Santaclaraite, a New Calcium-Manganese Silicate

Total Page:16

File Type:pdf, Size:1020Kb

Santaclaraite, a New Calcium-Manganese Silicate American Mineralogist, Volume 69, pages 200J06, 1984 Santaclaraite,a new calcium-manganesesilicate hydrate from California RrcHeno C. Eno U.S. Geological Survey, Menlo Park, California 94025 eNo Yosnrrezu Onasnr Department of Geology, University of Pennsylvania Philadelphia, Pennsylvania19104 Abstract Santaclaraite,ideally CaMna[Si5O14(OH)](OH)' H2O, occursas pink and tan veins and massesin Franciscan chert in the Diablo Range, Santa Clara and Stanislaus Counties, Calif. It is associatedwith four unidentified Mn silicates, Mn-howieite, qtrartz, braunite, calcite, rhodochrosite, kutnohorite, barite, harmotome, chalcopyrite, and native cgpper. Santaclaraiteistriclinic,spacegroup Bl,a:15.633(l), b:7.603(l), c = 12.003(l)A,a= 109.71(lf,F = 88.61(1)',y:99.95(l)",Y = 13223Q)41,2= 4. The strongestlines of the X-raypowder pattern are (d,1, hkt):7.044, 100, 010; 3.003, 84, 501;3.152,80,410; 7 .69,63, 200; 3.847, 57, ( I 13,400); 3.524,39, 020. Crystalsare lamellarto prismatic (flattenedon {100}),with good cleavageon {100}and {010};H: 6%; D(calc.) : 3.398g/cm3, D(meas.) : -10.002), 3.31(t0.01);optically biaxial negative, with a : 1.681,F: 1.696,y = 1.708(all 2Vx:83 (tl)". Although chemicallya hydratedrhodonite, santaclaraitedehydrates to Mn-bustamite at about 550'C (in air). Santaclaraiteis a five-tetrahedral-repeatsingle-chain silicate and has structural affinities with rhodonite, nambulite, marsturite, babingtonite, and inesite. Introduction about fifty abandonedmanganese mines located in Santa The new mineral santaclaraitewas discovered in 1975 Clara, Alameda, San Joaquin, and Stanislaus Counties in an abandonedmanganese mine in the Diablo Range in near their common junction. Nearly all these mines lie northeasternSanta Clara County, Calif., by Messrs.John within a circle of 16-kmradius centered on Mount Board- L. Parnau and Albert L. McGuinness, who brought it to man at this junction. The mines and the geology of the us for investigation. They suspectedthat the mineral was areawere describedby Jenkins(1943) and Trask (1950), inesite from its color and prismatic habit, but our studies and a review with later production figures was presented proved the mineral to be new and to have a crystal by Davis (1957).The manganeseore bodies in the four- structure that helps to clarify the role of hydrogen in county area are ofthe Coast Rangesedimentary type that pyroxenoids(Ohashi and Finger, 1981).The mineral is occur in chert of the Franciscan Complex (Jurassic to named for the County of Santa Clara, the locality of its Lower Tertiary). first occurrence. Specimens of santaclaraite (holotype Our present information from the discoverers is that and cotypes) will be depositedat the SmithsonianInstitu- the abandonedmine in which santaclaraitewas discov- tion (National Museum of Natural History), Washington, ered is on property that is now private, posted against D.C. The name and descriptionhave been approvedby trespassing,and patrolled by a securitysystem. The mine the Commission on New Minerals and Mineral Names, workings are no longer accessible,and all of the manga- I.M.A. A descriptiongiven by Ohashiand Erd (1978)of nese mineral specimenswere found on old dumps at this an unnamed new mineral was a preliminary report for site. santaclaraite. The paragenesisof the specimensthat we have seen from this locality is noteworthy in that the more common Occurrence and paragenesis Mn minerals are scarceor absent and the Mn silicates so far found are all unusual in some respects. It seems Although the discoverers of santaclaraitedid not dis- worthwhile, therefore, to give a detailed account of the close the exact location of its occurrence, they have associated Mn minerals. Santaclaraite occurs both as provided us with many specimensfrom the locality and cross-fiber veins (the largest measures I cm in width by partial information on the occurrence. The mine is one of more than 9 cm in length) and irregular masses(10 cm in 0003-004x/84/0I 02-0200$02.00 200 ERD AND OHASHI: SANTACLARAITE 201 maximum dimension) in Mn-oxide-stained chert and A secondoccurrence of santaclaraitewas discoveredat quartz. Though uncommon in its overall occurrence, the Buckeyemine (locatedin sections2 and3, T. 5 S., R. santaclaraite is the most abundant Mn silicate at this 5 E., in Stanislaus County, Calif.). The mineral was Iocality. The next most abundantMn silicate is an uniden- identified by Erd in specimens collected rn 1942-1944 tified reddish-brown fine-grainedmineral that appearsto from the ore body by Dr. Max D. Crittenden,Jr., during be a memberof the friedelite series.Three other unidenti- his study of the geology of the deposit (Trask, 1950,p. fied Mn silicatesat this locality are similar to, but differ in 287-289).Santaclaraite occurs sparselyas pink prismatic some respectsfrom, the minerals parsettensite,welinite, crystals up to 3 mm long in quartz veins in tan chert and gageite (all currently under study). Mn-howieite is associatedwith rhodochrosite, the friedelitelike mineral associated with santaclaraite as yellow-brown fibrous (identical with that of the Santa Clara Co. occurrence), veinlets,masses, and small spherules,with a : 1.697,B braunite, and very minor chalcopyrite. It is probable that : 1.716,y = 1.727(all 10.002).Fine-grained rhodochro- at least some of the "inesite" identified in the mine by site is subordinate to the Mn silicates but is widely Crittenden is actually santaclaraite(Crittenden, oral com- disseminated throughout them and the quartz matrix. munication, 1980). The underground workings at the Calcian kutnohorite and calcian rhodochrosite were abandonedBuckeye mine are no longer accessibleand an found in a single occurrenceas small scalenohedra(to 0.6 attempt to find santaclaraite in the present-day (1981) mm). The central cores of the crystals consist of massive dumps was unsuccessful. white Ca-kutnohorite(a : 4.919,c : 16.525A; a = 1.702, : -10.002) e 1.518,both encrustedwith tiny euhedral CrystallograPhY rhombsof Ca-rhodochrosite(a : 4.824,c = 16.0lA; c.r: 1.78510.003,a : 1.518t0.002).A strongpositive micro- Morphology chemical test was obtained for Mn, but Fe could not be Santaclaraite occurs principally as radiated lamellar detected.The data indicate about 20 mole percent CaCO3 aggregates(Fig. 1) composed of thin prismatic to tabular in the rhodochrosite, which is near the limit for naturally subhedral crystals, flattened on {100}. The rough spher- occuring material (Deer er al., 1962,p.265-267). All the ules averageabout a millimeter in diameter. Where space specimensthat we have seenare stainedblack with a thin permits, thick prismatic euhedra, up to a centimeter in coating of X-ray amorphous Mn oxide, although very length on [fi)l], are developed;several ofthese are visible little of this material is actually present. The Mn mineral in the vug in Figure l. The mineral also occurs in cross- that was mined at this locality appears to have been fiber veins composed of prismatic to nearly fibrous crys- braunite,which occurs as massesand veins, up to 6 cm tals having a length/width ratio up to 40. Forms identified acrossin the specimensthat we have seen.Other associ- with a two-circle optical goniometer are b {010}, a {100} ated minerals are calcite (some manganoan),barite, and the most prominentform, m {110},/{l0l}, g {301},and ft rare harmotome, chalcopyrite, and native copper. Some Simpletwinning on {100}is common' ofthe quartz is colored dark grayish blue by inclusions of {401}. asbestiformriebeckite. X-ray data The preliminary unit-cell dimensions of santaclaraite were determined from single-crystal X-ray precession photographsusing Zr-filtered Mo radiation. Table I lists these data, refined by least-squaresanalysis ofthe X-ray powder data. The crystal structure of santaclaraite has beendetermined by Ohashiand Finger(1981); the mineral has centric triclinic symmetry (Pl for the primitive cell). An /-centered cell was employed by Ohashi and Finger for structural comparison of santaclaraite with other pyroxenoids;however, a B-centeredcell is selectedhere on the basis of morphology for the mineralogic descrip- tion. Table I comparesthe data for the various settings. The X-ray powder data are shown in Table 2. There is a moderately strong preferred orientation of hlcOreflections in the X-ray diffractometer pattern due to the good {010} and {100} cleavages.The intensities observed in powder photographs agree closely with the calculated intensities preferred Fig. l. Vuggy radiated pink santaclaraite, with prismatic and so are not listed in Table 2. The effect ofthe : crystals of tan santaclaraite(larger is 7.5 mm long) projecting orientation is most noticeable for the lines at d 2.692 into vug at center. Photograph by Lowell Kohnitz, U.S. and 2.9394, which are the strongest in powder photo- Geological Survey. graphs. 202 ERD AND OHASHI: SANTACLARAITE Table 1 Unit-cell data for santaclaraite Physical and optical properties Santaclaraiteis pale pink (Munsell color 5RP 8/2) or Sy6ten Tric 1inic Triclinic Triclinic moderate reddish orange (l0R 6/6). Although these two Sp€ce group !1 B1* r1* color varieties are quite distinctive, we observed no a (l) 9.738(2)** r5.633(r) 10.291(r) significant differences in their chemical composition or 9.970(r) 7.603(1) rr,934(2) 7.503(r ) 12,003(3) r2.oo3(4) optical properties. The color of the pale-pink variety 109.77(r)" r09.70(1)" 105.78(r). B 93.95(r). 88.6r(1)" 1r0.55(2)" darkensto orangewhen exposedto tungstenX-radiation. r04.97( 2 ). 99.95(1)' 89,09(r)" The mineral is transparent v (AJ) 651.0(r) r322,0(t 1322,0(4) and has a vitreous luster and a very pale pink streak. It is nonfluorescent. Cleavage is z 244 good on both {100}and {010}.Its hardnessis 6% (Mohs). D (s/c#) 3.398 (idealized compoaition) : 3.379 (chmical analysis) Santaclaraiteis biaxial negative:a 1.681,B: 1.696, : -t-0.002; = D 3.31(!0.01)r "y 1.708(all Na light); zvx 83(rl)"; r > v, moderate.
Recommended publications
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • X-Ray Rietveld and 57Fe Mössbauer Study of Babingtonite from Kouragahana, Shimane Peninsula, Japan
    Journal of MineralogicalBabingtonite and from Petrological Kouragahana, Sciences, Shimane Volume Peninsula, 108, pageJapan 121─ 130, 2013 121 X-ray Rietveld and 57Fe Mössbauer study of babingtonite from Kouragahana, Shimane Peninsula, Japan * * ** Masahide AKASAKA , Takehiko KIMURA and Mariko NAGASHIMA *Department of Geoscience, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan **Department of Earth Science, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan Babingtonite from Kouragahana, Shimane Peninsula, Japan, was investigated using electron microprobe, X-ray Rietveld, and 57Fe Mössbauer spectral analyses to characterize its chemical compositions, crystal structure, oxi- dation state of Fe, and distribution of Fe between two crystallographically independent octahedral Fe1 and Fe2 sites. _ The_ Kouragahana babingtonite occurs as single parallelohedrons with {100}, {001}, {001}, {111}, {110}, and {101} and sometimes shows penetration twinning. Both normal and sector-zoned crystals occur. Babing- tonite crystals with sector zoning consist of sectors relatively enriched in Fe and of sectors enriched in Mg, Mn, and Al. Babingtonite also shows compositional zoning with higher Fe2+ and Al core and higher Fe3+ and Mn 2+ rim. The average Fe content of the babingtonite without sector zoning is similar to the Fe -rich sector of the sector-zoned babingtonite. The chemical formula based on the average composition of all analytical data (n = 2+ 3+ - 193) is [Na0.01(2)Ca2.01(2)] [Mg0.11(4)Mn0.09(3)Fe0.76(7)Fe_ 0.93(5)Ti0.01(1)Al0.06(5)]Si5.01(4)O14(OH). X ray Rietveld refinement was carried out using a model of space group P1.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Minerals of the San Luis Valley and Adjacent Areas of Colorado Charles F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/22 Minerals of the San Luis Valley and adjacent areas of Colorado Charles F. Bauer, 1971, pp. 231-234 in: San Luis Basin (Colorado), James, H. L.; [ed.], New Mexico Geological Society 22nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 1971 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Scandiobabingtonite, a New Mineral from the Baveno Pegmatite
    American Mineralogist, Volume 83, pages 1330-1334, 1998 Scandiobabingtonite,a new mineral from the Bavenopegmatite, Piedmont, Italy Ploro ORl.tNnIrr'* Ma,nco PasERorr and GrovlNNa Vn,zzllrNr2 rDipartimento di Scienzedella Terra, Universitd di Pisa, Via S. Maria 53,1-56126 Pisa, Italy '?Dipartimento di Scienzedella Terra, Universitd di Modena, Via S Eufemia 19, I-41 100 Modena, Italy Ansrntcr Scandiobabingtonite,ideally Ca,(Fe,*,Mn)ScSi,O,o(OH) is the scandium analogue of babingtonite; it was found in a pegmatitic cavity of the Baveno granite associatedwith orthoclase, albite, muscovite, stilbite, and fluorite. Its optics are biaxial (+) with 2V : : ^v: 64(2)",ct 1.686(2),P: 1.694(3), 1.709(2).D-"." : 3.24(5)slcm3, D.",.:3.24 sl cm3, and Z : 2. Scandiobabingtoniteis colorless or pale gray-green, transparent,with vitreous luster. It occurs as submillimeter sized, short, tabular crystals, slightly elongated on [001],and characterizedby the associationof forms {010}, {001}, {110}, {110}, and {101}. It occurs also as a thin rim encrustingsmall crystals of babingtonite.The strongest lines in the X-ray powder pauern are at2.969 (S), 2.895 (S), 3.14 (mS), and 2.755 (mS) 4. fn" mineralis triclinic, ipu.. g.oup PT, with a : 7.536(2),b : 1L734(2),c : 6.t48(Z) A, : 91.10(2), : 93.86(2), : lO+.S:(2)'. Scandiobabingtoniteis isostructural " B r with babingtonite, with Sc replacing Fe3* in sixfold coordination, but no substitution of Fer* by Sc takes place. Due to the lack of a suitably large crystal of the new species, such a replacementhas been confirmed by refining the crystal structure of a Sc-rich babingtonite (final R : O.O47)using single-crystal X-ray diffraction (XRD) data.
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite.
    [Show full text]
  • Transfers Young, Stephanie Lynne, Chalfont St
    The Journal of Gemmology2010 / Volume 32 / Nos. 1–4 The Gemmological Association of Great Britain The Journal of Gemmology / 2009 / Volume 31 / No. 5–8 The Gemmological Association of Great Britain 27 Greville Street, London EC1N 8TN T: +44 (0)20 7404 3334 F: +44 (0)20 7404 8843 E: [email protected] W: www.gem-a.com Registered Charity No. 1109555 Registered office: Palladium House, 1–4 Argyll Street, London W1F 7LD President: Prof. A. H. Rankin Vice-Presidents: N. W. Deeks, R. A. Howie, E. A. Jobbins, M. J. O'Donoghue Honorary Fellows: R. A. Howie Honorary Life Members: H. Bank, D. J. Callaghan, T. M. J. Davidson, J. S. Harris, E. A. Jobbins, J. I. Koivula, M. J. O'Donoghue, C. M. Ou Yang, E. Stern, I. Thomson, V. P. Watson, C. H. Winter Chief Executive Officer: J. M. Ogden Council: J. Riley – Chairman, A. T. Collins, S. Collins, B. Jackson, C. J. E. Oldershaw, L. Palmer, R. M. Slater Members’ Audit Committee: A. J. Allnutt, P. Dwyer-Hickey, J. Greatwood, G. M. Green, J. Kalischer Branch Chairmen: Midlands – P. Phillips, North East – M. Houghton, North West – J. Riley, Scottish – B. Jackson, South East – V. Wetten, South West – R. M. Slater The Journal of Gemmology Editor: Dr R. R. Harding Assistant Editor: M. J. O’Donoghue Associate Editors: Dr A. J. Allnutt (Chislehurst), Dr C. E. S. Arps (Leiden), G. Bosshart (Horgen), Prof. A. T. Collins (London), J. Finlayson (Stoke on Trent), Dr J. W. Harris (Glasgow), Prof. R. A. Howie (Derbyshire), E. A. Jobbins (Caterham), Dr J.
    [Show full text]
  • A Vibrational Spectroscopic Study of the Silicate Mineral Inesite Ca2
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128 (2014) 207–211 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the silicate mineral inesite Ca2(Mn,Fe)7Si10O28(OH)Á5H2O ⇑ Ray L. Frost a, , Andrés López a, Yunfei Xi a, Ricardo Scholz b a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35,400-00, Brazil highlights graphical abstract We have studied the hydrated hydroxyl silicate mineral inesite. Of formula Ca2(Mn,Fe)7Si10O28(OH)Á5H2O. Using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. OH stretching vibrations are readily studied. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite. article info abstract Article history: We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)Á5H2O Received 14 October 2013 using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. Received in revised form 2 February 2014 SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis Accepted 19 February 2014 shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Available online 12 March 2014 Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cmÀ1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units.
    [Show full text]
  • The Crystal Structure of Cascandite, Cascsi30s(OH)
    --~~-- American Mineralogist, Volume 67, pages 604-609, 1982 The crystal structure of cascandite, CaScSi30S(OH) MARCELLO MELLINI AND STEFANO MERLINO Istituto di Mineralogia e Petrografia, Universita di Pisa and C.N.R., C.S. Geologia Strutturale e Dinamica dell'Appennino via S. Maria 53, 56100 Pisa, Italy Abstract A new pyroxenoid mineral, cascandite, with the ideal formula CaScSi308(OH), is 9.791(8)A, b = 10.420(9)A, c = 7.076(6)A, a = 98.91(8)°,13 = 102.63(8)°, triclinic with a = 'Y = 84.17(8)°; Z = 4 for the cT unit cell setting. The crystal structure of cascandite is similar to those of pectolite and serandite and is composed of two main structural units: octahedral chains and three-repeat tetrahedral chains. Cascandite, unlike pectolite and serandite, has only two octahedral cations per formula unit, and the octahedral chains are formed by two strands of edge-sharing octahedra occupied by calcium and scandium cations. Cascandite is a member of the hydrous pyroxenoid series, whose peculiarities are related to the presence of intrachain hydrogen bonding. Introduction obtained starting from the atomic coordinates of Cascandite, a new scandium silicate, was found wollastonite based on pI setting, as given by in a geode from the granite of Baveno, Italy, Buerger and Prewitt (1961). However the E statis- together with quartz, orthoclase, albite and jervi- tics indicated a non-centro symmetric structure, and site, another new scandium silicate with ideal for- thus we removed the symmetry constraints on the mula NaScSiz06. The descriptions of these new octahedral cations. We assumed that one of the six minerals are given by Mellini et ale (1982).
    [Show full text]
  • 1 a Vibrational Spectroscopic Study of the Silicate Mineral Inesite 1
    1 A vibrational spectroscopic study of the silicate mineral inesite 2 Ca2(Mn,Fe)7Si10O28(OH)∙5H2O 3 4 Ray L. Frost,a Andrés López,a Yunfei Xia and Ricardo Scholzb 5 6 a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering 7 Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 8 4001, Australia. 9 10 b Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 95, 10000 11 Zagreb, Croatia 12 13 c Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do 14 Cruzeiro, Ouro Preto, MG, 35,400-00, Brazil 15 16 ABSTRACT 17 18 We have studied the hydrated hydroxyl silicate mineral inesite of formula 19 Ca2(Mn,Fe)7Si10O28(OH)∙5H2O using a combination of scanning electron microscopy with 20 EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure 21 monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, 22 composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. 23 Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 24 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands 25 found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching 26 vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 27 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of -1 - -1 28 the [Si10O28] units.
    [Show full text]