(Zebrafish and Ambon Damselfish) Emmanuel Ma

Total Page:16

File Type:pdf, Size:1020Kb

(Zebrafish and Ambon Damselfish) Emmanuel Ma Visual learning and its underlying neural substrate in two species of teleost fish (Zebrafish and Ambon damselfish) Emmanuel Marquez-Legorreta Bachelor in Psychology Master in Neuroscience A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 The Faculty of Medicine Abstract The visual sense is one of the main sources of information for many animals. In particular, many species of fish rely on vision for survival. Whether a fish needs to distinguish between possible predators, sources of food, a possible mate or competitors for their territory, learning to discriminate between visual stimuli is fundamental part of their life. Recently, studies have shown that multiple species of fish are able to solve visual discrimination tasks that were thought to be too complex for these organisms (Brown et al., 2011). Furthermore, neuroanatomical studies have also found that although the layout of the central nervous system of teleost fish is different, multiple structures seem to have homologues in mammalian brains (Mueller et al., 2011). Together, these findings have reinforced the role of fish as a model system to study the neuronal substrates of simple and complex behaviours (Gerlai, 2014). A particular case is the one of zebrafish, whose development as a model for neuroscience has been exceptionally rapid (Stewart et al., 2010; Blaser and Vira, 2014; Kalueff et al., 2014; Stewart et al., 2014a; d'Amora and Giordani, 2018). In the last decade, the combination of genetic and optical technology has allowed the neuronal activity imaging of the whole brain of zebrafish larvae (Ahrens et al., 2013a; Wolf et al., 2015; Vanwalleghem et al., 2018). These powerful technologies are presenting us for the first time with the opportunity to see and analyse the processing of visual information in the whole brain as fish learn. To accomplish the goal of analysing visual learning in the larval zebrafish’s whole brain, I chose to use a habituation paradigm. Habituation is a simple form of learning defined as a reduction of an innate response to a frequently repeated stimulus. Zebrafish larvae show habituation to visual and auditory stimuli (Best et al., 2008; Roberts et al., 2011; Wolman et al., 2011; Randlett et al., 2019), and provide an appealing platform from which to study habituation’s circuit-level mechanisms. When presented with a looming stimulus that resembles an approaching predator, larvae respond with a rapid escape behaviour. I first showed that zebrafish larvae are capable of habituation to repetitive looms, decreasing the probability of escape responses. Also, changing features of the stimulus, like speed and inter stimulus interval, modulated the habituating responses. Next, I used a selective plane illumination microscopy (SPIM) microscope and calcium imaging to visualize neuronal activity and localize the regions associated in this learning behaviour. The imaging experiments showed that different populations of neurons display a range of habituating responses across the brain, varying in their habituation rates. I then used graph theory to model the network connectivity changes during habituation, and found that some parts of the network disengage early while a smaller fragment I sustains its connectivity. A third fraction of the network, whose elements are mostly located in the optic tectum, disconnect gradually and seem to be involved in the reengagement of the network when recovery occurs. Finally, I performed habituation experiments with fmr1 mutant zebrafish larvae, a fragile X syndrome (FXS) model. The results of both behavioural experiments and network analysis of the neuronal activity suggest that fmr1 mutants habituate more slowly and present an enhanced recovery after a period of rest. Although the zebrafish larva offers important experimental advantages, experiments in this system are restricted to basic learning paradigms. Because of this, a part of this thesis is devoted to complex visual learning in the Ambon damselfish. This fish is particularly skilled at visual discrimination tasks at it uses facial patterns to discriminate among individuals and other similar species (Siebeck, 2004; Siebeck et al., 2010). Using operant conditioning methods to train the fish for visual discrimination tasks and immunohistological techniques, I attempted to localize the possible forebrain areas involved in visual learning. Exploratory results suggest the involvement of parts of the telencephalon during these tasks. Finally, I attempted to disrupt their visual learning performance while simulating an ocean acidification scenario, as it has been shown to have sensory detrimental consequences in fish (Clements and Hunt, 2015; Nagelkerken and Munday, 2016). However, my results showed an absence of notable differences in visual discrimination and visual learning, which suggest that adult Ambon damselfish visual abilities were not affected. The results of this thesis identified multiple teleost brain structures involved in visual learning, many of which are homologues of subcortical mammalian pathways. The relevance of these findings, including in relation to the human nervous system, is addressed in the final discussion of the thesis. Altogether, these results are important to better understand vertebrate’s visual learning and they open future directions to further investigate visual cognition in teleosts. II Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. III Publications included in this thesis – Marquez-Legorreta E, Piber M, and Scott EK. (2019) Visual Escape in Larval Zebrafish: Stimuli, Circuits, and Behavior. In: The behaviour genetics of zebrafish (Danio rerio). Elsevier. Submitted manuscripts included in this thesis – Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle IA, Taylor MA, Vanwalleghem GC, and Scott EK (submitted. Under review in Nature) Brain-wide visual habituation networks in wild-type and fmr1 zebrafish. Other publications during candidature Oral presentations – Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle I, Taylor M, Vanwalleghem G, Scott E. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Annual Conference of the Australasian Neuroscience Society, Adelaide, 2019. – Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle I, Taylor M, Vanwalleghem G, Scott E. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. Zebrafish Neural Circuit and Behaviour, Cold Spring Harbor Laboratories, 2019. – Marquez-Legorreta E, Favre-Bulle I, Taylor M, Heap, L, Vanwalleghem G, Scott E. Habituation to looming stimuli in zebrafish larvae. 38th Meeting of the Australasian Neuroscience Society, 2018. – Marquez-Legorreta E, Favre-Bulle I, Taylor M, Heap, L, Vanwalleghem G, Scott E. Habituation to looming stimuli in zebrafish larvae. 9th SBMS International Biomedical Postgraduate Symposium. The University of Queensland, 2018. – Marquez-Legorreta E, Favre-Bulle I, Taylor M, Heap, L, Vanwalleghem G, Scott E. Habituation to looming stimuli in zebrafish larvae. 19th Australia and New Zealand Zebrafish Meeting, Wollongong, Australia, 2018. – Marquez-Legorreta E, Bender D, Parker AN, Rosinski C, Siebeck UE. Visual learning in a changing climate. Heron Island Research Station Research Seminars. 9th of June 2017. – Marquez-Legorreta E, Bender D, Parker AN, Rosinski C, Siebeck UE. Fish visual discrimination and learning in a changing world. 43rd Annual Conference of the Australasian Society for the Study of Animal Behaviour. July of 2016. IV Poster presentations – Marquez-Legorreta E, Favre-Bulle I, Taylor M, Heap, L, Vanwalleghem G, Scott E. Habituation to looming stimuli in zebrafish larvae. International Congress of Neuroethology, Brisbane, Australia, 2018. – Marquez-Legorreta E, Favre-Bulle I, Taylor M, Heap, L, Vanwalleghem G, Scott E. Zebrafish larvae habituation to looming stimuli. 8th SBMS International Biomedical Postgraduate
Recommended publications
  • Phylogeny of the Damselfishes (Pomacentridae) and Patterns of Asymmetrical Diversification in Body Size and Feeding Ecology
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430149; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Phylogeny of the damselfishes (Pomacentridae) and patterns of asymmetrical diversification in body size and feeding ecology Charlene L. McCord a, W. James Cooper b, Chloe M. Nash c, d & Mark W. Westneat c, d a California State University Dominguez Hills, College of Natural and Behavioral Sciences, 1000 E. Victoria Street, Carson, CA 90747 b Western Washington University, Department of Biology and Program in Marine and Coastal Science, 516 High Street, Bellingham, WA 98225 c University of Chicago, Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology, 1027 E. 57th St, Chicago IL, 60637, USA d Field Museum of Natural History, Division of Fishes, 1400 S. Lake Shore Dr., Chicago, IL 60605 Corresponding author: Mark W. Westneat [email protected] Journal: PLoS One Keywords: Pomacentridae, phylogenetics, body size, diversification, evolution, ecotype Abstract The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages with ecological and economic importance for coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 330 of the 422 damselfish species.
    [Show full text]
  • Stegastes Partitus (Bicolour Damselfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Stegastes partitus (Bicolour Damselfish) Family: Pomacentridae (Damselfish and Clownfish) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Bicolour damselfish, Stegastes partitus. [http://reefguide.org/carib/bicolordamsel.html, downloaded 14 March 2015] TRAITS. Stegastes partitus is one of the five most commonly found fishes amongst the coral reefs within Trinidad and Tobago. Length: total length in males and females is 10cm (Rainer, n.d.). Contains a total of 12 dorsal spines and 14-17 dorsal soft rays in addition to a total of 2 anal spines and 13-15 anal soft rays. A blunt snout is present on the head with a petite mouth and outsized eyes. Colour: Damsels show even distribution of black and white coloration with a yellow section separating both between the last dorsal spine and the anal fin (Fig. 1), however during mating, males under differentiation in their coloration (Schultz, 2008). There are colour variations depending on the geographic region and juveniles differ from the adults. UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION. Distribution is spread throughout the western Atlantic (Fig. 2), spanning from Florida to the Bahamas and the Caribbean with possible extension to Brazil (Rainer, n.d.). They are also found along the coast of Mexico. HABITAT AND ACTIVITY. Found at a depth of approximately 30m, damsels are found in habitats bordering coral reefs, that is areas of dead coral, boulders and man-made structures where algae is most likely to grow.
    [Show full text]
  • Influence of Predation Risk on the Sheltering Behaviour of the Coral-Dwelling Damselfish, Pomacentrus Moluccensis
    Environ Biol Fish (2018) 101:639–651 https://doi.org/10.1007/s10641-018-0725-3 Influence of predation risk on the sheltering behaviour of the coral-dwelling damselfish, Pomacentrus moluccensis Robin P. M. Gauff & Sonia Bejarano & Hawis H. Madduppa & Beginer Subhan & Elyne M. A. Dugény & Yuda A. Perdana & Sebastian C. A. Ferse Received: 27 August 2017 /Accepted: 11 January 2018 /Published online: 24 January 2018 # The Author(s) 2018. This article is an open access publication Abstract Predation is a key ecosystem function, espe- from their host colony was measured here as a proxy for cially in high diversity systems such as coral reefs. Not sheltering strength and was expected to be shortest under only is predation one of the strongest top-down controls of highest predation risk. Predation risk, defined as a func- prey population density, but it also is a strong driver of tion of predator abundance and activity, turbidity and prey behaviour and function through non-lethal effects. habitat complexity, was quantified at four reef slope sites We ask whether predation risk influences sheltering be- in Kepulauan Seribu, Indonesia. Damselfish sheltering haviour of damselfish living in mutualism with branching strength was measured using stationary unmanned video corals. Host corals gain multiple advantages from the cameras. Small damselfish (< 2 cm) increased their shel- mutualistic relationship which are determined by the tering strength under high turbidity. Predator feeding ac- strength of damselfish sheltering. Distance travelled by tivity, but not abundance, influenced damselfish sheltering the Lemon Damselfish Pomacentrus moluccensis away strength. Contrary to our expectations, sheltering behav- iour of adult damselfish decreased under high predator activity.
    [Show full text]
  • Poisoned Waters
    POISONED WATERS How Cyanide Fishing and the Aquarium Trade Are Devastating Coral Reefs and Tropical Fish Center for Biological Diversity For the Fishes June 2016 Royal blue tang fish / H. Krisp Executive Summary mollusks, and other invertebrates are killed in the vicinity of the cyanide that’s squirted on the reefs to he release of Disney/Pixar’s Finding Dory stun fish so they can be captured for the pet trade. An is likely to fuel a rapid increase in sales of estimated square meter of corals dies for each fish Ttropical reef fish, including royal blue tangs, captured using cyanide.” the stars of this widely promoted new film. It is also Reef poisoning and destruction are expected to likely to drive a destructive increase in the illegal use become more severe and widespread following of cyanide to catch aquarium fish. Finding Dory. Previous movies such as Finding Nemo The problem is already widespread: A new Center and 101 Dalmatians triggered a demonstrable increase for Biological Diversity analysis finds that, on in consumer purchases of animals featured in those average, 6 million tropical marine fish imported films (orange clownfish and Dalmatians respectively). into the United States each year have been exposed In this report we detail the status of cyanide fishing to cyanide poisoning in places like the Philippines for the saltwater aquarium industry and its existing and Indonesia. An additional 14 million fish likely impacts on fish, coral and other reef inhabitants. We died after being poisoned in order to bring those also provide a series of recommendations, including 6 million fish to market, and even the survivors reiterating a call to the National Marine Fisheries are likely to die early because of their exposure to Service, U.S.
    [Show full text]
  • The Role of Threespot Damselfish (Stegastes Planifrons)
    THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Masters of Science Brooke A. Axline-Minotti August 2003 This thesis entitled THE ROLE OF THREESPOT DAMSELFISH (STEGASTES PLANIFRONS) AS A KEYSTONE SPECIES IN A BAHAMIAN PATCH REEF BY BROOKE A. AXLINE-MINOTTI has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Molly R. Morris Associate Professor of Biological Sciences Leslie A. Flemming Dean, College of Arts and Sciences Axline-Minotti, Brooke A. M.S. August 2003. Environmental Studies The Role of Threespot Damselfish (Stegastes planifrons) as a Keystone Species in a Bahamian Patch Reef. (76 pp.) Director of Thesis: Molly R. Morris Abstract The purpose of this research is to identify the role of the threespot damselfish (Stegastes planifrons) as a keystone species. Measurements from four functional groups (algae, coral, fish, and a combined group of slow and sessile organisms) were made in various territories ranging from zero to three damselfish. Within territories containing damselfish, attack rates from the damselfish were also counted. Measures of both aggressive behavior and density of threespot damselfish were correlated with components of biodiversity in three of the four functional groups, suggesting that damselfish play an important role as a keystone species in this community. While damselfish density and measures of aggression were correlated, in some cases only density was correlated with a functional group, suggesting that damselfish influence their community through mechanisms other than behavior.
    [Show full text]
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]
  • Temporal Patterns of Spawning and Larval Hatching in the Temperate Reef
    1 Temporal patterns of spawning and hatching in a spawning aggregation of the 2 temperate reef fish Chromis hypsilepis (Pomacentridae)1 3 4 William Gladstone 5 6 School of Environmental and Life Sciences, University of Newcastle, PO Box 127, 7 Ourimbah NSW 2258, Australia 8 9 E-mail: [email protected] 10 Tel.: + 61-2-43484123 11 Fax: + 61-2-43484145 12 1 This is the final corrected version of the ms that was accepted and published in Marine Biology 151:1143-1152 (2007). 1 13 Abstract Descriptions of temporal patterns in the reproduction of damselfishes 14 (family Pomacentridae) and adaptive hypotheses for these patterns are derived mostly 15 from studies of coral reef species. It is unclear whether the types of temporal patterns 16 and the explanatory power of the adaptive hypotheses are applicable to damselfishes 17 of temperate rocky reefs. This study tested hypotheses about the existence of lunar 18 spawning cycles, the diel timing of hatching, and the synchronization of temporal 19 patterns in hatching and tides in the schooling planktivorous damselfish Chromis 20 hypsilepis on a rocky reef in New South Wales, Australia. Reproductive behaviour 21 was observed daily for 223 d between August 2004 and March 2005. C. hypsilepis 22 formed large spawning aggregations of 3,575–33,075 individuals. Spawning occurred 23 at a uniform rate throughout the day on a semi-lunar cycle. The greatest number of 24 spawnings occurred 1 d after the new moon and 1 d before the full moon. The cost to 25 males from brood care was an 85% reduction in their feeding rate.
    [Show full text]
  • Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
    PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales.
    [Show full text]
  • An Indo-Pacific Damselfish Well Established in the Southern Gulf of Mexico: Prospects for a Wider, Adverse Invasion
    An Indo-Pacific damselfish well established in the southern Gulf of Mexico: prospects for a wider, adverse invasion D. ROSS ROBERTSON Smithsonian Tropical Research Institute, Balboa, Panama E-mail: [email protected] NUNO SIMOES Unidad Multidisciplinaria en Docencia e Investigación de Sisal, Facultad de Ciencias, UNAM, Yucatan, México E-mail: [email protected] CARLA GUTIÉRREZ RODRÍGUEZ Instituto de Ecología, A.C. Xalapa. Veracruz, México E-mail: [email protected] VICTOR J. PIÑEROS Instituto de Ecología, A.C. Xalapa. Veracruz, México E-mail: [email protected] HORACIO PEREZ-ESPAÑA Instituto de Ciencias Marinas y Pesquerías, Universidad Veracruzana, Hidalgo 617, Col. Río Jamapa, C.P. 94290, Boca del Río, Veracruz, México E-mail: [email protected] Abstract The Indo-west Pacific damselfish Neopomacentrus cyanomos was first recorded in the West Atlantic in 2013, when it was found to be common on reefs near Coatzacoalcos, in the extreme southwest corner Gulf of Mexico. During 2014–2015, this species also was found on reefs farther afield in that area, but not in the northwest Gulf, nor the north-eastern tip of the Yucatan peninsula. These data, and information from public databases on invasive reef fishes, indicate that N. cyanomos currently is widely distributed in, but restricted to, the southwest Gulf of Mexico. Mitochondrial DNA barcodes of N. cyanomos from that area match to those for this species from its natural range, but do not indicate the ultimate origin of the Gulf of Mexico fish. Possible modes of introduction to the Gulf of Mexico and the potential for its further spread with negative effects on the native reef-fish fauna are discussed, and directions for future research suggested.
    [Show full text]
  • Larval Transport and Dispersal in the Coastal Ocean and Consequences for Population Connectivity
    MARI N E P O P ULATIO N C O nn E C TI V ITY Larval Transport and Dispersal in the Coastal Ocean and Consequences for Population Connectivity BY JESÚS PI N E D A , J O N ATHA N A . H A R E , A nd S U Sp O N AUGLE MA N Y M ARI N E S P E C IES have small, pelagic early life stages. For those spe- cies, knowledge of population connectivity requires understanding the origin and trajectories of dispersing eggs and larvae among subpopulations. Researchers have used various terms to describe the movement of eggs and larvae in the marine envi- ronment, including larval dispersal, dispersion, drift, export, retention, and larval transport. Though these terms are intuitive and relevant for understanding the spatial dynamics of populations, some may be nonoperational (i.e., not measur- able), and the variety of descriptors and approaches used makes studies difficult to compare. Furthermore, the assumptions that underlie some of these concepts are rarely identified and tested. Here, we describe two phenomenologi- cally relevant concepts, larval transport and larval dispersal. These concepts have corresponding operational definitions, are relevant to understanding population connectivity, and have a long history in the literature, although they are sometimes confused and used interchangeably. After defin- ing and discussing larval transport and dispersal, we consider the relative importance of planktonic processes to the overall understanding and measurement of popula- tion connectivity. The ideas considered in this contribution are applicable to most benthic and pelagic species that undergo transforma- tions among life stages.
    [Show full text]
  • Literature Review the Benefits of Wild Caught Ornamental Aquatic Organisms
    LITERATURE REVIEW THE BENEFITS OF WILD CAUGHT ORNAMENTAL AQUATIC ORGANISMS 1 Submitted to the ORNAMENTAL AQUATIC TRADE ASSOCIATION October 2015 by Ian Watson and Dr David Roberts Durrell Institute of Conservation and Ecology [email protected] School of Anthropology and Conservation http://www.kent.ac.uk/sac/index.html University of Kent Canterbury Kent CT2 7NR United Kingdom Disclaimer: the views expressed in this report are those of the authors and do not necessarily represent the views of DICE, UoK or OATA. 2 Table of Contents Acronyms Used In This Report ................................................................................................................ 8 Executive Summary ............................................................................................................................... 10 Background to the Project .................................................................................................................... 13 Approach and Methodology ................................................................................................................. 13 Approach ........................................................................................................................................... 13 Literature Review Annex A ............................................................................................................ 13 Industry statistics Annex B .................................................................................................................... 15 Legislation
    [Show full text]
  • Protogyny in a Tropical Damselfish: Females Queue for Future Benefit
    Protogyny in a tropical damselfish: females queue for future benefit Mark I. McCormick ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia ABSTRACT Membership of the group is a balance between the benefits associated with group living and the cost of socially constrained growth and breeding opportunities, but the costs and benefits are seldom examined. The goal of the present study was to explore the trade-offs associated with group living for a sex-changing, potentially protogynous coral reef fish, the Ambon damselfish, Pomacentrus amboinensis. Extensive sampling showed that the species exhibits resource defence polygyny, where dominant males guard a nest site that is visited by females. P. amboinensis have a longevity of about 6.5 years on the northern Great Barrier Reef. While the species can change sex consistent with being a protogynous hermaphrodite, it is unclear the extent to which the species uses this capability. Social groups are comprised of one reproductive male, 1–7 females and a number of juveniles. Females live in a linear dominance hierarchy, with the male being more aggressive to the beta-female than the alpha-female, who exhibits lower levels of ovarian cortisol. Surveys and a tagging study indicated that groups were stable for at least three months. A passive integrated transponder tag study showed that males spawn with females from their own group, but also females from neighbouring groups. In situ behavioural observations found that alpha-females have priority of access to the nest site that the male guarded, and access to higher quality foraging areas.
    [Show full text]