American Samoa Archipelago Fishery Ecosystem Plan 2019

Total Page:16

File Type:pdf, Size:1020Kb

American Samoa Archipelago Fishery Ecosystem Plan 2019 ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT: AMERICAN SAMOA ARCHIPELAGO FISHERY ECOSYSTEM PLAN 2019 Western Pacific Regional Fishery Management Council 1164 Bishop St., Suite 1400 Honolulu, HI 96813 PHONE: (808) 522-8220 FAX: (808) 522-8226 www.wpcouncil.org The ANNUAL STOCK ASSESSMENT AND FISHERY EVALUATION REPORT for the AMERICAN SAMOA FISHERY ECOSYSTEM PLAN 2019 was drafted by the Fishery Ecosystem Plan Team. This is a collaborative effort primarily between the Western Pacific Regional Fishery Management Council (WPRFMC), National Marine Fisheries Service (NMFS)-Pacific Island Fisheries Science Center (PIFSC), Pacific Islands Regional Office (PIRO), Hawaii Division of Aquatic Resources (HDAR), American Samoa Department of Marine and Wildlife Resources (DMWR), Guam Division of Aquatic and Wildlife Resources (DAWR), and Commonwealth of the Mariana Islands (CNMI) Division of Fish and Wildlife (DFW). This report attempts to summarize annual fishery performance looking at trends in catch, effort and catch rates as well as provide a source document describing various projects and activities being undertaken on a local and federal level. The report also describes several ecosystem considerations including fish biomass estimates, biological indicators, protected species, habitat, climate change, and human dimensions. Information like marine spatial planning and best scientific information available for each fishery are described. This report provides a summary of annual catches relative to the Annual Catch Limits established by the Council in collaboration with the local fishery management agencies. Edited By: Thomas Remington, Contractor & Marlowe Sabater and Asuka Ishizaki, WPRFMC. Cover image: credit to Clay Tam This document can be cited as follows: WPRFMC, 2020. Annual Stock Assessment and Fishery Evaluation Report for the American Samoa Archipelago Fishery Ecosystem Plan 2019. Remington, T., Sabater, M., Ishizaki, A. (Eds.) Western Pacific Regional Fishery Management Council. Honolulu, Hawaii 96813 USA. 141 pp. + Appendices. ii The Western Pacific Regional Fishery Management Council acknowledges the valuable contributions of the following Plan Team members and others for drafting sections of this report: American Samoa Department of Marine and Wildlife Resources: Domingo Ochavillo. NMFS Pacific Islands Fisheries Science Center: Ivor Williams, Felipe Carvalho, Joseph O’Malley, Michael Parke, Thomas Oliver, Melanie Abecassis, Frank Parrish, T. Todd Jones, Minling Pan, Justin Hospital, and Kirsten Leong. NMFS Pacific Islands Regional Office: Brett Schumacher. The Council also acknowledges the staff of the NMFS PIFSC Western Pacific Fisheries Information Network (WPacFIN) for providing the technical support to generate the data summaries. The Council would like to thank the following individual for their contributions to the report: Samuel Kahng. iii This page was intentionally left blank. iv Annual SAFE Report for the American Samoa Archipelago FEP Executive Summary EXECUTIVE SUMMARY As part of its five-year fishery ecosystem plan (FEP) review, the Western Pacific Regional Fishery Management Council (WPRFMC; the Council) identified its annual reports as a priority for improvement. The former annual reports have been revised to meet National Standard regulatory requirements for Stock Assessment and Fishery Evaluation (SAFE) reports. The purpose of the reports is twofold: to monitor the performance of the fishery and ecosystem to assess the effectiveness of the FEP in meeting its management objectives; and to maintain the structure of the FEP living document. The reports are comprised of three chapters: Fishery Performance, Ecosystem Considerations, and Data Integration. The Council will iteratively improve the annual SAFE reports as resources allow. The Fishery Performance chapter of this report first presents a general description of the local fisheries within American Samoa, focusing on the bottomfish management unit species (MUS), particularly bottomfish MUS (BMUS), accompanied by monitoring of ecosystem component species (ECS). The fishery data collection system is explained, encompassing boat-based creel surveys and commercial receipt books. Fishery meta-statistics for BMUS and ECS are organized into summary dashboard tables showcasing the values for the most recent fishing year and a comparison to short-term (10-year) and long-term (20-year) averages. Time series for catch and effort statistics are also provided along with annual catch limit (ACL) determinations. For 2019 in American Samoa, there were no instances of MUS exceeding their ACL because the only remaining MUS is the bottomfish multi-species complex, which did not have an ACL specified in 2019 due to information presented in the new benchmark stock assessment (Langseth et al., 2019) that was determined to be the best scientific information available. While there used to be coral reef ecosystem management unit species (CREMUS) and crustacean management unit species (CMUS) that were actively managed using ACLs, an amendment to the American Samoa Archipelago FEP in early 2019 reclassified most of the MUS as ECS except for bottomfish. ECS do not require ACL specifications or accountability measures but are still to be monitored regularly in the annual SAFE report through a one-year snapshot of the ten most caught ECS, complete catch time series of prioritized ECS as selected by the American Samoa Department of Marine and Wildlife Resources (DMWR), as well as trophic and functional group biomass estimates from fishery independent surveys. Other existing management measures still apply to ECS. The bottomfish fishery performance in American Samoa showed a slight decrease in 2019 relative to 10- and 20-year averages. Total BMUS catch was 11,093 lbs. estimated from the boat- based creel survey data, a 9% reduction from the short-term trend and 24% reduction from the long-term trend. BMUS catch from commercial purchase data totaled 1,402 lbs., which was a slight increase from the 10-year average (+4%) but notable decrease from the 20-year average (- 34%). Catch-per-unit-effort (CPUE) for BMUS in 2019 was lower than 10- and 20-year averages for both metrics presented, pounds per trip and pounds per gear hour. There were 33 lbs./trip of BMUS harvested by bottomfishing, which was a 39% reduction from the short-term trend and 43% reduction from the long-term trend. The estimated 1.1076 lbs./gear hour of BMUS harvested by bottomfishing was a 14% decrease from the 10-year average and 31% decrease from the long-term average. There were 57 fishing trips that harvested BMUS in 2019, which was consistent with the 10-year trend but an 11% decrease from the 20-year trend. Total gear hours bottomfishing for BMUS were estimated to be 1,469, a 52% and 45% decrease from the v Annual SAFE Report for the American Samoa Archipelago FEP Executive Summary short- and long-term trends, respectively. Participation in the bottomfish fishery decreased in 2019, with just six unique vessels harvesting BMUS (a decrease of 45% and 54% from 10- and 20-year averages). There was an estimated average of three fishers per bottomfishing trip, consistent with historical trends. There was no recorded bycatch in the BMUS fishery in 2019. For the top ten landed ECS in American Samoa in 2019, available data streams showed that humpback snapper (Lutjanus gibbus) had the most catch in the creel surveys and ranked tenth in the commercial data, while the blue-banded surgeonfish (Acanthurus lineatus) had the most catch from commercial data. The second most caught species in the boat-based creel surveys was the redlip parrotfish (Scarus rebroviolaceus), while a generic group of unknown reef fishes was second highest in the commercial purchase data. Several other species had notable catch estimates in the creel survey data, including A. lineatus and Chlorurus japanensis. For commercial data, the striped bristletooth (Ctenochaetus striatus) ranked third. Many remaining top ten ECS from commercial purchase data were multi-species or family groups (e.g., Scarus spp. and emperors) due to how the species are organized during data collection. For prioritized ECS (i.e., those selected by DMWR) in American Samoa, 2019 creel survey catch estimates for three of the six species (Parulirus penicilatus, Octopus cyanea, and clams) were zero. Cernimugil crenilabis, Sargocentron tiere, and Epinephelus melanostigma were the only species with catch recorded in the boat-based creel surveys for the year. The catch for these species was much higher than their 10- and 20-year averages due to the large amount of zeroes in the time series for previous years. In American Samoa commercial purchase data, five of the six species had zero recorded catch. The only species with catch for 2019 was P. penicilatus, whose 2019 landings were 8% higher than its 10-year average but 12% lower than its 20-year average. An Ecosystem Considerations chapter was added to the annual SAFE reports following the Council’s review of its FEPs and revised management objectives. Fishery independent ecosystem survey data, socioeconomcis, protected species, climate and oceanographic, essential fish habitat, and marine planning information are included in the Ecosystem Considerations chapter. Fishery independent ecosystem data were acquired through visual surveys conducted by the National Marine Fisheries Service (NMFS) Pacific Islands Fisheries Science Center (PIFSC) Reef Assessment and Monitoring Program (RAMP) under the Ecosystem Sciences Division (ESD)
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Capture, Identification and Culture Techniques of Coral Reef Fish Larvae
    COMPONENT 2A - Project 2A1 PCC development February 2009 TRAINING COURSE REPORT CCapture,apture, iidentidentifi ccationation aandnd ccultureulture ttechniquesechniques ooff ccoraloral rreefeef fi sshh llarvaearvae ((FrenchFrench PPolynesia)olynesia) AAuthor:uthor: VViliameiliame PitaPita WaqalevuWaqalevu Photo credit: Eric CLUA The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management The CRISP Programme comprises three major compo- T of Coral Reefs in the Pacifi c (CRISP), sponsored nents, which are: by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project Component 1A: Integrated Coastal Management and from 2002 onwards, aims to develop a vision for the Watershed Management future of these unique ecosystems and the communi- - 1A1: Marine biodiversity conservation planning ties that depend on them and to introduce strategies - 1A2: Marine Protected Areas and projects to conserve their biodiversity, while de- - 1A3: Institutional strengthening and networking veloping the economic and environmental services - 1A4: Integrated coastal reef zone and watershed that they provide both locally and globally. Also, it is management designed as a factor for integration between deve- Component 2: Development of Coral Ecosystems loped countries (Australia, New Zealand, Japan and - 2A: Knowledge, benefi cial use and management USA), French overseas territories and Pacifi c Island de- of coral ecosytems veloping countries.
    [Show full text]
  • CLAY OKOTH OBOTA Thesis.Pdf (866.6Kb)
    ii REPRODUCTIVE BIOLOGY OF EXPLOITED POPULATIONS OF THE EMPEROR ANGELFISH, Pomacanthus imperator BLOCH, 1787 ALONG THE KENYAN COAST CLAY OKOTH OBOTA A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Fisheries of Pwani University MAY, 2016 ii DECLARATION iii DEDICATION This thesis is dedicated to my K’Ochero family, classmates and friends who stood by me. I will always remember your words of encouragement and support when I needed you. iv ACKNOWLEDGEMENT This study was undertaken with the invaluable academic guidance from my supervisors, Dr. Bernerd Fulanda (Pwani University) and Dr. Edward Kimani (KMFRI). I further thank them for patience throughout this study and ensuring that despite their advice and opinions, I was the sole driver of my study project and hence fully responsible for my thesis and making sure that my study project was scientifically sound and practically workable, as could possibly be. Many thanks go to the Director KMFRI for support and provision of laboratory working space. My gratitude goes to Jibril Olunga and KMFRI interns for their assistance in laboratory work. To the long list of the rest of the people who helped shape both the field work, analysis and write up in one way or the other, may God bless you abundantly your help was greatly appreciated. This work was financially supported by the Kenya Coastal Development Project (KCDP) through a student fellowship grant; to KMFRI and KCDP, I would like to say "A big thank you". v ABSTRACT Substantial proportion of the Pomacanthus imperator are traded in terms of value and quantity and also harvested as food in the artisanal fishery in Kenya.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 08, pp.55487-55491, August, 2017 ISSN: 0975-833X RESEARCH ARTICLE STUDIES ON RESOURCE POTENTIAL AND DIVERSITY OF PUFFER FISHES ALONG DIGHA COAST, WEST BENGAL, INDIA *Rudra Prasad Nath and Jayanta Kumar Kundu Department of Zoology, Vidyasagar University, Midnapore -721102, West Bengal, India ARTICLE INFO ABSTRACT Article History: The present study describes the distribution of puffer fishes from the coastal belt of Digha (between Received 22nd May, 2017 21°32´N to 21°45´N latitude and 87°32´E to 87°50´E longitude) in West Bengal along the east coast Received in revised form of India. The puffer fishes were collected by trawling from three different stations (Digha mohona, 09th June, 2017 Sankarpur, Soula). During this survey, 7 different species from 5 genera under the order Accepted 27th July, 2017 Tetraodontiformes belonging to the family Tetraodontidae was identified viz, Arothron stellatus, Published online 31st August, 2017 Arothron immaculatus, Chelonodon patoca, Lagocephalus inermis, Lagocephalus lunaris, Takifugu oblongus, Tetraodon fluviatilis. The present study revealed that three puffer fishes were distributed Key words: mostly viz, Lagocephalus lunaris (51.49%), Takifugu oblongus (27.02%), Tetraodon fluviatilis (13.55%) and rest of the puffers are very few viz, Arothron stellatus (2.09%), Arothron immaculatus Puffer fish, Tetraodontidae, (0.28%), Chelonodon patoca (1.50%), Lagocephalus inermis (4.07%). Lagocephalus lunaris was Tetraodontiformes, Seasonal abundance, recorded maximum from this coastal region. This study also summarized the distribution as well as Puffer diversity, Digha coast.
    [Show full text]
  • Langston R and H Spalding. 2017
    A survey of fishes associated with Hawaiian deep-water Halimeda kanaloana (Bryopsidales: Halimedaceae) and Avrainvillea sp. (Bryopsidales: Udoteaceae) meadows Ross C. Langston1 and Heather L. Spalding2 1 Department of Natural Sciences, University of Hawai`i- Windward Community College, Kane`ohe,¯ HI, USA 2 Department of Botany, University of Hawai`i at Manoa,¯ Honolulu, HI, USA ABSTRACT The invasive macroalgal species Avrainvillea sp. and native species Halimeda kanaloana form expansive meadows that extend to depths of 80 m or more in the waters off of O`ahu and Maui, respectively. Despite their wide depth distribution, comparatively little is known about the biota associated with these macroalgal species. Our primary goals were to provide baseline information on the fish fauna associated with these deep-water macroalgal meadows and to compare the abundance and diversity of fishes between the meadow interior and sandy perimeters. Because both species form structurally complex three-dimensional canopies, we hypothesized that they would support a greater abundance and diversity of fishes when compared to surrounding sandy areas. We surveyed the fish fauna associated with these meadows using visual surveys and collections made with clove-oil anesthetic. Using these techniques, we recorded a total of 49 species from 25 families for H. kanaloana meadows and surrounding sandy areas, and 28 species from 19 families for Avrainvillea sp. habitats. Percent endemism was 28.6% and 10.7%, respectively. Wrasses (Family Labridae) were the most speciose taxon in both habitats (11 and six species, respectively), followed by gobies for H. kanaloana (six Submitted 18 November 2016 species). The wrasse Oxycheilinus bimaculatus and cardinalfish Apogonichthys perdix Accepted 13 April 2017 were the most frequently-occurring species within the H.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • South-West Pacific Node Training 12-16 November 2007
    COMPONENT 2A - Project 2A2 Knowledge, monitoring, management and benefi cial use of coral reef ecosystems April 2008 REEF MONITORING SOUTH-WEST PACIFIC NODE TRAINING 12-16 NOVEMBER 2007 Author: Naushad YAKUB The CRISP programme is implemented as part of the policy developped by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management of Coral Reefs in the Pacifi c T (CRISP), sponsored by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project from 2002 onwards, aims to develop a vision for the future of these unique eco-systems and the communities that depend on them and to introduce strategies and projects to conserve their biodiversity, while developing the economic and environmental services that they provide both locally and globally. Also, it is designed as a factor for integration between developed countries (Australia, New Zealand, Japan and USA), French overseas territories and Pacifi c Island developing countries. The CRISP Programme comprises three major components, which are: Component 1A: Integrated Coastal Management and Watershed Management - 1A1: Marine biodiversity conservation planning - 1A2: Marine Protected Areas - 1A3: Institutional strengthening and networking - 1A4: Integrated coastal reef zone and watershed management CRISP Coordinating Unit (CCU) Component 2: Development of Coral Ecosystems Programme manager: Eric CLUA - 2A:
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Reef Fishes of the Phoenix Islands, Central Pacific Ocean
    REEF FISHES OF THE PHOENIX ISLANDS, CENTRAL PACIFIC OCEAN BY GERALD ALLEN1 AND STEVEN BAILEY2 ABSTRACT Visual inventories and fish collections were conducted at the Phoenix Islands during June-July 2002. A list of fishes was compiled for 57 sites. The survey involved 163 hours of scuba diving to a maximum depth of 57 m. A total of 451 species were recorded, including 212 new records. The total known fish fauna of the Phoenix Islands now stands at 516 species. A formula for predicting the total reef fish fauna based on the number of species in six key indicator families indicates that at least 576 species can be expected to occur at this location. Wrasses (Labridae), groupers (Serranidae), gobies (Gobiidae), damselfishes (Pomacentridae), and surgeonfishes (Acanthuridae) were the most speciose families with 53, 40, 36, 36, and 32 species respectively. Species numbers at visually sampled sites during the survey ranged from 17 to 166, with an average of 110. Leeward outer reefs contained the highest diversity with an average of 135.5 species per site. Other major habitats included windward outer reefs (123.7 per site), passages (113.5), and lagoon reefs (38.5). The Napoleon Wrasse (Cheilinus undulatus) was extraordinarily abundant, providing excellent baseline information on the natural abundance of this species in the absence of fishing pressure. Conservation recommendations include protection of certain large predatory fishes including the Napoleon Wrasse, Bumphead Parrotfish, and reef sharks. INTRODUCTION The primary goal of the fish survey was to provide a comprehensive inventory of reef fishes inhabiting the Phoenix Islands. This segment of the fauna includes fishes living on or near coral reefs down to the limit of safe sport diving or approximately 55 m depth.
    [Show full text]
  • Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date]
    Ornamental Fish and Marine Invertebrates ORNAMARI.ALL [Document Date] Health Standard Import Import Issued under the Biosecurity Act 1993 Import Health Standard: Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date] TITLE Import Health Standard: Ornamental Fish and Marine Invertebrates COMMENCEMENT This Import Health Standard comes into force on [Effective Date] REVOCATION This Import Health Standard revokes and replaces: Import Health Standard for Ornamental Fish and Marine Invertebrates from all countries, 20 April 2011. ISSUING AUTHORITY This Import Health Standard is issued on Dated at Wellington this ... day of ......... Howard Pharo Manager, Import and Export Animals Ministry for Primary Industries (acting under delegated authority of the Director-General) Contact for further information Ministry for Primary Industries (MPI) Regulation & Assurance Branch Animal Imports PO Box 2526 Wellington 6140 Email: [email protected] Ministry for Primary Industries Page 1 of 75 Import Health Standard: Ornamental Fish and Marine Invertebrates Draft for Consultation [Document Date] Contents Page Introduction 4 Part 1: Requirements 6 1.1 Application 6 1.2 Outcome 6 1.3 Incorporation by reference 7 1.4 Definitions 7 1.5 Harmonised system (HS) codes 7 1.6 Exporting country systems and certification 8 1.7 Diagnostic testing and treatment 8 1.8 Packaging 9 1.9 Import permit 9 1.10 The documentation that must accompany goods 9 1.11 Inspection and verification 10 1.12 Transitional facility 11 1.13 Pre-export isolation
    [Show full text]