<<

БЪЛГАРСКААКАДЕМИЯНАНАУКИТЕ•BULGARIANACADEMYOFSCIENCES

ГЕОХИМИЯ,МИНЕРАЛОГИЯИПЕТРОЛОГИЯ•38•СОФИЯ•2001 GEOCHEMISTRY,MINERALOGYANDPETROLOGY•38•SOFIA•2001

ManganoanamphibolesfromtheskarnorePbZndepositsinthe Madandistrict,CentralRhodopes,Bulgaria RossitzaD.Vassileva,IvanK.Bonev Abstract. ManganoanamphibolesfromtheskarnorePbZndepositsinCentralRhodopesoccurgenerallyas fine fibrous aggregates. According to their chemical features manganoan amphiboles belong to two main groups: 1. calcic amphiboles – manganoferroactinolite, and 2. subcalcic MgFeMnLi amphiboles – members of manganocummingtonitemanganogrunerite series. These are formed during the hydrothermalalterationofskarnclinopyroxenes–bytopotaxicreplacementofmanganoanhedenbergitein the first case, and replacement of johannsenite in the second case. Main chemical characteristic is their increasedmanganoancontent,inheritedfromtheprimepyroxenes,reaching10.48wt.%MnOinmangano ferroactinolite and up to 13.58 and 13.89 wt.% MnO in manganocummingtonite and manganogrunerite, respectively.Manganoanamphibolesaretheearliestalterationproductsafterskarnpyroxenes.Theycouldbe observed as inclusions in the laterformed phases: , quartz, carbonate minerals and sulphides. Manganoferroactinolite, manganocummingtonite and manganogruneriteareobservedforthefirsttimein Bulgariandeposits. Key words : manganoferroactinolite, manganocummingtonite, manganogrunerite, skarn PbZn deposits, CentralRhodopes Address: Geological Institute, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; Email: [email protected] Василева, Р. Д., И. К. Бонев. 2001. Манганови амфиболи от скарноворудните PbZn находищавМаданскиярайон,ЦентралниРодопи,България.–Геохим.,минерал.ипетрол., 38 ,4553. Резюме. Мангановите амфиболи от скарноворудните оловноцинкови находища в Централните Родопи се срещат основно като финовлакнести агрегати. Според химизма си те се отнасят към две основнигрупи:1.къмкалциевитеамфиболи–манганофероактинолити2.къмсубкалциевитеMgFe MnLieвиамфиболичленовеотредицатаманганокъмингтонитманганогрунерит.Образуванисапри хидротермалнатапромянанаскарновиклинопироксеничрезтопотаксичнозаместваненаманганов хеденбергитвпървияслучай,инайохансенитвъввтория.Характернотозатезиминералиповишено манганово съдържание е унаследено от пироксените и достига до 10,48 тегл.% при мангано фероактинолитаидо13,58и13,89тегл.%,съответноприманганокъмингтонитаиманганогрунерита. Мангановитеамфиболисанайраннипроменителнипродуктинаскарновитепироксениисесрещат катовключениявостаналите,покъснообразуванифази:родонит,кварц,калцитисулфиди.Товаса първитедоказанинаходкинависокомангановиамфиболивбългарскиминералнинаходища. Ключови думи : манганофероактинолит, манганокъмингтонит, манганогрунерит, скарнови оловно цинковинаходища,ЦентралниРодопи Адрес :Геологическиинститут,Българскаaкадемиянанауките,София1113

45 Introduction Manganoan amphiboles are rather rare Manganoancontentintheseactinolitesreaches minerals. According to the nomenclature of the maximum values reported for these amphiboles, recently accepted by the Sub minerals19.46wt.%. commitee on Amphiboles of the International Thecrystalstructure,FeMgorderingand MineralogicalAssociation(IMA)(Leakeetal., the P21/mC2/m transition in the 1997) they mostly belong to two important cummingtonitegrunerite series are studied by mineralgroups:calcicamphibolesandMgFe Hirschmann et al. (1994) and Yang and MnLi amphiboles. Among the calcic group Hirschmann (1995). The ordering of Mn and these are the manganoan varieties of the Mg in the cummingtonite structure especially tremoliteferroactinolite series, for instance, in the manganoan members of this group was manganoan actinolite. In the group of the studies by applying hightemperature neutron subcalcic MgFeMnLi amphiboles important powderdiffraction(Reeceetal.,2000).Itwas are two manganoan species, mangano foundoutthatMnoccupiestheM(4)andM(2) cummingtonite (MnMg amphibole) and sites with priority to the larger and more manganogrunerite (MnFe amphibole). In the distorted M(4) site. At high temperature the mineralogical literature, including in the New orderingisreduced. Dana'sMineralogy(Gainesetal.,1997),forthe Forfirsttimefinefibrousmanganbearing last two minerals the names tirodite and amphiboles from Bulgaria were described by dannemoritewerewidelyused.However,now Bonev(1968),asalterationproductafterskarn it is recommended (Leake et al., 1997) these pyroxenes from the Madan PbZn deposits. namestobeabandoned. Their determination as calcic amphiboles of Manganoan amphiboles commonly occur tremolitic type was based on optical and in two types of geological environment: in powder Xray data. Lately, Bonev (1991) metamorphic manganbearing rocks, and in pointedouttheexistenceoffibrousamphibole, manganbearing skarns. Mnenriched silicate replacing hedenbergite in the skarn deposit of carbonate and oxide rocks, metamorphosed in Ardino. On the base of chemical composition theconditionsoftheamphibolitefacies(T600 and Xray diffraction data this mineral was 700 oC and pressure of several kbar) usually determined as manganoactinolite with 1.90 contain MnMg amphiboles with moderate to 5.09wt.%MnOand11.3012.30wt.%CaO.In low manganoan content. Deposits of these accordance with the recently approved rocks are known from India (Dasgupta et al., nomenclature(Leakeetal.,1997),thismineral 1988), Japan (Aikawa et al., 1979), Ghana, should be denoted as manganoan ferro Brazil, USA and others. They are associated actinolite. withgarnets,pyroxenoids,,etc. Duringthesystematicstudiesoftheskarn Manganoan amphiboles related to skarn mineralization in the Madan deposits polymetallicdepositsareknownfromsomeFar (Ossikovo, Mogilata, Zapadno Gradishte) it East deposits (Kazachenko et al., 1981): was established that amphiboles are widely manganoanactinolitewith8.43wt.%MnO(in distributed,althoughinsmallquantities.Itwas fact, ferroactinolite with Fe/Mg>1) and found the existence of subcalcic amphiboles dannemorite with 15.89 wt.% MnO from the manganocummigtonitemangano (predominantly, manganogrunerite with grunerite series, as well as calcic mangano Fe/Mg>1). Similar are the Mnrich calcic ferroactinolite. The results of their mineralo amphiboles of tremoliteferroactinolite series, gical study, given in the present work are described from skarn deposits in the important for understanding the processes of Bergslagendistrict,CentralSweden(Damman, hydrothermal alteration of the early pyroxene Lustenhouwer, 1992), where the type deposit skarnsandoforedepositioninthesedeposits. of dannemorite Dannemora is also located. The high manganoan content of these

46 amphibolesisoneofthemanifestationsofthe was studied by applying SEM on carbon regional geochemical manganoan specializa coated samples. Chemical analyses were tionoftheCentralRhodopesregion. performed by using an electronprobe microanalyserJEOLSuperprobe733equipped Geologicalenvironment with an ORTEC EDS system, at 15kV and 1nA.Thefollowingstandardswereused:albite TheTertiary,PbZnveinandmetasomaticore for Na, diopside for Mg, Fe 2O3forFe, Ai 2O3 depositsfromtheCentralRhodopesarehosted forAl,SiO 2forSi,KfeldsparforK,apatitefor preferentially in the Rhodopian metamorphic Ca, TiO 2 for Ti, manganoan ilmenite for Mn. complex, consisted of various gneisses, Mineral diagnostics was proved by Xray amphibolitesand marbles.The orecontrolling methods with a Gandolfi camera and photo faultsystemisofNNWorientation(Kolkovski graphic registration. Representative sample of etal.,1996).Themetasomaticskarnorebodies studiedmaterialisdepositedatthecollections areembeddedinthethreeknownmainmarble oftheGeologicalInstituteunder№M1.2001.3. horizons along the steep oreconducting faults andhavevariablemorphology,includingbed Manganoferroactinolite like, mushroomlike, veinlike and irregular shapes. Primary skarns consist of radiating Manganoferroactinolite was found in skarn clinopyroxene aggregates, varying in compo oresamplesfromtheOssikovoandtheZapad sition from manganoan hedenbergite to pure noGradishtedeposits.Thismineralisdevelo johannsenite. Manganoan pyroxenes have pedaftermanganoanhedenbergite(Fig.1). undergone intensive hydrothermal alteration Physical properties. Manganoferroactinolite and were replaced by retrograde silicate and fromthestudieddepositsispresentedbypale carbonatemineralsalsoenrichedin, represented by manganoan amphiboles, rhodonite, , bustamite, manga noanilvaite,rhodochrosite,manganoancalcite, manganoan chlorites and others. Clino pyroxene skarns are favourable environment forlocalizationoftherichmetasomaticgalena quartz ores. Sulphide deposition is closely connected with the processes of retrogradeskarnalterationandespeciallyofthe widelydistributedcarbonatization. Methodsandmaterials Mineral relationships and paragenetic sequen cesofamphibolesandtheothermineralswere determined by macroscopic observations, and in the microscopic studies using polarising microscope in transmitted and reflected light. Finefibrousamphibolesareoftenincludedina carbonate mass, whose selective dissolution Fig. 1. SEM microphotograph of manganoan gives opportunity to extract the individual hedenbergite (Px) replaced by fibrous mangano fibresandfibrousaggregatesthusmakingthem ferroactinolite(Act).ZapadnoGradishte accessible for direct observation. Morphology Фиг. 1. СЕМ изображение на манганов хеден of these peculiar fibrous formations and their бергит(Px),заместенотманганофероактинолит orientation with respect to primary pyroxene (Act).ЗападноГрадище

47 48 Table 1. Representative electron microprobe analyses of clinopyroxenes and manganoan amphiboles replacingthem Tаблица1. Представителнимикросондовиaнализинаклинопироксениизаместващитегиманганови амфиболи Zapadno Deposit Mogilata ZapadnoGradishte Mogilata Gradishte Manganoan Manganoferro Mangano Mangano Mineral Johannsenite hedenbergite actinolite cummingtonite grunerite AnalysisN 1 2 3 4 5 6 7 8 SiO 2 48.21 46.78 49.00 48.79 54.34 52.90 52.50 52.40 TiO 2 0.11 0.00 0.02 0.05 0.00 0.00 0.00 0.00 Al 2O3 0.00 2.23 1.86 2.11 0.00 1.32 0.71 0.22 FeO 15.98 4.91 20.10 20.65 15.99 16.11 19.54 19.95 MnO 11.57 23.48 10.48 9.50 13.34 13.58 13.63 13.89 MgO 2.30 1.43 7.35 6.78 14.20 12.98 9.77 9.88 CaO 20.65 21.68 9.23 9.87 0.77 0.87 1.74 1.20 Na 2O 0.18 0.26 0.58 0.26 0.28 0.59 0.46 0.43 K2O 0.36 0.00 0.20 0.19 0.06 0.00 0.20 0.18 Total 99.36 100.77 98.82 98.20 98.98 98.35 98.55 98.15 Cations O=6 O=23 Si 1.99 1.91 7.59 7.60 8.03 7.90 7.99 8.03 Al 0.00 0.11 0.34 0.39 0.00 0.10 0.11 0.00 Ti 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 Tsite 7.93 7.99 8.03 8.00 8.00 8.03 Al 0.00 0.00 0.00 0.14 0.02 0.04 Mg 0.14 0.09 1.70 1.57 3.13 2.98 2.22 2.26 Fe 2+ 0.55 0.17 2.60 2.69 1.98 2.01 2.49 2.56 Mn 0.40 0.81 0.70 0.74 0.00 0.00 0.28 0.15 Csite 5.00 5.00 5.00 5.00 5.00 5.00 Fe 2+ 0.00 0.00 0.00 0.00 0.00 0.00 Mn 0.68 0.51 1.67 1.72 1.48 1.65 Mg 0.00 0.00 0.00 0.00 0.00 0.00 Ca 1.53 1.65 0.12 0.14 0.28 0.20 Na 0.00 0.00 0,08 0.00 0.14 0.13 Bsite 2.21 2.16 1.97 1.99 1.90 1.98 Total 15.14 15.15 15.00 14.99 14.90 15.01 Na 0.01 0.02 0.17 0.08 0.00 0.17 0.00 0.00 K 0.02 0.00 0.04 0.04 0.11 0.00 0.04 0.04 Asite 0.21 0.12 0.11 0.17 0.04 0.04 Mg/ (Mg+Fe) 0.40 0.37 0.61 0.59 0.47 0.47 Duringasystematicstudyofmanganrich inthemiddleofthisarea(Fig.4),witnessingto calcic amphiboles from the tremoliteferro theabsenceofsuchmiscibilitygap.Inthefull actinolite series in some Swedish skarn solidsolution series of Fe and Mn actinolites, deposits, Damman and Lustenhouwer (1992) the studied here samples represent ferro pointedouttheexistenceofamiscibilitygapin actinoliteswiththehighestknownmanganoan theareaoftheferroanmembers.Ouranalyses content. ofmanganoferroactinolitesareplottedexactly 49 (Ca+Na) B<1 and (Mg+Mn+Fe)>1 in the standard amphibole formula. In cases when 1

50 SEM observations show that the fine fibrous amphiboles inherit the direction of the structural chains on c direction of the initial clinopyroxene (Fig. 7). Interstitial voids between pyroxene relics and amphibole fibres arefilledbymanganoancalcite. The replacement of lowferroan johannsenite leadstoformationofamphiboles of manganocummingtonitemanganogrunerite series,whichovergrowandoftenfullyreplace the manganoan pyroxene. These amphiboles are typical with their fibrous aggregates with rounded voids, formed by dissolved calcite (Fig.5). Minerals from manganocummingtonite manganogrunerite series from the Ossikovo Fig. 6. Cations composition of manganocumming tonite (circles) and manganogrunerite (empty and Mogilata deposits are often found circles)fromtheMadandistrict associated with rhodonite. Microscopic and Фиг.6.Катионенсъставнаманганокъмингтонит SEM observations lead to the conclusion that (кръгчета) и манганогрунерит (празни кръгчета) formationoftheseamphibolespreceedsthatof отМаданскиярайон rhodonite.InsamplesfromZapadnoGradishte rhodonite, which is widely distributed though Mineralrelationships in subordinate quantities, often contains inclusions of finefibrous manganoferro Manganoferroactinolite from the Zapadno actinolite parallel to the prime pyroxene Gradishte and Ossikovo deposits was always elongation. Rhodonite crystals and aggregates formed by topotaxic replacement of havenotthesameorientation.Insamplesfrom manganoanhedenbergite withparallel caxes. Ossikovo and Mogilata, rhodonite Fig. 7. Replacement of johannsenite (Joh) from manganocummingtonite (Cum) with quartz (Qtz) and subsequentlyformedrhodonite(Rdn)euchedralcrystals Фиг. 7. Заместване на йохансенит (Joh) от манганокъмингтонит (Cum) с кварц (Qtz) и покъсни родонитови(Rdn)идиоморфникристали

51 euhedralcrystalsareformedafterpyroxeneand ThereactionleadstoextractionofCaand often crosscut the manganocummingtonite Si from the pyroxene and to reduction of the layers (Fig. 7). Other retrograde products and volumeofthenewformedsilicate–mangano sulphide ores are overimposed on this early ferroactinolite. fixed as carbonates paragenesis. and Si fixed in quatrz filled the opеned free Manganoan ilvaite , which is formed space around the newformed minerals. In the together with or shortly after the main ore case, when after johannsenite are formed sulphides,formssinglecrystalsandnestsatthe subcalcicamphibolesfrommanganocumming skarn front or in the manganoan hedenbergite tonitemanganogrunerite series together with zone (Vassileva et al., 2001). Sphalerite and rhodonite,Caisalmostfullyextractedandthe quartz are also presented in these nests, the neededFeandMnareprobablytakenfromthe centralpartsofwhicharefilledbycalcite.The closeenvironment. ilvaite grains often include fine fibres of manganoferroactinolite in random orienta tion. Sometimes, when the nests are in a Conclusions rhodonite mass, relics of manganocumming 1. Microscopic observations of the mineral tonite and manganogrunerite are observed as relationshipsintheskarnleaddepositsof inclusions in this mineral. These amphiboles the Madan district prove that manganoan inherittheradialtextureandorientationofthe amphiboles are the earliest products of prime johannsenite. Fibrous inclusions of retrograde alteration of the primary pyroxene manganoferroactinolite are also typical for the andraditicgarnet inthedepositofZapadno skarns. Gradishte, which is formed as a late hydro 2.Thechemicalcompositionoftheamphiboles thermalproductafterthehedenbergiteskarns. iscloselyrelatedtothechemistryandtheFe Microscopic observations of transparent MgMn ratio of the two chemical types of sphalerite crystalssometimesalsorevealedthe replaced pyroxenes. The calcic amphiboles presenceofamphibolefibres.Thefinefibrous (manganoferroactinolite) are formed after inclusions in galena shown on an electron manganoan hedenbergite, whereas the amphi microscopicmicrophotographbyBonev(1980, boles of subcalcic (manganocummingtonite Tabl.XII,Fig.1b)arealso,mostlikely,ofsuch manganogrunerite)seriesreplacejohannsenite. amphiboles. Some other amphibole compositions are also Carbonatization is a widespread hydro possible. thermal alteration of skarns. Carbonate mine 3. Pyroxene to amphibole transition is rals often contain inclusions of actinolitic controlledbythestructuralsimilaritiesofthese amphiboles. Manganoan calcite and rhodo chain silicates. It is connected with extraction chrositefilltheintersticesbetweentheprimary of Ca from the pyroxene structure and it’s skarn and postskarn minerals, as well as the deposition as manganoan carbonates in the nests in the pyroxene mass. Typical for the closevicinity. metasomaticbodiesofMogilataandOssikovo 4.Thenewobtainedchemicaldata,confirmthe isthepresence offineprismatic greenquartz . existence of full solidsolution series between Itscoloriscausedbythefinefibrousinclusions manganocummingtonite and manganogruneri ofmanganoferroactinolite. te, without the miscibility gap, suggested ear The process of metasomatic replacement lier (Damman, Lustenhouwer, 1992). In of manganoan hedenbergite by manganferro Ossikovo and Mogilata manganocumming actinolite may be presented by the following toniteprevailsovermanganogrunerite. reaction: 5. Manganoferroactinolite, manganocum mingtoniteandmanganogruneriteareobserved 5Ca(Fe,Mn,Mg)Si 2O6+3CO 2+H 2O= forthefirsttimeinBulgarianmineraldeposits. manganoanhedenbergite Acknowledgements. Theauthorsaregratefulforthe Ca 2(Fe,Mg,Mn) 5Si 8O22 (OH) 2+3CaCO 3+2SiO 2 supportoftheSwissScienceprogrammeSCOPES, manganoferroactinolitecalcitequartz projectJRB7BUPJO62396.

52 References Kazachenko, V. T., Zh. A. Shcheka, V. M. Chubarov, G. A. Narov, N. Yu. Zeitlin. 1981. Bonev,I.1968.PseudomorphosenderPyroxeneaus Manganous amphiboles and layered silicates den Skarnerzlagern in Madaner Erzrevier. – fromapolymetallicdepositinPrimorye,USSR. Bull. Geol. Inst., Ser. Geochem., Mineral., N.Jb.Mineral.Abh., 140 ,2,165183. Petrogr.,17 ,221240(inBulgarian). Kolkovski, B., S. Dobrev, P. Petrov, D. Manev. Bonev,I.1980.Crystalmorphologyofgalenafrom 1996. Geology, mineralogy and genesis of theCentralRhodopesLeadZincoredeposits.I. Madanorefield.In: PlateTectonicAspectsof Growthforms. Geol.Balcanica . 10 ,1,3356(in theAlpineMetallogenyintheCarpathoBalkan Bulgarian). Region. Proc. Ann. Meeting, Sofia, UNESCO Bonev,I.1991.Mineralogyandgeochemistryofthe IGCPprojectNo356, 2,157173. Ardino polymetallic deposit. – Geochem. Leake, B. E. et al. 1997. Nomenclature of Mineral.Petrol ., 27 ,2562(inRussian). amphiboles: Report of the Subcommittee on Aikawa, N., K. Masaoka, Sh. Maeno. 1979. amphiboles of the International Mineralogical Rhodonite, and manganoan Association, CNMMN. Canad. Mineral., 35 , amphiboles fromtheRyoke metamorphicrocks 219246. at Wakagashi, Osaka Prefecture, Japan. J. Vassileva,R.D.,I.K.Bonev,N.Zotov.2001.High Geosci., OsakaUniv ., 22,1,120. MnilvaitesfromtheskarnPbZndepositsinthe Gaines, R. V., H. C. W. Skinner, E. E. Foord, B. CentralRhodopes.In:Piestrzynskietal.(eds.) Mason, A. Rosenzweig. 1997. Dana’s New Mineral Deposits at the Beginning of the 21 st Mineralogy.TheSystemofMineralogyofJames Century. BalkemaPubl.,Lisse,925928. DwightDanaandEdwardSalisburyDana, New Yang,H.,M.M.Hirshmann.1995.Crystalstructure York,1819p. ofP2 1/mferromagnesianamphiboleandtherole Damman, A. H., W. J. Lustenhouwer. 1992. ofcationorderingandcompositionintheP2 1/m Manganeserich calcic amphiboles of the C2/m transition in cummingtonite. Amer. tremoliteferroactinoliteseries.Mineral.Mag., Mineral. , 80 ,916922. 56 ,391398. Hirshmann, M., B. W. Evans, H. Yang. 1994. CompositionandtemperaturedependenceofFe Mg ordering in cummingtonitegrunerite as Приетана01.11.2001г. determined by Xray diffraction. Amer. AcceptedNovember1,2001 Mineral. , 79 ,862877.

53