential fatty acids.
    [Show full text]
  • IUCN-European-Red-List-Of-Marine
    European Red List of Marine Fishes Ana Nieto, Gina M. Ralph, Mia T. Comeros-Raynal, James Kemp, Mariana García Criado, David J. Allen, Nicholas K. Dulvy, Rachel H.L. Walls, Barry Russell, David Pollard, Silvia García, Matthew Craig, Bruce B. Collette, Riley Pollom, Manuel Biscoito, Ning Labbish Chao, Alvaro Abella, Pedro Afonso, Helena Álvarez, Kent E. Carpenter, Simona Clò, Robin Cook, Maria José Costa, João Delgado, Manuel Dureuil, Jim R. Ellis, Edward D. Farrell, Paul Fernandes, Ann-Britt Florin, Sonja Fordham, Sarah Fowler, Luis Gil de Sola, Juan Gil Herrera, Angela Goodpaster, Michael Harvey, Henk Heessen, Juergen Herler, Armelle Jung, Emma Karmovskaya, Çetin Keskin, Steen W. Knudsen, Stanislav Kobyliansky, Marcelo Kovačić, Julia M. Lawson, Pascal Lorance, Sophy McCully Phillips, Thomas Munroe, Kjell Nedreaas, Jørgen Nielsen, Constantinos Papaconstantinou, Beth Polidoro, Caroline M. Pollock, Adriaan D. Rijnsdorp, Catherine Sayer, Janet Scott, Fabrizio Serena, William F. Smith-Vaniz, Alen Soldo, Emilie Stump and Jeffrey T. Williams European Red List of Marine Fishes Ana Nieto, Gina M. Ralph, Mia T. Comeros-Raynal, James Kemp, Mariana García Criado, David J. Allen, Nicholas K. Dulvy, Rachel H.L. Walls, Barry Russell, David Pollard, Silvia García, Matthew Craig, Bruce B. Collette, Riley Pollom, Manuel Biscoito, Ning Labbish Chao, Alvaro Abella, Pedro Afonso, Helena Álvarez, Kent E. Carpenter, Simona Clò, Robin Cook, Maria José Costa, João Delgado, Manuel Dureuil, Jim R. Ellis, Edward D. Farrell, Paul Fernandes, Ann-Britt Florin, Sonja Fordham, Sarah Fowler, Luis Gil de Sola, Juan Gil Herrera, Angela Goodpaster, Michael Harvey, Henk Heessen, Juergen Herler, Armelle Jung, Emma Karmovskaya, Çetin Keskin, Steen W. Knudsen, Stanislav Kobyliansky, Marcelo Kovačić, Julia M.
    [Show full text]
  • FAMILY Balistidae Risso, 1810 – Triggerfishes GENUS Abalistes
    FAMILY Balistidae Risso, 1810 – triggerfishes GENUS Abalistes Jordan & Seale, 1906 [=Abalistes Jordan [D. S.] & Seale [A.] 1906:364, Leiurus (subgenus of Capriscus) Swainson [W.] 1839:194, 326] Notes: [Bulletin of the Bureau of Fisheries v. 25 (for 1905); ref. 2497] Masc. Leiurus macrophthalmus Swainson 1839. Type by being a replacement name. Replacement for Leiurus (subgenus of Capriscus) Swainson 1839, preoccupied by Leiurus Swainson 1839:242 in fishes. •Valid as Abalistes Jordan & Seale 1906 -- (Matsuura 1980:39 [ref. 6943], Tyler 1980:121 [ref. 4477], Arai 1983:199 [ref. 14249], Matsuura in Masuda et al. 1984:358 [ref. 6441], Smith & Heemstra 1986:877 [ref. 5714], Lindberg et al. 1997:50 [ref. 23547] as Abolistes, Matsuura 2001:3912 [ref. 26315], Matsuura & Yoshino 2004:189 [ref. 27771], Allen et al. 2006:1870 [ref. 29098], Matsuura 2014:7 [ref. 33576], Motomura et al. 2017:229 [ref. 35490], Fricke et al. 2018:376 [ref. 35805]). Current status: Valid as Abalistes Jordan & Seale 1906. Balistidae. (Leiurus) [The natural history and classification v. 2; ref. 4303] Masc. Leiurus macrophthalmus Swainson 1839. Type by subsequent designation. Type designated by Swain 1883:282 [ref. 5966]. Objectively invalid; preoccupied by Leiurus Swainson on p. 242 of same work, replaced by Abalistes Jordan & Seale 1906. •Synonym of Abalistes Jordan & Seale 1906 -- (Allen et al. 2006:1870 [ref. 29098]). Current status: Synonym of Abalistes Jordan & Seale 1906. Balistidae. Species Abalistes filamentosus Matsuura & Yoshino, 2004 [=Abalistes filamentosus Matsuura [K.] & Yoshino [T.] 2004:190, Fig. 1A] Notes: [Records of the Australian Museum v. 56 (no. 2); ref. 27771] Off Itoman, south coast of Okinawa-jima Island, Ryukyu Islands, Japan.
    [Show full text]
  • Seamap Environmental and Biological Atlas of the Gulf of Mexico, 2017
    environmental and biological atlas of the gulf of mexico 2017 gulf states marine fisheries commission number 284 february 2019 seamap SEAMAP ENVIRONMENTAL AND BIOLOGICAL ATLAS OF THE GULF OF MEXICO, 2017 Edited by Jeffrey K. Rester Gulf States Marine Fisheries Commission Manuscript Design and Layout Ashley P. Lott Gulf States Marine Fisheries Commission GULF STATES MARINE FISHERIES COMMISSION FEBRUARY 2019 NUMBER 284 This project was supported in part by the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, under State/Federal Project Number NA16NMFS4350111. GULF STATES MARINE FISHERIES COMMISSION COMMISSIONERS ALABAMA Chris Blankenship John Roussel Alabama Department of Conservation 1221 Plains Port Hudson Road and Natural Resources Zachary, LA 70791 64 North Union Street Montgomery, AL 36130-1901 MISSISSIPPI Joe Spraggins, Executive Director Representative Steve McMillan Mississippi Department of Marine Resources P.O. Box 337 1141 Bayview Avenue Bay Minette, AL 36507 Biloxi, MS 39530 Chris Nelson TBA Bon Secour Fisheries, Inc. P.O. Box 60 Joe Gill, Jr. Bon Secour, AL 36511 Joe Gill Consulting, LLC 910 Desoto Street FLORIDA Ocean Springs, MS 39566-0535 Eric Sutton FL Fish and Wildlife Conservation Commission TEXAS 620 South Meridian Street Carter Smith, Executive Director Tallahassee, FL 32399-1600 Texas Parks and Wildlife Department 4200 Smith School Road Representative Jay Trumbull Austin, TX 78744 State of Florida House of Representatives 402 South Monroe Street Troy B. Williamson, II Tallahassee, FL 32399 P.O. Box 967 Corpus Christi, TX 78403 TBA Representative Wayne Faircloth LOUISIANA Texas House of Representatives Jack Montoucet, Secretary 2121 Market Street, Suite 205 LA Department of Wildlife and Fisheries Galveston, TX 77550 P.O.
    [Show full text]
  • The Associative Behaviour of Oceanic Triggerfish and Rainbow Runner with Floating Objects
    1 Marine Environmental Research Archimer October 2020, Volume 161, Pages 104994 (12p.) https://doi.org/10.1016/j.marenvres.2020.104994 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00624/73626/ Drifting along in the open-ocean: The associative behaviour of oceanic triggerfish and rainbow runner with floating objects Forget Fabien 1, 2, *, Cowley Paul 2, Capello Manuela 1, Filmalter John D. 2, Dagorn Laurent 1 1 MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Sete, France 2 South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa * Corresponding author : Fabien Forget, email address : [email protected] Abstract : Multispecies aggregations at floating objects are a common feature throughout the world's tropical and subtropical oceans. The evolutionary benefits driving this associative behaviour of pelagic fish remains unclear and information on the associative behaviour of non-tuna species remains scarce. This study investigated the associative behaviour of oceanic triggerfish (Canthidermis maculata) and rainbow runner (Elagatis bipinnulata), two major bycatch species in the tropical tuna purse seine fishery, at floating objects in the western Indian Ocean. A total of 24 rainbow runner and 46 oceanic triggerfish were tagged with acoustic transmitters at nine drifting FADs equipped with satellite linked receivers. Both species remained associated with the same floating object for extended periods; Kaplan-Meier survival estimates (considering the censored residence time due to equipment failure and fishing) suggested that mean residence time by rainbow runner and oceanic triggerfish was of 94 and 65 days, respectively. During daytime, the two species increased their home range as they typically performed short excursions (<2 h) away from the floating objects.
    [Show full text]
  • Tropical Pacific Triggerfish and Filefish REEF Fishinar February 20, 2018, Amy Lee - Instructor Questions? Feel Free to Contact [email protected]
    Tropical Pacific Triggerfish and Filefish REEF Fishinar February 20, 2018, Amy Lee - Instructor Questions? Feel free to contact [email protected] Orange-lined Triggerfish (Balistapus undulatus) • Dark green to brownish body with curved diagonal orange lines • Large black blotch on tail base • Blue and orange stripes run from mouth to below pectoral fin Regions: CIP, SOP, Indian Ocean & Red Sea Photo by: Florent Charpin Size: Max. 1 ft. Redtooth Triggerfish (Odonus niger) • Dark blue body with pale blue head • Teeth are reddish and usually visible • Crescent-shaped tail with long lobes Regions: CIP, SOP, Indian Ocean Photo by: Paddy Ryan Size: Max. 16 in. Clown Triggerfish (Balistoides conspicillum) • Black body with large white spots on belly • Yellowish reticulated pattern on back • Orange lips and pale band in front of eyes Regions: CIP, SOP, Indian Ocean Photo by: Florent Charpin Size: Max. 20 in. Yellowmargin Triggerfish (Pseudobalistes flavimarginatus) • Tan body with dark spots and crosshatch pattern • Pale orange snout and cheeks • Yellow-orange margins on pectoral, dorsal, anal and caudal fins Regions: CIP, SOP, Indian Ocean & Red Sea Photo by: Paddy Ryan Size: Max. 2 ft. © 2018 Reef Environmental Education Foundation (REEF). All rights reserved. Titan Triggerfish (Balistoides viridescens) • Dark body with crosshatch pattern • Yellow-green snout and cheeks • Dark band above mouth – looks like a moustache Regions: CIP, SOP, Indian Ocean & Red Sea Photo by: Florent Charpin Size: Max. 2.5 ft. Pinktail Triggerfish (Melichthys vidua) • Dark brown body with yellowish snout and yellow pectoral fins • White dorsal and anal fins with black margin • Pinkish caudal fin with white base Regions: CIP, HAW, SOP, Indian Ocean Photo by: Ross Robertson Size: Max.
    [Show full text]
  • Identification of Tuna and Tuna -Like Species in Indian
    IDENTIFICATION OF TUNA AND TUNA-LIKE SPECIES IN INDIAN OCEAN FISHERIES Indian Ocean Tuna Commission Commission des Thons de l’Océan Indien These identification cards are produced by the Indian Ocean Tuna Commission (IOTC) to help improve catch data and statistics on tuna and tuna-like species, as well as on other species caught by fisheries in the Indian Ocean. The most likely users of the cards are fisheries observers, samplers, fishing masters and crew on board fishing vessels targeting tuna and tuna-like species in the Indian Ocean. Fisheries training institutions and fishing communities are other potential users. This publication was made possible through financial support provided by IOTC For further information contact: Indian Ocean Tuna Commission Le Chantier Mall PO Box 1011, Victoria, Seychelles Phone: +248 422 54 94 Fax: +248 422 43 64 Email: [email protected] Website: http://www.iotc.org Layout: Julien Million. Scientific advice: Julien Million and David Wilson We gratefully acknowledge David Itano and Dr. Charles Anderson for the development of this publication. Illustrations © R.Swainston/anima.net.au. Photos: cover © J. Million, p.7&8 © D. Itano © Copyright: IOTC, 2013 Common English name FAO How to use these cards? Scientific name J —Japanese name Each card contains C —simplified Chinese / traditional Chinese names - the scientific name of the species as F —French name S —Spanish name well as its common names in English, French, Spanish, Japanese, traditional First dorsal and simplified Chinese, length First dorsal Second - its FAO code fin Caudal fin dorsal fin - an illustration of the species with Eye Finlet some distinctive features - its maximum fork length (Max.
    [Show full text]
  • Anabac Atlantic Unassociated Purse Seine Yellowfin Tuna Fishery
    ANABAC ATLANTIC UNASSOCIATED PURSE SEINE YELLOWFIN TUNA FISHERY Public Comment Draft Report 11th February, 2021 Conformity Assessment Body (CAB) Bureau Veritas Certification Holding SAS Assessment team Gemma Quilez, Carmen Morant, Carola Kirchner ANABAC (Asociación Nacional de Armadores de Buques Atuneros Fishery client Congeladores) Assessment Type Initial Assessment 1 Contents 1 Contents .......................................................................................................... 2 2 Glossary .......................................................................................................... 4 3 Executive summary ......................................................................................... 5 4 Report details .................................................................................................. 7 4.1 Authorship and peer review details ............................................................................ 7 4.2 Version details ........................................................................................................... 8 5 Unit(s) of Assessment and Certification and results overview ......................... 8 5.1 Unit(s) of Assessment and Unit(s) of Certification ..................................................... 8 5.1.1 Unit(s) of Assessment ..................................................................................................... 8 5.1.2 Unit(s) of Certification ...................................................................................................
    [Show full text]
  • First Specimen-Based Records of Canthidermis Macrolepis (Tetraodontiformes: Balistidae) from the Pacific Ocean and Comparisons with C
    Species Diversity 25: 135–144 Published online 7 August 2020 DOI: 10.12782/specdiv.25.135 First Specimen-based Records of Canthidermis macrolepis (Tetraodontiformes: Balistidae) from the Pacific Ocean and Comparisons with C. maculata Mizuki Matsunuma1,4, Shinichirou Ikeguchi2 and Yoshiaki Kai3 1 Department of Environmental Management, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan E-mail: [email protected] 2 Joetsu Aquarium, Joetsu, Niigata 942-0081, Japan 3 Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Nagahama, Maizuru, Kyoto 625-0086, Japan 4 Corresponding author (Received 12 September 2019; Accepted 12 April 2020) Canthidermis macrolepis (Boulenger, 1888) is newly recorded from Japan and Micronesia on the basis of nine spec- imens (206.9–349.8 mm SL), having been previously reported from the northwestern Indian Ocean and northern South China Sea (the latter based solely on DNA barcoding). The species is probably widespread throughout the Indo-West Pa- cific region but has been confused with Canthidermis maculata (Bloch, 1786). Detailed morphological comparisons of both species resulted in the following differences being recognized between them: numbers of body scale rows [38–41 (modally 40) in C. macrolepis vs. 40–49 (44) in C. maculata], second dorsal-fin rays [25–27 (26)vs . 22–26 (24)], anal-fin rays [22– 24 (23) vs. 20–23 (21)] and pectoral-fin rays [14–16 (15) vs. 13–15 (14)]. Sequences of the mitochondrial DNA COI gene determined from the presently-reported specimens of C. macrolepis, which also differed in color from similarly sized C. maculata, having a uniformly grayish body without spots, were also compared with congeners.
    [Show full text]
  • Identification of Tuna and Tuna-Like Species in Indian Ocean Fisheries
    IDENTIFICATION OF TUNA AND TUNA-LIKE SPECIES IN INDIAN OCEAN FISHERIES Indian Ocean Tuna Commission Commission des Thons de l’Océan Indien These identification cards are produced by the Indian Ocean Tuna Commission (IOTC) to help improve catch data and statistics on tuna and tuna-like species, as well as on other species caught by fisheries in the Indian Ocean. The most likely users of the cards are fisheries observers, samplers, fishing masters and crew on board fishing vessels targeting tuna and tuna-like species in the Indian Ocean. Fisheries training institutions and fishing communities are other potential users. Layout: Julien Million. Scientific advice: Julien Million and David Wilson We gratefully acknowledge D. Itano, Dr C. Anderson and Dr E. Romanov (CAPRUN-ARDA) for the development of this publication. Illustrations © R. Swainstonanima.net.au. Photographs courtesy of J. Million (cover), D. Itano (p. 7&8) and M. Potier (p. 23) © FAO, 2019 Common English name FAO How to use these cards? Scientific name Each card contains J —Japanese name C —simplified Chinese / traditional Chinese names - the scientific name of the species F —French name as well as its common names in S —Spanish name English, French, Spanish, Japanese, traditional and simplified Chinese, Eye – Fork length (EF) - its FAO code First dorsal Second fin Caudal fin dorsal fin - an illustration of the species with Eye some distinctive features Finlet - its maximum fork length (Max. FL) - its common fork length in the Indian Ocean (Com. FL) Caudal keel Mouth Terminology Anal fin - Caudal keel: fleshy ridge; usually Pectoral fin Pelvic fin relates to a skin fold on the precaudal peduncle.
    [Show full text]
  • Size Structure and Reproduction of Exploited Reef Fishes Before Establishing a Management Plan at Kamiali Wildlife Management Area, Papua New Guinea
    Six-Year Baseline Information: Size Structure and Reproduction of Exploited Reef Fishes Before Establishing a Management Plan at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langston, Holly Bolick, Utula Kondio, and Mara Mulrooney Honolulu, Hawai‘i December 2014 COVER Hamm Geamsa prepares his gear for hook-and-line fishing just off the fringing reef at Kamiali Wildlife Management Area. Photo: Sarah Rose. Six-Year Baseline Information: Size Structure and Reproduction of Exploited Reef Fishes Before Establishing a Management Plan at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker1, Ross Langston1, Holly Bolick1, Utula Kondio,2 and Mara Mulrooney1 (1) Pacific Biological Survey Bishop Museum Honolulu, Hawai‘i 96817, USA (2) Kamiali Wildlife Management Area Lababia, Morobe Province, PNG Bishop Museum Technical Report 63 Honolulu, Hawai‘i December 2014 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2014 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2014-005 to the Pacific Biological Survey Contents LIST OF TABLES.......................................................................................................................... 7 LIST OF FIGURES ........................................................................................................................ 8 EXECUTIVE SUMMARY .......................................................................................................... 12 INTRODUCTION .......................................................................................................................
    [Show full text]
  • Characterizing Fish Communities Associated with Drifting Fish
    Aquat. Living Resour. 20, 331–341 (2007) Aquatic c EDP Sciences, IFREMER, IRD 2008 DOI: 10.1051/alr:2008007 Living www.alr-journal.org Resources Characterizing fish communities associated with drifting fish aggregating devices (FADs) in the Western Indian Ocean using underwater visual surveys Marc Taquet1,a, Gorka Sancho2, Laurent Dagorn3, Jean-Claude Gaertner4,DavidItano5, Riaz Aumeeruddy6, Bertrand Wendling6 and Christophe Peignon7 1 IFREMER, CRH, Av. Jean Monnet, BP 171, 34203 Sète Cedex, France 2 College of Charleston, Grice Marine Laboratory, 205 Fort Johnson Road, Charleston, SC 29412, USA 3 IRD, UR Thetis, CRH, Av. Jean Monnet, BP 171, 34203 Sète Cedex, France 4 Centre d’Océanologie de Marseille, LMGEM, UMR CNRS 6117, rue de la Batterie des Lions, 13007 Marseille, France 5 University of Hawaii, JIMAR, Pelagic Fisheries Research Program, 1000 Pope Road MSB 312 Honolulu, HI 96822, USA 6 Seychelles Fishing Authority, PO Box 449, Victoria, Mahe, Seychelles 7 IRD, UR 109 Thetis, PO Box 570, Victoria, Mahe Seychelles Received 21 September 2007; Accepted 17 December 2007 Abstract – We adapted a visual census method, mainly used in demersal and reef fish studies, to characterize fish communities associated to drifting fish aggregating devices (FADs) in the Western Indian Ocean. Drifting FAD associ- ated fishes from both equatorial (Seychelles) and tropical waters (Reunion Island) were examined by divers. A total of 32 species (belonging to 16 families) were observed associated with drifting FADs in equatorial waters, and 24 species (14 families) were found around FADs in tropical waters. Twenty species were found in both regions. The highest number of species observed at a single FAD was 18 (12 ± 2, mean ± SD) in equatorial and 13 (10 ± 3) in tropical waters, not counting circumnatant species loosely associated with the FAD.
    [Show full text]