South-West Pacific Node Training 12-16 November 2007

Total Page:16

File Type:pdf, Size:1020Kb

South-West Pacific Node Training 12-16 November 2007 COMPONENT 2A - Project 2A2 Knowledge, monitoring, management and benefi cial use of coral reef ecosystems April 2008 REEF MONITORING SOUTH-WEST PACIFIC NODE TRAINING 12-16 NOVEMBER 2007 Author: Naushad YAKUB The CRISP programme is implemented as part of the policy developped by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management of Coral Reefs in the Pacifi c T (CRISP), sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and Watershed Management - 1A1: Marine biodiversity conservation planning - 1A2: Marine Protected Areas - 1A3: Institutional strengthening and networking - 1A4: Integrated coastal reef zone and watershed management CRISP Coordinating Unit (CCU) Component 2: Development of Coral Ecosystems Programme manager: Eric CLUA - 2A: Knowledge, monitoring and management of coral reef ecosytems SPC - PO Box D5 - 2B: Reef rehabilitation 98848 Noumea Cedex - 2C: Development of active marine substances New Caledonia - 2D: Development of regional data base (ReefBase Pacifi c) Tel.: (687) 26 54 71 Component 3: Programme Coordination and Development E-mail: [email protected] - 3A: Capitalisation, value-adding and extension of CRISP Programme activities www.crisponline.net - 3B: Coordination, promotion and development of CRISP Programme COMPONENT2A Knowledge, monitoring and management of coral reef ecosytems PROJECT 2A-1: Postlarvae (fi sh and crustacean) capture and culture for aquarium trade and restoking PROJECT 2A-2: Improvement of knowledge and capacity for a better management of reef ecosystems PROJECT 2A-3: Synopsis and extension work on indicators for monitoring the health of co- CRISP contact person: ral ecosystems and developing a remote sensing tool Ken McKAY School of Marine Studies PROJECT 2A-4: Faculty of Islands and Oceans Testing of novel information feedback methods for local communities and The University of the South Pacifi c users of reef and lagoon resources Suva, Fiji Tel.: (679) 3 232 612 PROJECT 2A-5: Fax: (679) 3 231 526 Specifi c studies on i) the eff ects on the increase in atmospheric CO2 on the E-mail: [email protected] health of coral formation and ii) the development of ecotourism This CRISP component is funded by the following agency: Objectives The GCRMN South West Pacific Node includes 7 countries: Fiji Islands, Solomon Islands, Vanuatu, New Caledonia, Nauru, Samoa and Tuvalu. However countries present were Solomon Islands, Western Samoa, Vanuatu and Fiji Islands. The objectives of this training were to: 1. Train GCRMN country coordinators to analyze data using Ms-Excel with appropriate templates 2. Train the GCRMN South West Pacific Node Country Coordinators on setting up a coral reef monitoring database using Ms-Access 1 Day 1 – 12th November 2007 A brief session was conducted on techniques used by the present coordinators of South West Pacific Node for GCRMN. Solomon Islands This technique was introduced in Solomon Islands in 2004 that was adapted from Indonesia. This method was called PIX (point intercept transect with X) for the sake of this training only to differentiate between other techniques used by other SW node countries. This technique uses: 1. 50m transect with X shaped aluminum bars (70cm length) screwed at center at every 1m 2. 50m x 5pts (from X shaped bar) = 250 pts per transect 3. 5 divers: a. 1 lays tape b. 2 benthic cover to life-form category c. 3 & 4 UVC (underwater visual census) to fish species using own fish species list. d. 5 invertebrates. Invertebrates are collected at 2 depths as well except for sea cucumbers the depth is 25m. 4. Depth 5 and 10 m 5. Permanent monitoring sites, total of 32 6. Data is tallied as total life-form category per transect 7. Analysis – summary of tallied points with mean, standard deviation and standard error. However this method is adopted well but analysis is difficult as there has been no training conducted for proper data analysis. The representatives are willing to adapt to the modified GCRMN ReefCheck techniques as conducted by Vanuatu and Fiji Islands. X X X X X 1m 2m 50m 2 Figure 1 50m transect with X Western Samoa The method was modified by the trainees in the last GCRMN Train the Trainers Workshop held in 2003 in Fiji Islands. This technique uses PIT: 1. 50m transect at every 2m interval – 25 points per transect 2. 1.5m on each side of transect 3. 3 divers a. 1 - 1.5m from transect on left b. 2 - in center c. 3 - 1.5 from transect on right 4. Depth is 5m maximum 5. Snorkel surveys 6. Back reef and Reef flat Samoa collects fish and invertebrate data to family level with target fish collected to species level. Diver 1 1.5m Diver 2 Diver 3 Figure 2 The above illustration shows the method in which Samoa collects data for benthic life-form categories. 3 Vanuatu and Fiji Islands These 2 countries use the Reef Check method as depicted in the figures below adapted from the Reef Check Training manual. Figure 3 The transect is 100m long with 4 by 20m transects with 5m gap in between transects, however the method is PIT as well. Figure 4 Fish (attached as fish species list) and invertebrates’ data are collected to Reef Check indicator families with abundance. However it was suggested if atleast fish data could be collected with length estimates to calculate biomass for family or species. 4 Day 3 – 13th November 2007 This day started with a brief follow-up from yesterday’s session where different techniques used to collect substrate, fish and invertebrate data was discussed with clear portrait of techniques used. Coral data analysis was introduced using different life-form categories adapted from the Australian Institute of Marine Science (AIMS) as part of GCRMN reporting. However Vanuatu uses Reef Check categories while Fiji uses both GCRMN and Reef Check which is interchangeable. Sample coral data template was shown with different life-form categories and health status as bleached (B), lives (L) and partly bleached (PB). In addition data filtering, sorting and checking for typo errors was shown as well. This data was analyzed using pivot table and appropriate graphs were plotted. The formatting of graphs with title, customize legends, fonts and colors was also shown. For example data was analyzed for each site for total life-form category and health. 5 Figure 5 Example of Coral data template Figure 6 Pivot Table showing count of benthic versus site code 6 Figure 7 Graph created from pivot table showing count of benthic vs site code The templates were created for Solomon Islands and Samoa for data entry and these templates were used to analyze data country specific data. The column headings were date, site code, transect, benthic code and health. The resulting graphs were easy to interpret and can easily adapted to GCRMN reporting requirements. The Solomon Islands template is illustrated below (figure 8) whereby all data inclusive all transects and sites were entered in a single excel spreadsheet for easy analysis. Figure 8 The day finished with a brief introduction to database with importing excel spreadsheets, linking tables, creating and running queries. However the participants showed negative response due to uncertainty on liking tables and creating queries. 7 Day 4 – 14th November 2007 After the brief follow-up from yesterday’s session, fish data template was introduced. Each column with appropriate headings: date, site code, transect, species, family, abundance, a & b values, biomass per species and total biomass. Figure 9 Fish data template with column showing calculation of biomass. Pivot table was used for data analysis and plotting of graphs. Each country used this template by exporting their data and graphs were plotted. A brief was given on calculating the species richness which is simply the number in the unit of study. A standardized list was developed to accomplish GCRMN requirements for each country in the Southwest Pacific Node: • Percentage substrate cover per site per country o Solomon Islands % cover = life-form group x 100 1000 8 • Samoa % cover = life-form group x100 390 o Vanuatu and Fiji Islands – Reef Check graph which is created automatically due to excel template created by Reef Check • Time series percentage hard coral and algae cover with standard deviations for each country • Abundance and/or biomass data for fish and invertebrates depending on each country’s requirements Figure 10 Pivot table showing total abundance of fish per species per site 9 Figure 11 Graphs showing fish abundance per species per site Moreover, a standardized list of coral life-form categories matching with Reef Check categories was developed in relation to consistence data for Vanuatu and Fiji Islands. The list is as follows: Samoa, Solomon Islands & Fiji Islands Vanuatu & Fiji Islands Acropora OT Hard Coral OT Non- Acropora Bleaching Hard Coral Hard coral bleaching Soft Coral Soft Coral Soft coral bleaching Algae (DCA & CA) Nutrient indicator algae Abiotic RC, SD, RB, SI Sponge Sponge 10 DC RKC Finally the group developed fish species list with a & b values according to their needs; Solomon Islands, species and families; Samoa mostly family with few species and Vanuatu and Fiji Islands families only due to Reef Check indicator list.
Recommended publications
  • Capture, Identification and Culture Techniques of Coral Reef Fish Larvae
    COMPONENT 2A - Project 2A1 PCC development February 2009 TRAINING COURSE REPORT CCapture,apture, iidentidentifi ccationation aandnd ccultureulture ttechniquesechniques ooff ccoraloral rreefeef fi sshh llarvaearvae ((FrenchFrench PPolynesia)olynesia) AAuthor:uthor: VViliameiliame PitaPita WaqalevuWaqalevu Photo credit: Eric CLUA The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management The CRISP Programme comprises three major compo- T of Coral Reefs in the Pacifi c (CRISP), sponsored nents, which are: by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project Component 1A: Integrated Coastal Management and from 2002 onwards, aims to develop a vision for the Watershed Management future of these unique ecosystems and the communi- - 1A1: Marine biodiversity conservation planning ties that depend on them and to introduce strategies - 1A2: Marine Protected Areas and projects to conserve their biodiversity, while de- - 1A3: Institutional strengthening and networking veloping the economic and environmental services - 1A4: Integrated coastal reef zone and watershed that they provide both locally and globally. Also, it is management designed as a factor for integration between deve- Component 2: Development of Coral Ecosystems loped countries (Australia, New Zealand, Japan and - 2A: Knowledge, benefi cial use and management USA), French overseas territories and Pacifi c Island de- of coral ecosytems veloping countries.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]
  • The Role of Threespot Damselfish (Stegastes Planifrons)
    THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Masters of Science Brooke A. Axline-Minotti August 2003 This thesis entitled THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF BY BROOKE A. AXLINE-MINOTTI has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Molly R. Morris Associate Professor of Biological Sciences Leslie A. Flemming Dean, College of Arts and Sciences Axline-Minotti, Brooke A. M.S. August 2003. Environmental Studies The Role of Threespot Damselfish (Stegastes planifrons) as a Keystone Species in a Bahamian Patch Reef. (76 pp.) Director of Thesis: Molly R. Morris Abstract The purpose of this research is to identify the role of the threespot damselfish (Stegastes planifrons) as a keystone species. Measurements from four functional groups (algae, coral, fish, and a combined group of slow and sessile organisms) were made in various territories ranging from zero to three damselfish. Within territories containing damselfish, attack rates from the damselfish were also counted. Measures of both aggressive behavior and density of threespot damselfish were correlated with components of biodiversity in three of the four functional groups, suggesting that damselfish play an important role as a keystone species in this community. While damselfish density and measures of aggression were correlated, in some cases only density was correlated with a functional group, suggesting that damselfish influence their community through mechanisms other than behavior.
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Length-Weight Relationships for 71 Reef and Bottomfish Species from Tutuila and Aunu'u, American Samoa
    Length-weight Relationships for 71 Reef and Bottomfish Species from Tutuila and Aunu′u, American Samoa Toby Matthews1, Domingo Ochavillo2, Sean Felise2, Teejay Letalie2, Mika Letuane2, Ekueta Schuster2, Auva'a Soonaolo2, Saolotoga Tofaeono2, Alama Tua2, Faleselau Tuilagi2 1Pacific Islands Fisheries Science Center National Marine Fisheries Service 1845 Wasp Boulevard Honolulu, HI 96818 2American Samoa Department of Marine and Wildlife Resources P.O. Box 3730 Pago Pago, American Samoa 96799 Honolulu, HI 96818 April 2019 NOAA Administrative Report H-19-03 https://doi.org/10.25923/r3wq-ax31 About this report Pacific Islands Fisheries Science Center Administrative Reports are issued to promptly disseminate scientific and technical information to marine resource managers, scientists, and the general public. Their contents cover a range of topics, including biological and economic research, stock assessment, trends in fisheries, and other subjects. Administrative Reports typically have not been reviewed outside the Center. As such, they are considered informal publications. The material presented in Administrative Reports may later be published in the formal scientific literature after more rigorous verification, editing, and peer review. Other publications are free to cite Administrative Reports as they wish provided the informal nature of the contents is clearly indicated and proper credit is given to the author(s). Recommended citation: Matthews, T., D. Ochavillo, S. Felise, T. Letalie, M. Letuane, E. Schuster, A. Soonaolo, S. Tofaeono, A. Tua, and F. Tuilagi. 2019. Length-weight relationships for 71 reef and bottomfish species from Tutuila and Aunu'u, American Samoa. Pacific Islands Fish. Sci. Cent., Natl. Mar. Fish. Serv., NOAA, Honolulu, HI 96818-5007. Pacific Islands Fish.
    [Show full text]
  • Western Pacific Region Reef Fish Trends
    Western Pacific Region Reef Fish Trends A Compendium of Ecological and Fishery Statistics for Reef Fishes in American Samoa, Hawai’i and the Mariana Archipelago, in Support of Annual Catch Limit (ACL) Implementation Prepared for Western Pacific Regional Fishery Management Council 1164 Bishop St., Ste. 1400 Honolulu, Hawai’i, 96813 by Daniel Luck & Paul Dalzell October 4, 2010 A report of the Western Pacific Regional Fishery Management Council 1164 Bishop Street, Suite 1400, Honolulu, HI 96813 Prepared by the Western Pacific Regional Fishery Management Council. © Western Pacific Regional Fishery Management Council 2017. All rights reserved. Published in the United States by the Western Pacific Regional Fishery Management Council ISBN 978-1-944827-16-8 i Table of Contents Western Pacific Region Reef Fish Trends ............................................................ 1 Introduction ........................................................................................................... 1 Methods ............................................................................................................. 1 Study Regions ................................................................................................ 1 Biomass Data ................................................................................................. 2 Catch Data ..................................................................................................... 2 Species Variability in Catch ...........................................................................
    [Show full text]
  • 9. Palolo Swarming Previous Section | Park Home Page | Table of Contents
    previous section | park Home page | table of contents NATURAL HISTORY GUIDE 9. Palolo swarming Once or twice a year, palolo swarm to the surface of the sea in great numbers. Samoans eagerly await this night and scoop up large amounts of this delicacy along the shoreline with hand nets. This gift from the sea was traditionally greeted with necklaces made from the fragrant moso’oi flower and the night of the palolo was and still remains a happy time of celebration. The rich taste of palolo is enjoyed raw or fried with butter, onions or eggs, or spread on toast. Palolo is the edible portion of a polychaete worm (Eunice viridis) that lives in shallow coral reefs throughout the south central Pacific, although they do not swarm at all of these locations. This phenomenon is well known in Samoa, Rarotonga, Tonga, Fiji, the Solomon Islands and Vanuatu. Palolo are about 12 inches long and live in burrows dug into the coral pavement on the outer reef flat. They are composed of two distinct sections (see drawing). The front section is the basic segmented polychaete with eyes, mouth, etc., followed by a string of segments called the “epitoke” that contain reproductive gametes colored blue- green (females) or tan (males). Each epitoke segments bear a tiny eyespot that can sense light (that's why islanders are able to use a lantern to attract the palolo to their nets). When it comes time to spawn, palolo will back out of their burrows and release the epitoke section from their body. The epitokes then twirl around in the water in vast numbers and look like dancing spaghetti.
    [Show full text]
  • Introduced Marine Species in Pago Pago Harbor, Fagatele Bay and the National Park Coast, American Samoa
    INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA December 2003 COVER Typical views of benthic organisms from sampling areas (clockwise from upper left): Fouling organisms on debris at Pago Pago Harbor Dry Dock; Acropora hyacinthus tables in Fagetele Bay; Porites rus colonies in Fagasa Bay; Mixed branching and tabular Acropora in Vatia Bay INTRODUCED MARINE SPECIES IN PAGO PAGO HARBOR, FAGATELE BAY AND THE NATIONAL PARK COAST, AMERICAN SAMOA Final report prepared for the U.S. Fish and Wildlife Service, Fagetele Bay Marine Sanctuary, National Park of American Samoa and American Samoa Department of Marine and Natural Resources. S. L. Coles P. R. Reath P. A. Skelton V. Bonito R. C. DeFelice L. Basch Bishop Museum Pacific Biological Survey Bishop Museum Technical Report No 26 Honolulu Hawai‘i December 2003 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2003 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2003-007 to the Pacific Biological Survey EXECUTIVE SUMMARY The biological communities at ten sites around the Island of Tutuila, American Samoa were surveyed in October 2002 by a team of four investigators. Diving observations and collections of benthic observations using scuba and snorkel were made at six stations in Pago Pago Harbor, two stations in Fagatele Bay, and one station each in Vatia Bay and Fagasa Bay. The purpose of this survey was to determine the full complement of organisms greater than 0.5 mm in size, including benthic algae, macroinvertebrates and fishes, occurring at each site, and to evaluate the presence and potential impact of nonindigenous (introduced) marine species.
    [Show full text]
  • Coral Reef Species List
    Coral Reef Gallery The Philippine Coral Reef Tank focuses on the most diverse and fragile of marine ecosystems. From the main exhibit floor, visitors look down on a shallow, sandy lagoon—a calm, protected area inhabited by sharks, rays, and colorful fishes. Where the lagoon drops off to the deep reef, hundreds of bright fishes visible near the surface lure the visitor to view the spectacle one floor below. There, dramatic underwater views of the deep reef invite contemplation. Featuring 1,000 square feet of living coral and some 4,000 fish of 100 or more species, this 212,000‐gallon exhibit is, at 25 feet, the deepest and one of the largest displays of a living coral reef in the world. Curiosity leads to exploration of several smaller galleries along the perimeter of the exhibit that highlight the unique adaptations and complex interactions of reef organisms. Acanthastrea echinata Acanthurus achilles Acanthurus blochii Acanthurus coeruleus Blue tang Acanthurus dussumieri Acanthurus japonicus Acanthurus lineatus Acanthurus mata Acanthurus nigricans Acanthurus nigrofuscus Acanthurus nigroris Acanthurus olivaceus Acanthurus pyroferus Acanthurus triostegus Acanthurus xanthopterus Acropora formosa Acropora gemmifera Acropora micropthalma Acropora millepora Acropora sp. Staghorn Coral Acropora youngei Aeoliscus strigatus Shrimpfish Alcyonium sp. Alpheus randalli Randall’s Partner Shrimp Alveopora sp. Ambligobius hectori Hector’s Goby Ambligobius rainfordi Rainford’s Goby Amblycirrhitus pinos Redspotted hawkfish Amblyeleotris randalli Randall’s
    [Show full text]
  • Draft Acanthurus Achilles
    Draft Acanthurus achilles - Shaw, 1803 ANIMALIA - CHORDATA - ACTINOPTERYGII - PERCIFORMES - ACANTHURIDAE - Acanthurus - achilles Common Names: Achilles Tang (English), Akilles' Kirurgfisk (Danish), Bir (Marshallese), Chirurgien à Tache Rouge (French), Chiurgien d'Achille (French), Cirujano (Spanish; Castilian), Cirujano Encendido (Spanish; Castilian), Indangan (Filipino; Pilipino), Kolala (Niuean), Kolama (Samoan), Meha (Tahitian), Navajón de Aguiles (Spanish; Castilian), Pāku'iku'i (Hawaiian), Red-spotted Surgeonfish (English), Redspot Surgeonfish (English), Redtail Surgeonfish (English) Synonyms: Acanthurus Shaw, 1803; Hepatus (Shaw, 1803); Teuthis (Shaw, 1803); Taxonomic Note: This species is a member of the Acanthurus achilles species complex known for their propensity to hybridize (Randall and Frische 2000). The four species in this complex (A. achilles Shaw, A. japonicus Schmidt, A. leucosternon Bennett, and A. nigricans Linnaeus) are thought to hybridize when their distributional ranges overlap (Craig 2008). Red List Status LC - Least Concern, (IUCN version 3.1) Red List Assessment Assessment Information Reviewed? Date of Review: Status: Reasons for Rejection: Improvements Needed: true 2011-02-11 Passed - - Assessor(s): Choat, J.H., Russell, B., Stockwell, B., Rocha, L.A., Myers, R., Clements, K.D., McIlwain, J., Abesamis, R. & Nanola, C. Reviewers: Davidson, L., Edgar, G. & Kulbicki, M. Contributor(s): (Not specified) Facilitators/Compilers: (Not specified) Assessment Rationale Acanthurus achilles is widespread and abundant throughout its range. It is found in isolated oceanic islands and is caught only incidentally for food in parts of its distribution. It is a major component of the aquarium trade and is a popular food fish in West Hawaii. There is evidence of declines from collection and concern for the sustained abundance of this species.
    [Show full text]
  • A Preliminary Evaluation of a Recently Enacted Reef-Fish Management Plan at Kamiali Wildlife Management Area, Papua New Guinea
    A Preliminary Evaluation of a Recently Enacted Reef-Fish Management Plan at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langston, and Holly Bolick Honolulu, Hawaii November 2015 COVER An aerial view of the fringing reef on north side of Cape Dinga, Kamiali Wildlife Management Area. The reef is protected as part of the reef-fish management plan being evaluated in this report. The point of land is the approximate boundary between two levels of protection. No fishing is allowed on the reef in the foreground. Derris (poison rope, or rotenone) fishing is prohibited on the reef in the background. Photo: Ross Langston. A Preliminary Evaluation of a Recently Enacted Reef-Fish Management Plan at Kamiali Wildlife Management Area, Papua New Guinea Ken Longenecker, Ross Langston, and Holly Bolick Pacific Biological Survey Bishop Museum Honolulu, Hawaii 96817, USA Bishop Museum Technical Report 65 Honolulu, Hawaii November 2015 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright © 2015 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2015-002 to the Pacific Biological Survey Contents LIST OF TABLES .......................................................................................................................... 4 LIST OF FIGURES ........................................................................................................................ 4 EXECUTIVE SUMMARY ...........................................................................................................
    [Show full text]