A Vibrational Spectroscopic Study of the Silicate Mineral Inesite Ca2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Mineralogy of Low Grade Metamorphosed Manganese Sediments of the Urals: Petrological and Geological Applications
Ore Geology Reviews 85 (2017) 140–152 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications Aleksey I. Brusnitsyn a,⁎, Elena V. Starikova b,c,IgorG.Zhukovd,e a Department of Mineralogy, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia b JSC “PolarGeo”, 24 line, 3–7, St. Petersburg 199106, Russia c Department of Geology of Mineral Deposits, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia d Institute of Mineralogy, Urals Branch, Russian Academy of Sciences, Miass, Chelyabinsk District 456317, Russia e National Research South Urals State University, Miass Branch, 8 July str., 10a, Miass, Chelyabinsk District, 456304, Russia article info abstract Article history: The paper describes mineralogy of the low grade metamorphosed manganese sediments, which occur in sedi- Received 25 September 2015 mentary complexes of the Pai Khoi Ridge and the Polar Urals and volcanosedimentary complexes of the Central Received in revised form 5 July 2016 and South Urals. The degree of metamorphism of the rocks studied corresponds to PT conditions of the prehnite– Accepted 7 July 2016 pumpellyite (deposits of Pai Khoi and Polar and South Urals) and green schist (deposits of the Central Urals) fa- Available online 9 July 2016 cies. One hundred and nine minerals were identified in the manganese-bearing rocks on the basis of optical and electron microscopy, X-ray diffraction, and microprobe analysis. According to the variations in the amount of Keywords: – – Manganese major minerals of the manganese rocks of the Urals, they are subdivided on carbonate (I), oxide carbonate sil- 2+ Deposit icate (II), and oxide–silicate (III) types. -
Download the Scanned
American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite. -
A New Mineral from Mn Ores of the Ushkatyn-III Deposit, 3 Central Kazakhstan and Metamorphic Rocks of the Wanni Glacier, Switzerland 4 5 Oleg S
1 Revision 1 2 Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, 3 Central Kazakhstan and metamorphic rocks of the Wanni glacier, Switzerland 4 5 Oleg S. Vereshchagin*1, Sergey N. Britvin1,6, Elena N. Perova1, Aleksey I. Brusnitsyn1, 6 Yury S. Polekhovsky1, Vladimir V. Shilovskikh2, Vladimir N. Bocharov2, 7 Ate van der Burgt3, Stéphane Cuchet4, and Nicolas Meisser5 8 1Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. 9 Petersburg, Russia 10 2Geomodel Centre, St. Petersburg State University, Uliyanovskaya St. 1, 198504 St. 11 Petersburg, Russia 12 3Geertjesweg 39, NL-6706EB Wageningen, The Netherlands 13 4ch. des Bruyeres 14, CH-1007 Lausanne, Switzerland 14 5Musée cantonal de géologie, Université de Lausanne, Anthropole, 1015 Lausanne, 15 Switzerland 16 6Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, 17 Murmansk Region, Russia 18 *E-mail: [email protected] 19 1 20 Abstract 21 Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn- 22 III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks 23 of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named 24 for its dominant lanthanide, according to current nomenclature of rare-earth minerals. 25 Occurrence and parageneses in both localities is distinct: minute isometric grains up to 15 µm 26 in size, associated with fridelite, jacobsite, pennantite, manganhumite series minerals 27 (alleghanyite, sonolite), sarkinite, tilasite and retzian-(La) are typically embedded into 28 calcite-rhodochrosite veinlets (Ushkatyn-III deposit), versus elongated crystals up to 2 mm in 29 size in classical alpine fissures in two-mica gneiss without indicative associated minerals 30 (Wanni glacier). -
1 a Vibrational Spectroscopic Study of the Silicate Mineral Inesite 1
1 A vibrational spectroscopic study of the silicate mineral inesite 2 Ca2(Mn,Fe)7Si10O28(OH)∙5H2O 3 4 Ray L. Frost,a Andrés López,a Yunfei Xia and Ricardo Scholzb 5 6 a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering 7 Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 8 4001, Australia. 9 10 b Department of Geology, Faculty of Science, University of Zagreb, Horvatovac 95, 10000 11 Zagreb, Croatia 12 13 c Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do 14 Cruzeiro, Ouro Preto, MG, 35,400-00, Brazil 15 16 ABSTRACT 17 18 We have studied the hydrated hydroxyl silicate mineral inesite of formula 19 Ca2(Mn,Fe)7Si10O28(OH)∙5H2O using a combination of scanning electron microscopy with 20 EDX and Raman and infrared spectroscopy. SEM analysis shows the mineral to be a pure 21 monomineral with no impurities. Semiquantitative analysis shows a homogeneous phase, 22 composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. 23 Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cm-1 24 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. Infrared bands 25 found at 896, 928, 959 and 985 cm-1 are attributed to the OSiO antisymmetric stretching 26 vibrations. An intense broad band at 653 cm-1 with shoulder bands at 608, 631 and 684 cm-1 27 are associated with the bending modes of the OSiO units of the 6- and 8-membered rings of -1 - -1 28 the [Si10O28] units. -
Italian Type Minerals / Marco E
THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests. -
F. J. Wicks E. J. W. Whittaker
Canadian Mineralogl*t VoL 13, pp.227-243(1975) A REAPPRAISAL OF THE STRUCTURES OF THE SERPENTINE MINERALS F. J. WICKS Mineralogl Depa.rtment' Royal Ontario Museum, Toronto, Canada E. J. W. WHITTAKER Departrnent of Geology & Mineralogy, Oxford Unlversity, Oxford, England ABSIRACT and compression,it is suggestedthat it is the cona' pression of the octahedral sheet that buckles the The three theoretical stacking schemes for tri- Mg plane so that the Mg atoms occupy two posi- octahe&al l:1 layer silicates developed independent- tions at different levels. This disturbance of the ly by fteadman, Z'tpgin' and Bailey all assume structure in turn tilts the tetrahedra in the way ideal hydrogen bonding between successive layers, that is observed. In chrysotile the curvature only with polytypes developed through shifts of :tal3, partly relieves the mismatch, and evidence is pre- !b/3 or zero, and rotations of 180o or zero. The sented for a similar buckling itr this structure, three systems contain 16 distinct polyty?es, and though to a smaller extent, This postulated buckl- Bailey's nomenclature is extended to provide sym- ing explains some hitherto obscure features of the bols for each one. If lizardite is redefined to in- structure. Antigorite appearsto overcompensatethe clude all serpentines with flat-layer structures, these mismatch in the direction of curyature, but it has can be designated as lizardite followed by the ap- an anomalouslythick octahedral sheet which is propriate polytype symbol. still unexplained. The above system cannot be applied to the chry- sotilo structures because the sbifts between the layers show that the normal hydrogen bonding INrnooucrroN position is not achieved. -
Newmineraloccurr17farr.Pdf
'SSO • E5 ~ * • 1 v' •* C3 5 Field Columbian Museum Publication 44. Geological Series. Vol. I, No. 7. NEW MINERAL OCCURRENCES. 11. CRYSTAL FORMS OF CALCITE FROM JOPLIN, MISSOURI. BY Oliver Cummings Farrington, Ph.D., Curator, Department of Geology. Chicago, U. S. A. February, 1900. TABLE OF CONTENTS. New Mineral Occurrences, ----- 221 Inesite, ----..'.. 221 Caledonite, ------- 224 Gay-lussite, . 226 - - Kpsomite, - ..... 22g Golden Calcite, ---.... 22Q Dolomite Used as Indian Money, ..... 2 \o Crystal Forms of - - - Calcite from Joplin, Mo., 232 Localities of - - . Large Crystals, . 232 Forms of Large Crystals, ...... 233 Forms of Smaller ' * * • - Crystals, • 237 Forms of Twinned Crystals, ...... 238 NEW MINERAL OCCURRENCES. 1NESITE. SAN CAYETANO MINE NEAR VILLA CORONA, STATE OF DURANGO. MEXICO. MUSEUM No. M 5> A specimen of inesite from the above locality was first secured by the writer in the spring of 1896 while at Villa Corona. Having later determined the mineral by its blowpipe characters as inesite, a request was sent to Mr. John D. Almy, one of the proprietors of the mine, to procure more specimens if possible. Through his kindness, and that of Mr. W. H. Schlemm, a few more specimens were obtained, and were generously placed at the writer's disposal for study. The rarity of the mineral makes the find of interest, as it is known at only three other localities in the world, viz. : The manganese mines at Nanzenbach, northeast of Dillenburg, Ger- many; the Harstig mine, Pajsberg, Wermland, Sweden,* and Jakobsberg, Nordmark, Sweden. t In the specimens from the San Cayetano mine the mineral occurs partly in cavities and partly in- tergrown with calcite and a flesh-colored manganesian calcite. -
Subject and Author Index
EMU Notes in Mineralogy, Vol. 11 (2011), Index, 371–376 Subject and Author Index Numbers refer to the page where a definition or explanation of, and/or a figure or a table for, a given subject is found. Author names are given with the number of the first page of the paper in which they are involved. 1:1 layer structure, 14 CEC, 237 2:1 layer structures, 31 CFF91, 208 Charge of fundamental particles, 253 A Chiral clay minerals, 347, 349 AAM, alkylammonium method, 245 Chlorite, 40, 177, 86, 97 Absorbance spectra of, aqueous methylene Christidis, George E., 237 blue-smectite dispersions, 355, hectorite Chrysotile, 26 dispersions, 356 Cis-vacant octahedral site, 11 Adsorption, and intercalation, 272, phenomena on Cis-vacant polymorphism in dioctahedral phyllosilicate surfaces, 229 phyllosilicates, 223 AEM-TEM, analytical electron microscopy- Classic mechanics, 206 transmission electron microscopy, 243 Classification, of clay minerals’ layer charge, 263, AFM, atomic force microscopy, 314, 316, 317, of phyllosilicates, 336, of planar hydrous 327, 338, 339 phyllosilicates, 82, scheme for natural Aggregates, 251 smectite, 242, scheme of dioctahedral AIPEA, 261 smectites, 241, of non-planar hydrous Aldega, Luca, 285 phyllosilicates, 108 Alkylammonium ions in the interlayer space, 245 Clay Minerals Society, 261 Allophane, 46 Clay minerals, spectroscopic properties of, 225, Almeida Paz, Filipe A., 123 surface properties of, 335 Amesite, 28 Clay, structure of the interlayer, 304 Amino acids on clay-mineral surfaces, 360 CLAYFF, 175, 208 Antigorite, 26, -
Studies of the Manganese Oxides. Iv. Todorokite* J. A
.I'IIE AMERICAN MINERALOGIST, VOL. 45, NOVEMBER_DECEMBER, 1960 STUDIES OF THE MANGANESE OXIDES. IV. TODOROKITE* J. A. Srnlczrr,t Anrnun HonnN,{ M,c.rcorMRoss,$ aNl Cuenrorrn M. Wansuaw, Il t/. S. GeologicalSurz:ey, Washington,D. C. ABsrRAcr Todorokite is a very _ abundant manganese oxide minerar in many deposits in cuba and has been noted from other localities. Six new analyses are givenl they lead to the approxi- mate formula (Na, Ca, K, Mn+2)(Mn+4, Mn+2, Mg)oOrg.3HeO. Blectron diffraction data show the mineral to be orthorhombic, or monoclinic with B near 90". The r-ray powder pattern is indexed on a cell with o:0.75A, b:2.g4sA, c:9.59A, 0:90". A difierential thermal analysis curve is given. INtnoouctrou From 1940to 1945,the u. s. Georogicalsurvey made a study of the manganesedeposits of cuba and especially those in oriente province. Severalpreliminary reports were published and the results were sum- The present paper deals with a manganeseoxide mineral, whose *-ray pattern was recognizedas being distinctive in r94r and which was desig- nated for someyears as,,Mineral T.,, X-ray studiesby J.M.Axelrod from 1946to 1948showed that this mineral was an abundant constituent of the oresat many localitiesin oriente province, but that it was so inter- grown with other mineralsthat the preparation of samplespure enough to warrant chemical analysis was extremery difficult. The best five sam- ples were finally selectedand their analysiswas completedin 1952.At that time, it was learned that Arthur rroren, who had made a field study of the manganeseores of the charco Redondo-T aratana district in 1951- 1952, had also identified the same material by *-ray study at Harvard * Publication authorized by the Director, U. -
Diamond Dan's Mineral Names Dictionary
A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.