The Role of Threespot Damselfish (Stegastes Planifrons)

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Threespot Damselfish (Stegastes Planifrons) THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Masters of Science Brooke A. Axline-Minotti August 2003 This thesis entitled THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF BY BROOKE A. AXLINE-MINOTTI has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Molly R. Morris Associate Professor of Biological Sciences Leslie A. Flemming Dean, College of Arts and Sciences Axline-Minotti, Brooke A. M.S. August 2003. Environmental Studies The Role of Threespot Damselfish (Stegastes planifrons) as a Keystone Species in a Bahamian Patch Reef. (76 pp.) Director of Thesis: Molly R. Morris Abstract The purpose of this research is to identify the role of the threespot damselfish (Stegastes planifrons) as a keystone species. Measurements from four functional groups (algae, coral, fish, and a combined group of slow and sessile organisms) were made in various territories ranging from zero to three damselfish. Within territories containing damselfish, attack rates from the damselfish were also counted. Measures of both aggressive behavior and density of threespot damselfish were correlated with components of biodiversity in three of the four functional groups, suggesting that damselfish play an important role as a keystone species in this community. While damselfish density and measures of aggression were correlated, in some cases only density was correlated with a functional group, suggesting that damselfish influence their community through mechanisms other than behavior. Knowledge of the range in which a relative balance of biodiversity exists has potential for utilization in marine conservation. Approved: Molly R. Morris Associate Professor of Biological Sciences Dedication This thesis is dedicated to my husband, my daughter, my mother, and my dogs. Acknowledgments I would like to thank Dr. Gene Mapes and Dr. Royal Mapes for introducing me to my future and Dr. Donald Miles for his help and patience with data analysis. I especially thank Dr. Molly Morris for the suggestions and encouragement that led to both this paper and fieldwork. TABLE OF CONTENTS Page ABSTRACT 3 DEDICATION 4 ACKNOWLEDGMENTS 5 LIST OF TABLES 8 LIST OF FIGURES 9 I. INTRODUCTION 10 A. Importance of coral reefs 10 B. Intermediate Disturbance Hypothesis 10 C. Keystone species and their utilization 11 D. Damselfish as Keystone species 13 II. INFLUENCE OF DAMSELFISH ON CORAL REEF COMMUNITIES 14 A. Territories 14 B. Algae 15 C. Coral 22 D. Cryptofauna 28 E. Competitive Interactions 30 Damselfish 30 Herbivorous fish 32 Herbivorous urchins and seastars 35 F. Overview 36 III. MATERIALS AND METHODS 38 A. Study area 38 B. Experimental sites 39 C. Biodiversity 40 D. Aggression 43 E. Data analysis 44 IV. RESULTS 45 V. DISCUSSION 53 A. Functional groups 53 B. Biodiversity 58 C. Research applications 60 D. Direct conservation efforts at Three Sister’s Patch Reef 62 LITERATURE CITED 67 APPENDIX 76 A. Differences in coral reefs in different geographic regions 76 8 LIST OF TABLES Table Page 2.1 A partial list of phyla and classes found inside damselfish algal mats 29 (derived from Lobel 1980). 3.1 Taxonomic variables in each functional group, method and 42 order of observation, as well as the study from which they were derived. 4.1 Mean measures of aggression level and aggression index, as well as mean 45 percent cover algae within each threespot density. 4.2 Mean aggression level and aggression index as well as mean percent cover 47 coral variables and total coverage within each threespot density. The symbol (l) denotes live coral and (d) denotes dead coral. 4.3 Results of the main effects on all functional groups and all taxa. Results in 52 bold indicate those that were found to be significant. 9 LIST OF FIGURES Figure Page 3.1 Census plots on Three Sister’s Patch Reef. 40 4.1 Mean percent cover red, green filamentous, green branching, brown, and 46 total algae within each threespot population density. 4.2 The effects of mean aggression level at each threespot population density 48 on percent cover dead coral. 4.3 The effects of aggression index on percent cover live coral. 48 4.4 The effects of each threespot population density on mean percent cover 49 total coral. 4.5 The effects of aggression level on total percent cover of live and dead coral. 49 4.6 The effects of aggression index on total percent cover live and dead coral. 50 4.7 The affects of aggression index on the number of fish in each territory. 51 5.1 A comparison of the algae and coral functional groups at different 60 damselfish densities. 5.2 Marine Replenishment Zones and Scientific Monitoring Zones in Central 65 Andros National Park (Bahamas National Trust 2001). 10 I. INTRODUCTION It is estimated that thirty percent of all coral reefs world-wide are in critical condition (Tuxill 1998) and seventy percent of reefs are under direct threat from human activities (Carlton et al. 1999). A. Importance of coral reefs Coral reefs are among the most biologically complex ecosystems known. Yet in recent decades, the coral reefs of the Bahamas, as elsewhere, have been damaged by habitat alteration, pollution, and other human activities. Coral reefs provide food, medicine, income, and an intangible richness to our lives; however, destruction of this habitat is increasing and is among the most deleterious of any known ecosystem. Maintenance of species diversity and genetic variability are imperative in securing survival of these ecosystems. Biodiversity increases the probability that community members will respond differently to variable environmental conditions and perturbations, therefore reducing the risk of species and habitat extinction (Sole and Montoya 2001). Deterioration in reef ecosystems create an urgent need for research and further understanding of natural interactions for implementation of effective management and rehabilitation plans. B. Intermediate Disturbance Hypothesis The intermediate disturbance hypothesis, originally formulated by Paine and Vadas in 1969 and in large part by Connell in 1978, is described as “agents of physical disturbance or consumers at intermediate intensity enhance diversity by reducing competitive exclusion and preventing competitively superior species from attaining population sizes that are large enough to monopolize all of the limiting resources” (Wootton, 1998 p. 803). Therefore, at intermediate disturbance, the community becomes 11 a mosaic of patches at various succession stages of regeneration, allowing for a full variety of species diversity (Ricklefs and Miller 2000). The intermediate disturbance hypothesis was later elaborated by Huston (1979) to include the concept that “rates of population growth and competitive displacement of the species in the community as well as the extent of disturbance in the community are the primary explanations for the existence of highly diverse communities” (Ricklefs and Miller 2000, p. 612). These studies have shown the imperative role of intermediate disturbance in developing community structure. C. Keystone species and their utilization A “keystone” is the pivotal block of stone that secures the structure of an archway: without the stone, the archway falls. A keystone species is a species whose presence is essential to the diversity of life for a given ecosystem (Sole and Montoya 2001). Within a habitat, each species depends on other species for survival and, in turn, contributes to the overall condition of the habitat. Plants provide essential nutrients and energy to browsing and grazing animals and, ultimately, to the carnivores that feed on these herbivores. While each species contributes to habitat operation, some species apparently do more than others. One particular species may provide essential services that are unique. Without the work of these key species, the habitat changes significantly. When this keystone species disappears from its habitat, the environment changes causing loss of other resident species and, eventually, the intricate connections among the remaining residents begin to change dramatically. Identification of keystone species and insight into their behavior is fundamental in understanding the complex interactions of the animals of coral reef ecosystems and the 12 ways in which these species can play a role in proper management. One family playing a fundamental role in maintenance of coral reef diversity is the aggressive damselfish (Family Pomacentridae). Only limited research on the specific role of damselfish in small-scale disturbances has been done to the present in Bahamian reefs. The barrier reef on the east side of Andros Island, Bahamas offers a prime location for additional research on damselfish because it is the third longest barrier reef in the world (Lecard 2001), portions of this reef are currently being established as a division of Central Andros National Park (Bahamas National Trust 2002). The study of damselfish in this region and identification of their role in structuring the surrounding reef ecosystem will ultimately contribute to marine resource conservation and management in Andros, as well as on other reef tracts in other parts of the Bahamas and the Caribbean. McCook (2002) presented research showing how community based Marine Protected Areas where fishing is excluded (called no-take-zones) may
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • CORAL REEF COMMUNITIES from NATURAL RESERVES in PUERTO RICO : a Quantitative Baseline Assessment for Prospective Monitoring Programs
    Final Report CORAL REEF COMMUNITIES FROM NATURAL RESERVES IN PUERTO RICO : a quantitative baseline assessment for prospective monitoring programs Volume 2 : Cabo Rojo, La Parguera, Isla Desecheo, Isla de Mona by : Jorge (Reni) García-Sais Roberto L. Castro Jorge Sabater Clavell Milton Carlo Reef Surveys P. O. Box 3015, Lajas, P. R. 00667 [email protected] Final report submitted to the U. S. Coral Reef Initiative (CRI-NOAA) and DNER August, 2001 i PREFACE A baseline quantitative assessment of coral reef communities in Natural Reserves is one of the priorities of the U. S. Coral Reef Initiative Program (NOAA) for Puerto Rico. This work is intended to serve as the framework of a prospective research program in which the ecological health of these valuable marine ecosystems can be monitored. An expanded and more specialized research program should progressively construct a far more comprehensive characterization of the reef communities than what this initial work provides. It is intended that the better understanding of reef communities and the available scientific data made available through this research can be applied towards management programs designed at the protection of coral reefs and associated fisheries in Puerto Rico and the Caribbean. More likely, this is not going to happen without a bold public awareness program running parallel to the basic scientific effort. Thus, the content of this document is simplified enough as to allow application into public outreach and education programs. This is the second of three volumes providing quantitative baseline characterizations of coral reefs from Natural Reserves in Puerto Rico. ACKNOWLEDGEMENTS The authors want to express their sincere gratitude to Mrs.
    [Show full text]
  • INTERACTIONS AMONG CORAL REEF HABITAT and the BEHAVIOR and STRESS PHYSIOLOGY of BICOLOR DAMSELFISH (STEGASTES PARTITUS) Meagan N
    INTERACTIONS AMONG CORAL REEF HABITAT AND THE BEHAVIOR AND STRESS PHYSIOLOGY OF BICOLOR DAMSELFISH (STEGASTES PARTITUS) Meagan N. Schrandt A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Department of Biology and Marine Biology University of North Carolina Wilmington 2010 Approved by Advisory Committee Christopher M. Finelli John R. Godwin Frederick S. Scharf Sean C. Lema Chair Accepted by Dean, Graduate School TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................v DEDICATION .................................................................................................................. vii LIST OF TABLES .......................................................................................................... viii LIST OF FIGURE ............................................................................................................. ix CHAPTER 1: SPATIAL PATTERNS OF INTRASPECIFIC BEHAVIORAL VARIATION IN THE DEMERSAL FISH STEGASTES PARTITUS ASSOCIATE WITH PHYSICAL AND SOCIAL ENVIRONMENTAL VARIATION ON A CORAL REEF .....................................................................................................................1 SUMMARY .............................................................................................................2 INTRODUCTION ...................................................................................................4
    [Show full text]
  • Capture, Identification and Culture Techniques of Coral Reef Fish Larvae
    COMPONENT 2A - Project 2A1 PCC development February 2009 TRAINING COURSE REPORT CCapture,apture, iidentidentifi ccationation aandnd ccultureulture ttechniquesechniques ooff ccoraloral rreefeef fi sshh llarvaearvae ((FrenchFrench PPolynesia)olynesia) AAuthor:uthor: VViliameiliame PitaPita WaqalevuWaqalevu Photo credit: Eric CLUA The CRISP Coordinating Unit (CCU) was integrated into the Secretariat of the Pacifi c Community in April 2008 to insure maximum coordination and synergy in work relating to coral reef management in the region. The CRISP programme is implemented as part of the policy developed by the Secretariat of the Pacifi c Regional Environment Programme for a contribution to conservation and sustainable development of coral reefs in the Pacifi c he Initiative for the Protection and Management The CRISP Programme comprises three major compo- T of Coral Reefs in the Pacifi c (CRISP), sponsored nents, which are: by France and prepared by the French Development Agency (AFD) as part of an inter-ministerial project Component 1A: Integrated Coastal Management and from 2002 onwards, aims to develop a vision for the Watershed Management future of these unique ecosystems and the communi- - 1A1: Marine biodiversity conservation planning ties that depend on them and to introduce strategies - 1A2: Marine Protected Areas and projects to conserve their biodiversity, while de- - 1A3: Institutional strengthening and networking veloping the economic and environmental services - 1A4: Integrated coastal reef zone and watershed that they provide both locally and globally. Also, it is management designed as a factor for integration between deve- Component 2: Development of Coral Ecosystems loped countries (Australia, New Zealand, Japan and - 2A: Knowledge, benefi cial use and management USA), French overseas territories and Pacifi c Island de- of coral ecosytems veloping countries.
    [Show full text]
  • Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species.
    [Show full text]
  • Stegastes Partitus (Bicolour Damselfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Stegastes partitus (Bicolour Damselfish) Family: Pomacentridae (Damselfish and Clownfish) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Bicolour damselfish, Stegastes partitus. [http://reefguide.org/carib/bicolordamsel.html, downloaded 14 March 2015] TRAITS. Stegastes partitus is one of the five most commonly found fishes amongst the coral reefs within Trinidad and Tobago. Length: total length in males and females is 10cm (Rainer, n.d.). Contains a total of 12 dorsal spines and 14-17 dorsal soft rays in addition to a total of 2 anal spines and 13-15 anal soft rays. A blunt snout is present on the head with a petite mouth and outsized eyes. Colour: Damsels show even distribution of black and white coloration with a yellow section separating both between the last dorsal spine and the anal fin (Fig. 1), however during mating, males under differentiation in their coloration (Schultz, 2008). There are colour variations depending on the geographic region and juveniles differ from the adults. UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. Distribution is spread throughout the western Atlantic (Fig. 2), spanning from Florida to the Bahamas and the Caribbean with possible extension to Brazil (Rainer, n.d.). They are also found along the coast of Mexico. HABITAT AND ACTIVITY. Found at a depth of approximately 30m, damsels are found in habitats bordering coral reefs, that is areas of dead coral, boulders and man-made structures where algae is most likely to grow.
    [Show full text]
  • Linking Larval History to Juvenile Demography in the Bicolor Damselfish Stegastes Partitus (Perciformes: Pomacentridae)
    Linking larval history to juvenile demography in the bicolor damselfish Stegastes partitus (Perciformes: Pomacentridae) Richard S. Nemeth University of New Hampshire, Department of Zoology, Durham, NH, USA 03824. Present Address: Center for Marine and Environmental Studies, University of the Virgin Islands, 2 John Brewer’s Bay, St. Thomas, US Virgin Islands, 00802- 9990. Phone: (340) 693-1380, Fax: (340) 693-1385; [email protected] Received 15-I-2004. Corrected 18-VIII-2004. Accepted 29-III-2005. Abstract: Otolith-based reconstructions of daily larval growth increments were used to examine the effect of variation in larval growth on size and age at settlement and post-settlement growth, survival and habitat prefer- ences of juvenile bicolor damselfish (Stegastes partitus Poey). During August 1992 and 1994, newly settled S. partitus were collected from Montastraea coral heads and Porites rubble piles in Tague Bay, St. Croix, U.S. Virgin Islands (17°45’ N, 64°42’ W). Daily lapillar otolith increments from each fish were counted and measured with Optimas image analysis software. S. partitus pelagic larval duration was 23.7 d in 1992 (n = 70) and 24.6 d in 1994 (n = 38) and larval age at settlement averaged 13.0 mm total length both years. Analysis of daily otolith increments demonstrated that variation in larval growth rates and size and age at settlement had no detectable effect on post-settlement survivorship but that larger larvae showed a preference for Montastraea coral at settlement. Late larval and early juvenile growth rates showed a significant positive relationship indicating that growth patterns established during the planktonic stage can span metamorphosis and continue into the benthic juvenile phase.
    [Show full text]
  • Histological Analysis of Threespot Damselfish (Stegastes Planifrons) Gastrointestinal Tract and Implications for Staghorn Coral (Acropora Cervicornis) Health
    HISTOLOGICAL ANALYSIS OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) GASTROINTESTINAL TRACT AND IMPLICATIONS FOR STAGHORN CORAL (ACROPORA CERVICORNIS) HEALTH by William A. Norfolk A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Environmental Science and Policy Committee: __________________________________________ Dr. Esther C. Peters, Thesis Director __________________________________________ Dr. Robert B. Jonas, Committee Member __________________________________________ Dr. Patrick Gillevet, Committee Member __________________________________________ Dr. Albert P. Torzilli, Graduate Program Director __________________________________________ Dr. Robert B. Jonas, Department Chairperson __________________________________________ Dr. Donna Fox, Associate Dean, Student Affairs & Special Programs, College of Science _________________________________________ Dr. Peggy Agouris, Dean, College of Science Date: _____________________________________ Fall 2015 George Mason University Fairfax, VA Histological Analysis of Threespot Damselfish (Stegastes planifrons) Gastrointestinal Tract and Implications for Staghorn Coral (Acropora cervicornis) Health A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University by William Anderson Norfolk Bachelor of Science The University of Mary Washington, 2012 Director: Esther C. Peters, Professor Department of Environmental Science and Policy Fall
    [Show full text]
  • TEMPORAL DYNAMICS of FEEDING and REPRODUCTION of the DAMSEL FISH (Stegastes Fuscus)
    TEMPORAL DYNAMICS OF FEEDING AND REPRODUCTION OF THE DAMSEL FISH (Stegastes fuscus) Bhaskara Canan1; Liliane L. G. Souza2; Gilson L. Volpato3; Arrilton Araújo1; Sathyabama Chellappa2 ABSTRACT: This study reports on the feeding and reproductive dynamics of the damsel fish, Stegastes fuscus (Osteichthyes: Perciformes: Pomacentridae) in the rocky coastal reefs of Búzios, Rio Grande do Norte, Brazil. Water temperatures and rainfall data were registered and fish were captured on a monthly basis during one year. Fish body weights and lengths were measured and the stomachs were removed and classified according to their degree of fullness. The gonads were weighed, examined for sex determination and maturation was determined based on macroscopic inspections. A higher frequency of females (78%) was registered in relation to males (22%). The lowest degree of stomach fullness was observed in August and the highest in January. Only 2.49% of the fish had empty stomachs and the rest 97.51% had mainly macroalgae in their stomachs. The period from February to August was associated to a long phase of gonadal resting in males and females. Two peaks of partial spawning were registered during January and September/October. KEY-WORDS: Feeding. Reproduction. Biological rhythm. Environmental parameters. Pomacentridae. DINAMICA TEMPORAL DE ALIMENTAÇÃO E REPRODUÇÃO DO PEIXE-DONZELA, Stegastes fuscus RESUMO: O presente trabalho relata sobre a dinâmica de alimentação e reprodução do peixe-donzela, Stegastes fuscus (Osteichthyes: Perciforemes: Pomacentridae), nos arrecifes rochosos de Búzios, Rio Grande do Norte, Brasil. A temperatura da água e os dados de pluviosidade foram registrados e os peixes foram capturados mensalmente durante o período de um ano.
    [Show full text]
  • Influence of Predation Risk on the Sheltering Behaviour of the Coral-Dwelling Damselfish, Pomacentrus Moluccensis
    Environ Biol Fish (2018) 101:639–651 https://doi.org/10.1007/s10641-018-0725-3 Influence of predation risk on the sheltering behaviour of the coral-dwelling damselfish, Pomacentrus moluccensis Robin P. M. Gauff & Sonia Bejarano & Hawis H. Madduppa & Beginer Subhan & Elyne M. A. Dugény & Yuda A. Perdana & Sebastian C. A. Ferse Received: 27 August 2017 /Accepted: 11 January 2018 /Published online: 24 January 2018 # The Author(s) 2018. This article is an open access publication Abstract Predation is a key ecosystem function, espe- from their host colony was measured here as a proxy for cially in high diversity systems such as coral reefs. Not sheltering strength and was expected to be shortest under only is predation one of the strongest top-down controls of highest predation risk. Predation risk, defined as a func- prey population density, but it also is a strong driver of tion of predator abundance and activity, turbidity and prey behaviour and function through non-lethal effects. habitat complexity, was quantified at four reef slope sites We ask whether predation risk influences sheltering be- in Kepulauan Seribu, Indonesia. Damselfish sheltering haviour of damselfish living in mutualism with branching strength was measured using stationary unmanned video corals. Host corals gain multiple advantages from the cameras. Small damselfish (< 2 cm) increased their shel- mutualistic relationship which are determined by the tering strength under high turbidity. Predator feeding ac- strength of damselfish sheltering. Distance travelled by tivity, but not abundance, influenced damselfish sheltering the Lemon Damselfish Pomacentrus moluccensis away strength. Contrary to our expectations, sheltering behav- iour of adult damselfish decreased under high predator activity.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]