Coral Reef Species List

Total Page:16

File Type:pdf, Size:1020Kb

Coral Reef Species List Coral Reef Gallery The Philippine Coral Reef Tank focuses on the most diverse and fragile of marine ecosystems. From the main exhibit floor, visitors look down on a shallow, sandy lagoon—a calm, protected area inhabited by sharks, rays, and colorful fishes. Where the lagoon drops off to the deep reef, hundreds of bright fishes visible near the surface lure the visitor to view the spectacle one floor below. There, dramatic underwater views of the deep reef invite contemplation. Featuring 1,000 square feet of living coral and some 4,000 fish of 100 or more species, this 212,000‐gallon exhibit is, at 25 feet, the deepest and one of the largest displays of a living coral reef in the world. Curiosity leads to exploration of several smaller galleries along the perimeter of the exhibit that highlight the unique adaptations and complex interactions of reef organisms. Acanthastrea echinata Acanthurus achilles Acanthurus blochii Acanthurus coeruleus Blue tang Acanthurus dussumieri Acanthurus japonicus Acanthurus lineatus Acanthurus mata Acanthurus nigricans Acanthurus nigrofuscus Acanthurus nigroris Acanthurus olivaceus Acanthurus pyroferus Acanthurus triostegus Acanthurus xanthopterus Acropora formosa Acropora gemmifera Acropora micropthalma Acropora millepora Acropora sp. Staghorn Coral Acropora youngei Aeoliscus strigatus Shrimpfish Alcyonium sp. Alpheus randalli Randall’s Partner Shrimp Alveopora sp. Ambligobius hectori Hector’s Goby Ambligobius rainfordi Rainford’s Goby Amblycirrhitus pinos Redspotted hawkfish Amblyeleotris randalli Randall’s Shrimp Goby Amblyeleotris sp. Shrimp Goby Amblyglyphidodon ternatensis Amblygobius phalaena Amphiprion clarkii Amphiprion ocellaris Amphiprion perideraion Skunk Clownfish Amphiprion polymnus Amplexidiscus fenestrafer Anacropora sp. Anomalops katoptron Antennarius sp Frogfish Anthelia sp. Apogon cyanosoma Apogon leptacanthus Apogon maculatus Twospot cardinalfish Apogon margaritophorus Apogon sealei Astrea americanus Astrea snails Astropyga radiate Fire Urchins Balistoides conspicillum Blastomussa merleti Blastomussa wellsi Bodianus bimaculatus Bodianus rufus Spanish Hogfish Briareum sp. Green Star Polyp Briareum sp. Caesio teres Canthigaster solandri Spotted Toby Capnella sp. Carcharinus melanopterus Blacktip reef shark Catalaphyllia jardinei Caulastrea furcata Centropyge argi Cherub fish Centropyge bispinosus Coral Beauty Angelfish Centropyge flavissima Centropyge loriculus Centropyge vrolikii Cerithium sp. Chaetodon kleinii Chaetodon lunula Racoon Butterflyfish Chaetodon sedentarius Painted Butterflyfish Cheilinus undulatus Humphead wrasse Chelmon rostratus Copperband Butterflyfish Chiloscyllium punctatum Brownbanded bamboo shark Choerodon fasciatus Chromis cyanea Blue Chromis Chromis margaritifer Bicolor Chromis Chromis ternatensis Chromis viridis Chrysiptera parasema Chrysiptera sp. Cirrhilabrus cyanopleura Cirrhilabrus exquisitus Cirrhilabrus flavidorsalis Cirrhilabrus lubbocki Cirrhilabrus solorensis Cladiella sp. Clavularia sp. Clibanarius tricolor Blue Legged Hermit Crabs Ctenochaetus striatus Ctenochaetus strigosus Ctenochaetus tominiensis Cynarina lacrymalis Cypraea sp. Cowrie Snail Dardanus sp. Anemone Hermit Crab Dascyllus marginatus Dascyllus melanurus Dasyatis kuhlii Bluespot ray Discosoma sanctithomae Disc Anemone Discosoma sp. Mushroom Anemone Discosoma sp. Echidna nebulosa Snowflake moray eel Echinophyllia aspera Echinopora lamellosa Entacmea quadricolor Erythropodium caribaeroum Encrusting Gorgonian Escenius bicolor Escenius midas Eucidaris tribuloides Pencil Urchin Eunicea sp. Knobby Sea Rod Euphyllia ancora Euphyllia cristata Euphyllia divisa Frogspawn Coral Euphyllia glabrescens Euphyllia paradivisa Branched Frogspawn Euphyllia parancora Branched Anchor Coral Favia sp. Favites sp. Forcipiger longirostris Fungia sp. Galaxea fascicularis Genicanthus lamark Genicanthus melanospilos Gomphosis varius Goniastrea sp. Pineapple Coral Gorgasia preclara Gramma loreto Royal Gramma Gymnomuraena zebra Zebra moray eel Gymnothorax favagineus Honeycomb moray eel Gymnothorax meleagris Whitemouth moray eel Halichoeres chrloropterus Halichoeres chrysus Yellow halichoeres wrasse Halichoeres garnoti Yellowhead Wrasse Halichoeres prosopeion Halomitra pileus Heliofungia actiniformis Heliopora coerulea Hemitaurichthys polylepis Heniochus diphreutes Herpolitha limax Heteractis magnifica Magnificent Anemone Heteroconger hassi Himantura uarnak Honeycomb ray Holacanthus ciliaris Queen Angel Holothuria sp. Hydnophora excesa Hydnophora rigida Hymenocera elegans Harlequin Shrimp Isis hippuris Labroides dimidiatus Lemnalia sp. Leptoria sp. Leptoseris sp. Linckia laevigata Linckia multifora Lithopoma sp. Litophyton sp. Lobophyllia hemprichii Lobophytum sp. Lysmata amboinensis Cleaner shrimp Lysmata amboinensis Cleaner Shrimp Lysmata wurdemanni Peppermint Shrimp Macropharyngodon meleagris Megalops cyprinoides Pacific tarpon Melichthys niger Melichthys vidua Merulina ampliata Monodactylus argenteus Mono Montastrea sp. Montipora aequituberculata Montipora capricornis Montipora digitata Montipora sp. Muriceopsis flavida Rough sea plume Mycedium elephantotus Myripristis sp. Naso brevirostris Naso hexacanthus Sleek unicornfish Naso literatus Naso sp. Naso unicornis Naso vlamingii Nassarius sp. Nemateleotris decora Purple Firefish Nemenzophyllia sp. Fox Coal Neocirrhites armatus Neoglyphidodon oxyodon Neon damsels Nephthea sp. Nerites sp. Odonus niger Ophiarachnia incrassate Brittle Stars Ophioderma sp. Oulophyllia sp. Oxcirrhites typus Oxypora sp. Pachyseris speciosa Paguritta sp. Coral Hermit Crab Palythoa grandis Sun Zoanthid Palythoa sp. Paracanthurus hepatus Parazoanthus sp. Pavona cactus Pavona decussata Pavona sp. Pectinia sp. Periclemenes venustus Cleaner Shrimp Periopthalmus argentilineatus Barred Mudskipper Pholidichthys leucotaenia Photoblepharon palpebratus Physogyra lichtensteini Pictichromis paccagnellae Bicolor Dottyback Pinnigorgia sp. Platygyra sp. Plerogyra sinuosa Plexaura sp. Black Sea Rod Plexaurella sp. Slit Pore Sea Rod Pocillopora damicornis Pocillopora verrucosa Polyphyllia sp. Pomacanthus imperator Pomacanthus navarchus Pomacentrus auriventris Pomacentrus coelestis Porites cylindrica Porites lobata Porites sp. Premnas biaculeatus Protopalythoa sp. Psammocora sp. Pseudanthias bicolor Pseudanthias dispar Pseudanthias parvirostris Pseudanthias pleurotaenia Pseudanthias squamipinnis Pseudocheilinus ocellatus Mystery Wrasse Pseudochelinus hexataenia Pseudochromis fuscus Pseudocolochirus violaceus Sea Apple Pseudoplexaura sp Porous Sea Rod Pseudopterogorgia bipinnata Purple Sea Plume Pseudopterogorgia elizabethii Purple Frilly Sea Plume Ptereleotris zebra Zebra goby Pterleotris zebra Pterocaesio tile Pterois volitans Lionfish Rhina anclyostoma Bowmouth guitarfish Rhinecanthus aculeatus Rhinomuraena quaesita Ribbon Eels Rhinoptera javanica Cownose ray Rhodactis sp. Rhumphella sp. Seawhip Rhynchocinetes durbanensis Camel Shrimp Ricordea yuma Rumphella sp. Salarias fasciatus Salmacis sphaeroides Sea Urchins Sandalolitha sp. Sarcophyton sp. Scolopsis sp. Scolymia sp. Seriatopora hystrix Serranus tigrinus Harlequin Bass Siganus guttatus Siganus puellus Siganus punctatus Siganus tetrazonus Siganus unimaculatus Siganus vulpinis Sinularia sp. Sphaeramia nematoptera Stegastes leucostictus Beaugregory Stenopus hispidus Coral Banded Shrimp Stichodactyla haddoni Stichodactyla helianthus Sun Anemone Stylophora pistillata Symphyllia radians Synanceia verrucosa Stonefish Synchiropus picturatus Spotted Dragonet Synchiropus splendidus Mandarin Dragonet Syngnathoides biaculeatus Alligator Pipefish Thalassoma hardwickii Thalassoma lunare Lunar wrasse Thor amboinensis Sexy Shrimp Trachyphyllia geoffroyi Tridacna crocea Tridacna derasa Smooth Giant Clam Tridacna gigas Tridacna maxima Tridacna squamosa Trochus sp. Tubastrea sp. Tubipora musica Turbinaria patula Turbinaria peltata Turbinaria reniformis Turbo sp. Valenciennea strigata Xanthichthys auromarginatus Xenia sp. Zanclus cornutus Moorish Idol Zebrasoma scopas Zebrasoma veliferum Zoanthus sociatus Button Polyps Zoanthus sp. .
Recommended publications
  • Parting with Plastics Reducing Disposable Plastic in Our Operations
    MARCH 2017 A publication of the Association of Zoos & Aquariums Parting with Plastics Reducing Disposable Plastic in Our Operations GREEN PURCHASING AND INVESTING SUSTAINABILITY SPARKS BY THE NUMBERS Adopting Green Purchasing ENGAGEMENT, CREATIVITY AND ACTION Climate Change and Investing Strategies Sustainability Programs Engage Staff and Going Green in 2015 Interns and Volunteers March 2017 Features 20 24 30 Parting with Plastics: Green Purchasing Sustainability Sparks Reducing Disposable and Investing Engagement, Creativity Plastic in Our Operations Association of Zoos and and Action Disposable plastics are Aquariums-accredited What do team building, everywhere and can have facilities tie reduced cost savings and urban devastating impacts on purchasing of carbon- gardening have in common? wildlife. Since mass production producing electricity They are all outcomes of started in 1950, plastics have to concerns about sustainability programs and permeated our world at a global warming and the initiatives at Association frenetic pace with roughly 300 acidification of oceans. of Zoos and Aquariums- million tons manufactured Others are making accredited facilities that have worldwide in 2013. packaging changes to successfully engaged staff, reduce their contributions BY WANDA EVANS interns and volunteers. to landfills and to address BY EMILY BRYANT the dangers to wildlife that are posed by improperly discarded plastic. BY TOM PRICE March 2017 | www.aza.org 1 7 16 60 Member View Departments 7 Conservation Spotlight 11 Reintroduction 15 By the
    [Show full text]
  • Petition to List Eight Species of Pomacentrid Reef Fish, Including the Orange Clownfish and Seven Damselfish, As Threatened Or Endangered Under the U.S
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST EIGHT SPECIES OF POMACENTRID REEF FISH, INCLUDING THE ORANGE CLOWNFISH AND SEVEN DAMSELFISH, AS THREATENED OR ENDANGERED UNDER THE U.S. ENDANGERED SPECIES ACT Orange Clownfish (Amphiprion percula) photo by flickr user Jan Messersmith CENTER FOR BIOLOGICAL DIVERSITY SUBMITTED SEPTEMBER 13, 2012 Notice of Petition Rebecca M. Blank Acting Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Acting Assistant Administrator for Fisheries NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 Tel: (415) 436-9682 _____________________ Date: September 13, 2012 Shaye Wolf, Ph.D. Miyoko Sakashita Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R.§ 424.14(a), the Center for Biological Diversity hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list eight pomacentrid reef fish and to designate critical habitat to ensure their survival. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of imperiled species and their habitats through science, policy, and environmental law. The Center has more than 350,000 members and online activists throughout the United States.
    [Show full text]
  • Community Structure and Biogeography of Shore Fishes in the Gulf of Aqaba, Red Sea
    Helgol Mar Res (2002) 55:252–284 DOI 10.1007/s10152-001-0090-y ORIGINAL ARTICLE Maroof A. Khalaf · Marc Kochzius Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea Received: 2 April 2001 / Received in revised form: 2 November 2001 / Accepted: 2 November 2001 / Published online: 24 January 2002 © Springer-Verlag and AWI 2002 Abstract Shore fish community structure off the Jorda- Introduction nian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m Coral reefs are one of the most complex marine ecosys- depths. A total of 198 fish species belonging to 121 gen- tems in which fish communities reach their highest de- era and 43 families was recorded. Labridae and Poma- gree of diversity (Harmelin-Vivien 1989). Morphological centridae dominated the ichthyofauna in terms of species properties and the geographical region of the coral reef richness and Pomacentridae were most abundant. Nei- determine the structure of the fish assemblages (Sale ther diversity nor species richness was correlated to 1980; Thresher 1991; Williams 1991). The ichthyofauna depth. The abundance of fishes was higher at the deep of coral reefs can be linked to varying degrees with adja- reef slope, due to schooling planktivorous fishes. At cent habitats (Parrish 1989) such as seagrass meadows 12 m depth abundance of fishes at the seagrass-dominat- (Ogden 1980; Quinn and Ogden 1984; Roblee and ed site was higher than on the coral reefs. Multivariate Ziemann 1984; Kochzius 1999), algal beds (Rossier and analysis demonstrated a strong influence on the fish as- Kulbicki 2000) and mangroves (Birkeland 1985; Thollot semblages by depth and benthic habitat.
    [Show full text]
  • Florida, Caribbean, Bahamas by Paul Humann and Ned Deloach
    Changes in the 4th Edition of Reef Fish Identification - Florida, Caribbean, Bahamas by Paul Humann and Ned DeLoach Prepared by Paul Humann for members of Reef Environmental Education Foundation (REEF) This document summarizes the changes, updates, and new species presented in the 4th edition of Reef Fish Identification- Florida, Caribbean, and Bahamas by Paul Humann and Ned DeLoach (1st printing, released June 2014). This document was created as reference for REEF volunteer surveyors. Chapter 1 – no significant changes Chapter 2 - Silvery pg 64-5t – Redfin Needlefish – new species pg 68-9m – Ladyfish – new species pg 72-3m – Harvestfish – new species pg 72-3b – Longspine Porgy – new species pg74-5 – Silver Porgy & Spottail Pinfish – 2 additional pictures of young and more information on distinguishing between the two species pg 84-5b – Bigeye Mojarra – new species pgs 90-1 & 92-3t – Chubs new species – there are now 4 species of chub in the book – Topsail Chub and Brassy Chub are easily distinguishable. Brassy Chub is the updated ID of Yellow Chub. Bermuda Chub and Gray Chub are lumped due to difficulties in underwater ID (Gray Chub, K biggibus, replaced Yellow Chub in this lumping). Chapter 3 – Grunts & Snappers pg 106-7b and 108-9t – Boga and Bonnetmouth are both now in the Grunt Family (Haemulidae), the Bonnetmouth Family, Inermiidae, is no longer valid. Chapter 4 – Damselfish & Hamlets pgs 132-3 & 134-5 – Cocoa Damselfish and Beaugregory, new pictures and tips for distinguishing between the species pg 142m – Yellowtail Reeffish - new picture of older adult brown variation has been added, which looks of strikingly different from the younger adult pg 147-8b – Florida Barred Hamlet – new species (distinctive from regular Barred Hamlet) pg 153-4t – Tan Hamlet – official species has now been described (Hypoplectrus randallorum), differs from previously included “Tan Hypoplectrus sp.”.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • SEDIMENTARY FRAMEWORK of Lmainland FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA
    GREAT BARRIER REEF MARINE PARK AUTHORITY TECHNICAL MEMORANDUM GBRMPA-TM-14 SEDIMENTARY FRAMEWORK OF lMAINLAND FRINGING REEF DEVELOPMENT, CAPE TRIBULATION AREA D.P. JOHNSON and RM.CARTER Department of Geology James Cook University of North Queensland Townsville, Q 4811, Australia DATE November, 1987 SUMMARY Mainland fringing reefs with a diverse coral fauna have developed in the Cape Tribulation area primarily upon coastal sedi- ment bodies such as beach shoals and creek mouth bars. Growth on steep rocky headlands is minor. The reefs have exten- sive sandy beaches to landward, and an irregular outer margin. Typically there is a raised platform of dead nef along the outer edge of the reef, and dead coral columns lie buried under the reef flat. Live coral growth is restricted to the outer reef slope. Seaward of the reefs is a narrow wedge of muddy, terrigenous sediment, which thins offshore. Beach, reef and inner shelf sediments all contain 50% terrigenous material, indicating the reefs have always grown under conditions of heavy terrigenous influx. The relatively shallow lower limit of coral growth (ca 6m below ADD) is typical of reef growth in turbid waters, where decreased light levels inhibit coral growth. Radiocarbon dating of material from surveyed sites confirms the age of the fossil coral columns as 33304110 ybp, indicating that they grew during the late postglacial sea-level high (ca 5500-6500 ybp). The former thriving reef-flat was killed by a post-5500 ybp sea-level fall of ca 1 m. Although this study has not assessed the community structure of the fringing reefs, nor whether changes are presently occur- ring, it is clear the corals present today on the fore-reef slope have always lived under heavy terrigenous influence, and that the fossil reef-flat can be explained as due to the mid-Holocene fall in sea-level.
    [Show full text]
  • Euphyllia Paradivisa :: Biological Information
    LISTED CORALS IN THE INDO-PACIFIC Euphyllia paradivisa :: Biological Information MORPHOLOGY Pacific Islands Region Colonies of Euphyllia paradivisa are made up of branching, separate corallites. Polyps have branching tentacles. Color is pale greenish-grey or pink (in rare instances) with lighter tentacle tips. Photos copyright: J.E.N. Veron (left), Douglas Fenner (right) REPRODUCTION Euphyllia paradivisa’s reproductive mode is not known. Other Euphyllia species display a variety of reproductive modes so it is unclear which is most probable of this species. :: Spatial Information GEOGRAPHIC RANGE Based on confrmed observations and strong predictions of occurrence in areas that have not yet been surveyed sufciently, Euphyllia paradivisa is likely distributed mostly in the Coral Triangle area (the Philippines to Timor Leste and east to the Solomon Islands). It is also confrmed to occur in American Samoa. For more information contact: NMFS Pacifc Islands Regional Offce 1845 Wasp Blvd., Bldg. 176 Honolulu, HI 96818 Tel: 808-725-5000 Website: www.fpir.noaa.gov U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries NOAA Fisheries | Listed Corals in the Indo-Pacific:Euphyllia paradivisa LEGEND Region with confrmed record of species occurrence Region with predicted record of species occurrence Region with published record of species occurrence that needs further investigation Region with no record of species occurrence Veron JEN, Stafford-Smith MG, Turak E and DeVantier LM (in prep.) Corals of the World www.coralsoftheworld.com OCCURRENCE IN U.S. JURISDICTIONS Euphyllia paradivisa has not yet been reported from Guam, the Commonwealth of the Northern Mariana Islands (CNMI), and the Pacifc Remote Island Areas (PRIA).
    [Show full text]
  • Response of Fluorescence Morphs of the Mesophotic Coral Euphyllia Paradivisa to Ultra-Violet Radiation
    www.nature.com/scientificreports OPEN Response of fuorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation Received: 23 August 2018 Or Ben-Zvi 1,2, Gal Eyal 1,2,3 & Yossi Loya 1 Accepted: 15 March 2019 Euphyllia paradivisa is a strictly mesophotic coral in the reefs of Eilat that displays a striking color Published: xx xx xxxx polymorphism, attributed to fuorescent proteins (FPs). FPs, which are used as visual markers in biomedical research, have been suggested to serve as photoprotectors or as facilitators of photosynthesis in corals due to their ability to transform light. Solar radiation that penetrates the sea includes, among others, both vital photosynthetic active radiation (PAR) and ultra-violet radiation (UVR). Both types, at high intensities, are known to have negative efects on corals, ranging from cellular damage to changes in community structure. In the present study, fuorescence morphs of E. paradivisa were used to investigate UVR response in a mesophotic organism and to examine the phenomenon of fuorescence polymorphism. E. paradivisa, although able to survive in high-light environments, displayed several physiological and behavioral responses that indicated severe light and UVR stress. We suggest that high PAR and UVR are potential drivers behind the absence of this coral from shallow reefs. Moreover, we found no signifcant diferences between the diferent fuorescence morphs’ responses and no evidence of either photoprotection or photosynthesis enhancement. We therefore suggest that FPs in mesophotic corals might have a diferent biological role than that previously hypothesized for shallow corals. Te solar radiation that reaches the earth’s surface includes, among others, ultra-violet radiation (UVR; 280– 400 nm) and photosynthetically active radiation (PAR; 400–700 nm).
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • South-West Pacific Node Training 12-16 November 2007
    COMPONENT 2A - Project 2A2 Knowledge, monitoring, management and benefi cial use of coral reef ecosystems April 2008 REEF MONITORING SOUTH-WEST PACIFIC NODE TRAINING 12-16 NOVEMBER 2007 Author: Naushad YAKUB The CRISP programme is implemented as part of the policy developped by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management of Coral Reefs in the Pacifi c T (CRISP), sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and Watershed Management - 1A1: Marine biodiversity conservation planning - 1A2: Marine Protected Areas - 1A3: Institutional strengthening and networking - 1A4: Integrated coastal reef zone and watershed management CRISP Coordinating Unit (CCU) Component 2: Development of Coral Ecosystems Programme manager: Eric CLUA - 2A:
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]