Mineralogy of Low Grade Metamorphosed Manganese Sediments of the Urals: Petrological and Geological Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Descriptions of Some Mines and Prospects in the Triassic to Jurassic Magmatic Arc of Western Nevada and Eastern California
Descriptions of Some Mines and Prospects in the Triassic to Jurassic Magmatic Arc of Western Nevada and Eastern California Larry J. Garside 1996 See U.S. Geological Survey Open File Report 96-9 for geochemical analyses and more details PROPERTY NAME: Lucky Bill mine OTHER NAMES: MINING DISTRICT: Red Canyon COUNTY: Douglas MINERAL COMMODITY(IES):Ag, Pb, Zn TYPE OF DEPOSIT: Polymetallic replacement QUAD SHEET: Oreana Peak 7.5' OWNERSHIP: LOCATION: NE¼ NW¼ sec. 2, T11N, R22E North: 4303100 East: 0284300 PRODUCTION: Minor (?) HISTORY: DEVELOPMENT: Adits, bulldozer roads and cuts GEOLOGY: According to Hill (1915), the workings at the Lucky Bill mine explore small, pockety deposits of argentiferous galena, quartz, and stibnite with miner zones in quartzite, and ore described as replacements, only a few cuts and pits were examined during this visit. In one cut a 1 m wide isolated band of pyrite-rich material occurs parallel to bedding of the siltstone units of Triassic Gardnerville Formation. (Sample 4522). An ore sample (4523) found along a haul road going up the canyon northeast of the main bulldozer cuts contains coarse crystalline calcite, sphalerite galena, and pyrite. The wall rocks are siltstone and carbonate rocks of the Gardnerville Formation. REMARKS: Sample 4522 is a chip sample across a 1 m wide band of pyrite-rich siltstone. Sample 4523 is select ore from a haul road, consisting of galena, calcite, sphalerite, and pyrite. SAMPLE SITE: 4522, 4523 REFERENCES: Hill, 1915, p. 62; Doebrich and others, 1996; MRDS no. M035898 FIELD EXAMINATION: L.J. Garside, R.F. Hardyman; 10/16/89 PROPERTY NAME: None (?) OTHER NAMES: MINING DISTRICT: Peavine COUNTY: Sierra MINERAL COMMODITY(IES): ? TYPE OF DEPOSIT: Disseminated QUAD SHEET: Evans Canyon 7.5 ' OWNERSHIP: LOCATION: SW¼ SW¼ sec. -
Piemontite and Spessartine in Lower Paleozoic Metasediments of the Inner Western Carpathians
Acta Miner alogica-Petrographica, Szeged, XLi, Supplementum, 2000 PIEMONTITE AND SPESSARTINE IN LOWER PALEOZOIC METASEDIMENTS OF THE INNER WESTERN CARPATHIANS SPISIAK. J. (Slovak Academy of Sciences, Banska Bystrica, Slovak Republic) & HOVORKA, D. (Comenius University, Bratislava, Slovak Republic) E-mail: [email protected] In the Lower Palaeozoic of the Inner Western Carpathians (Rakovec group, Gemericum) a 22 m thick layer of manganese enriched metasediments has been encountered by borehole RHV-1 south of Rudnany. During epigenetic processes the increased Mn content in the original lithofacies gave rise to manganese nodules (concretions). In the subsequent greenschists facies regional metamorphic recrystallization process, the Mn nodules were altered into an anchimonomineralic aggregate of garnet of spessartine composition. Simultaneously, they were partly disintegrated and folded jointly with the country rocks, i.e. the chlorite-sericite-quartz schists. Garnet is the basic mineral of nodules (isometric grains - approx. 0.2 mm in size). The spessartine nodules are encompassed by a 1-20 mm broad rim, intensely coloured in red to violet-red, formed dominantly of piemontite and Fe oxides, which passes gradually into the adjacent rocks. The schists also contain sporadic garnets of microscopic size (0.02 mm) and epidote. The analyses of garnets from different parts of nodules have shown that they have practically identical composition and azonal structure. They contain 80-87 % spessartine, 0.2-0.4 % pyrope, 3-8 % almandine, 7-11 % grossular components. The piemontites form short prismatic crystals (below 0.03 mm) and/or irregularly shaped pink coloured grains with strong pleochroism. Piemontites are zonal and contain 6-16 % piemontite 3+ component (Mn ) (selected analysis: SiOz - 36.70, Ti02 - 0.12, A1203 - 22.86, Fe203 total - 7.94, Mn203* - 8.00, MnO* - 2.52, MgO - 0.04, CaO - 20.52, Na20 - 0.00, K20 - 0.03, * - recalculated). -
Download the Scanned
American Mineralogist, Volume 77, pages 670475, 1992 NEW MINERAL NAMES* JonN L. J,Annson CANMET, 555 Booth Street,Ottawa, Ontario KIA OGl' Canada Abswurmbachite* rutile, hollandite, and manganoan cuprian clinochlore. The new name is for Irmgard Abs-Wurmbach, in recog- T. Reinecke,E. Tillmanns, H.-J. Bernhardt (1991)Abs- her contribution to the crystal chemistry, sta- wurmbachite, Cu'?*Mnl*[O8/SiOo],a new mineral of nition of physical properties ofbraunite. Type the braunite group: Natural occurrence,synthesis, and bility relations, and crystal structure.Neues Jahrb. Mineral. Abh., 163,ll7- material is in the Smithsonian Institution, Washington, r43. DC, and in the Institut fiir Mineralogie, Ruhr-Universitlit Bochum, Germany. J.L.J. The new mineral and cuprian braunit€ occur in brown- ish red piemontite-sursassitequartzites at Mount Ochi, near Karystos, Evvia, Greece, and in similar quartzites on the Vasilikon mountains near Apikia, Andros Island, Barstowite* Greece.An electron microprobe analysis (Andros mate- C.J. Stanley,G.C. Jones,A.D. Hart (1991) Barstowite, gave SiO, 9.8, TiO, rial; one of six for both localities) 3PbClr'PbCOr'HrO, a new mineral from BoundsClifl 0.61,Al,O3 0.60, Fe'O, 3.0,MnrO. 71.3,MgO 0.04,CuO St. Endellion,Cornwall. Mineral. Mag., 55, l2l-125. 12.5, sum 97.85 wto/o,corresponding to (CuStrMn3tu- Electron microprobe and CHN analysis gavePb75.47, Mgoo,)", oo(Mn3jrFe|jrAlo orTif.[nCuStr)", nrSi' o, for eight (calc.)6.03, sum 101.46wto/o, cations,ideally CuMnuSiO'r, the Cu analogueof braunite. Cl 18.67,C l.Iz,H 0.18,O to Pb.orClrrrCr.or- The range of Cu2* substitution for Mn2' is 0-42 molo/oin which for 17 atoms corresponds The min- cuprian braunite and 52-93 molo/oin abswurmbachite. -
New Mineral Names*
American Mineralogist, Volume 73, pages 1492-1499. 1988 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada ERNST A. J. BURKE lnstituut voor Aardwetenschappen, Vrije Universitiete, De Boelelaan 1085, 1081 HV, Amsterdam, Netherlands T. SCOTT ERCIT, JOEL D. GRICE National Museum of Natural Sciences, Ottawa, Ontario KIA OM8, Canada Acuminite* prismatic to acicular crystals that are up to 10 mm long and 0.5 H. Pauly, O.Y. Petersen (1987) Acuminite, a new Sr-fluoride mm in diameter, elongate and striated [001], rhombic to hex- from Ivigtut, South Greenland. Neues Jahrb. Mineral. Mon., agonal in cross section, showing {l00} and {l10}. Perfect {100} 502-514. cleavage, conchoidal fracture, vitreous luster, H = 4, Dm'.. = 2.40(5) glcm3 (pycnometer), Dcale= 2.380 glcm3 for the ideal Wet-chemical analysis gave Li 0.0026, Ca 0.0185, Sr 37.04, formula, and Z = 4. Optically biaxial positive, a = 1.5328(4), (3 Al 11.86, F 33.52, OH (calc. from anion deficit) 6.82, H20 (calc. = 1.5340(4), 1.5378(4), 2 Vmoa,= 57(2)°, 2 Vcale= 59°; weak assuming 1 H20 in the formula) 7.80, sum 97.06 wt%, corre- 'Y = dispersion, r < v; Z = b, Y A c = -10°. X-ray structural study sponding to Sro98AIl.o2F.o7(OH)o.93H20. The mineral occurs as indicated monoclinic symmetry, space group C21c, a = 18.830(2), aggregates of crystals shaped like spear points and about I mm b= I 1.517(2), c= 5.190(I)A,{3 = 100.86(1)°. A Guinierpowder long. -
A Vibrational Spectroscopic Study of the Silicate Mineral Inesite Ca2
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 128 (2014) 207–211 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the silicate mineral inesite Ca2(Mn,Fe)7Si10O28(OH)Á5H2O ⇑ Ray L. Frost a, , Andrés López a, Yunfei Xi a, Ricardo Scholz b a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35,400-00, Brazil highlights graphical abstract We have studied the hydrated hydroxyl silicate mineral inesite. Of formula Ca2(Mn,Fe)7Si10O28(OH)Á5H2O. Using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. OH stretching vibrations are readily studied. The application of vibrational spectroscopy has enabled an assessment of the molecular structure of inesite. article info abstract Article history: We have studied the hydrated hydroxyl silicate mineral inesite of formula Ca2(Mn,Fe)7Si10O28(OH)Á5H2O Received 14 October 2013 using a combination of scanning electron microscopy with EDX and Raman and infrared spectroscopy. Received in revised form 2 February 2014 SEM analysis shows the mineral to be a pure monomineral with no impurities. Semiquantitative analysis Accepted 19 February 2014 shows a homogeneous phase, composed by Ca, Mn2+, Si and P, with minor amounts of Mg and Fe. Available online 12 March 2014 Raman spectrum shows well resolved component bands at 997, 1031, 1051, and 1067 cmÀ1 attributed to a range of SiO symmetric stretching vibrations of [Si10O28] units. -
A New Mineral from Mn Ores of the Ushkatyn-III Deposit, 3 Central Kazakhstan and Metamorphic Rocks of the Wanni Glacier, Switzerland 4 5 Oleg S
1 Revision 1 2 Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, 3 Central Kazakhstan and metamorphic rocks of the Wanni glacier, Switzerland 4 5 Oleg S. Vereshchagin*1, Sergey N. Britvin1,6, Elena N. Perova1, Aleksey I. Brusnitsyn1, 6 Yury S. Polekhovsky1, Vladimir V. Shilovskikh2, Vladimir N. Bocharov2, 7 Ate van der Burgt3, Stéphane Cuchet4, and Nicolas Meisser5 8 1Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 St. 9 Petersburg, Russia 10 2Geomodel Centre, St. Petersburg State University, Uliyanovskaya St. 1, 198504 St. 11 Petersburg, Russia 12 3Geertjesweg 39, NL-6706EB Wageningen, The Netherlands 13 4ch. des Bruyeres 14, CH-1007 Lausanne, Switzerland 14 5Musée cantonal de géologie, Université de Lausanne, Anthropole, 1015 Lausanne, 15 Switzerland 16 6Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, 17 Murmansk Region, Russia 18 *E-mail: [email protected] 19 1 20 Abstract 21 Gasparite-(La), La(AsO4), is a new mineral (IMA 2018-079) from Mn ores of the Ushkatyn- 22 III deposit, Central Kazakhstan (type locality) and from alpine fissures in metamorphic rocks 23 of the Wanni glacier, Binn Valley, Switzerland (co-type locality). Gasparite-(La) is named 24 for its dominant lanthanide, according to current nomenclature of rare-earth minerals. 25 Occurrence and parageneses in both localities is distinct: minute isometric grains up to 15 µm 26 in size, associated with fridelite, jacobsite, pennantite, manganhumite series minerals 27 (alleghanyite, sonolite), sarkinite, tilasite and retzian-(La) are typically embedded into 28 calcite-rhodochrosite veinlets (Ushkatyn-III deposit), versus elongated crystals up to 2 mm in 29 size in classical alpine fissures in two-mica gneiss without indicative associated minerals 30 (Wanni glacier). -
Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece)
minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert 1 1 GeoRessources, Faculté des Sciences et Technologies, Université de Lorraine, CNRS, F-54506 Vandœuvre-lès-Nancy, France; [email protected] (A.E.); christophe.scheff[email protected] (C.S.); [email protected] (K.T.); [email protected] (M.B.); [email protected] (M.E.); chantal.peiff[email protected] (C.P.) 2 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.M.) 3 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada 4 Laboratoire de Planétologie et Géodynamique, Université de Nantes, CNRS UMR 6112, 44322 Nantes, France; [email protected] 5 PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia; [email protected] * Correspondence: [email protected]; Tel.: +33-3-72-74-55-67 Received: 27 February 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: The Trikorfo area (Thassos Island, Rhodope massif, Northern Greece) represents a unique mineralogical locality with Mn-rich minerals including kyanite, andalusite, garnet and epidote. Their vivid colors and large crystal size make them good indicators of gem-quality materials, although crystals found up to now are too fractured to be considered as marketable gems. -
Alkali-Deficient Tourmaline from the Sullivan Pb-Zn-Ag Deposit, British Columbia
Alkali-deficient tourmaline from the Sullivan Pb-Zn-Ag deposit, British Columbia SHAO-YONG JIANG1'2, MARTIN R. PALMER1 AND JOHN F. SLACK3 1 Department of Geology, University of Bristol, Bristol, BS8 IRJ, UK 2 Max-Planck-Institut for Chemie, Abt. Geochemie, Postfach 3060, 55020 Mainz, Germany 3 U.S. Geological Survey, National Center, MS 954, Reston, VA 20192, USA Abstract Alkali-deficient tourmalines are found in albitized rocks from the hanging-wall of the Sullivan Pb-Zn-Ag deposit (British Columbia, Canada). They approximate the Mg-equivalent of foitite with an idealized formula [](Mg2A1)A16Si6Ols(BO3)3(OH)4. Major chemical substitutions in the tourmalines are the alkali-defect type [Na*(x) + Mg*(v) = IT(x) + Al(v)] and the uvite type [Na*(x) + Al(y) = Ca(x) + Mg*(y)], where Na* = Na + K, Mg* = Mg + Fe + Mn. The occurrence of these alkali-deficient tourmalines reflects a unique geochemical environment that is either alkali-depleted overall or one in which the alkalis preferentially partitioned into coexisting minerals (e.g. albite). Some of the alkali-deficient tourmalines have unusually high Mn contents (up to 1.5 wt.% MnO) compared to other Sullivan tourmalines. Manganese has a strong preference for incorporation into coexisting garnet and carbonate at Sullivan, thus many tourmalines in Mn-rich rocks are poor in Mn (<0.2 wt.% MnO). It appears that the dominant controls over the occurrence of Mn-rich tourmalines at Sullivan are the local availability of Mn and the lack of other coexisting minerals that may preferentially incorporate Mn into their structures. KEYWORDS: alkali-deficient tourmaline, Mn enrichment, hydrothermal alteration, Sullivan mine, Pb-Zn-Ag deposit, British Columbia. -
Italian Type Minerals / Marco E
THE AUTHORS This book describes one by one all the 264 mi- neral species first discovered in Italy, from 1546 Marco E. Ciriotti was born in Calosso (Asti) in 1945. up to the end of 2008. Moreover, 28 minerals He is an amateur mineralogist-crystallographer, a discovered elsewhere and named after Italian “grouper”, and a systematic collector. He gradua- individuals and institutions are included in a pa- ted in Natural Sciences but pursued his career in the rallel section. Both chapters are alphabetically industrial business until 2000 when, being General TALIAN YPE INERALS I T M arranged. The two catalogues are preceded by Manager, he retired. Then time had come to finally devote himself to his a short presentation which includes some bits of main interest and passion: mineral collecting and information about how the volume is organized related studies. He was the promoter and is now the and subdivided, besides providing some other President of the AMI (Italian Micromineralogical As- more general news. For each mineral all basic sociation), Associate Editor of Micro (the AMI maga- data (chemical formula, space group symmetry, zine), and fellow of many organizations and mine- type locality, general appearance of the species, ralogical associations. He is the author of papers on main geologic occurrences, curiosities, referen- topological, structural and general mineralogy, and of a mineral classification. He was awarded the “Mi- ces, etc.) are included in a full page, together cromounters’ Hall of Fame” 2008 prize. Etymology, with one or more high quality colour photogra- geoanthropology, music, and modern ballet are his phs from both private and museum collections, other keen interests. -
Mineral Index
Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,