Arctic Biodiversity Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Biodiversity Assessment 384 Arctic Biodiversity Assessment Wild and semi-domestic herds of Rangifer (caribou or reindeer) are almost omnipresent in Arctic tundra. Rangifer management is an important issue, as the herds exert a number of important controls on the Arctic terrestrial ecosystem through their effects on vegetation and carnivore populations, as well as providing essential ecosystem goods to indigenous people. Photo: Susan Morse. 385 Chapter 12 Terrestrial Ecosystems Lead Authors Rolf A. Ims and Dorothee Ehrich Key Contributing Authors Bruce C. Forbes, Brian Huntley, Donald A. Walker and Philip A. Wookey Contributing Authors Dominique Berteaux, Uma S. Bhatt, Kari A. Bråthen, Mary E. Edwards, Howard E. Epstein, Mads C. Forchhammer, Eva Fuglei, Gilles Gauthier, Scott Gilbert, Maria Leung, Irina E. Menyushina, Nikita Ovsyanikov, Eric Post, Martha K. Raynolds, Donald G. Reid, Niels M. Schmidt, Audun Stien, Olga I. Sumina and Rene van der Wal Contents Summary ..............................................................386 12.4. Key findings .....................................................424 12.1. Introduction .....................................................386 12.4.1. How the structure and functioning of tundra ecosystems are determined ............................................424 12.2. Ecosystem structure, processes and functions �������������������387 12.4.1.1. Abiotic controls on ecosystem structure ............424 12.2.1. Ecosystem structure .......................................387 12.4.1.2. Biotic processes shaping biodiversity and 12.2.1.1. Circumpolar-scale variation ������������������������389 tundra ecosystem functioning ����������������������424 12.2.1.2. Regional- to local-scale variation ��������������������395 12.4.2. Trends attributed to drivers of change ......................425 12.2.1.3. Hot spots of diversity ...............................399 12.4.2.1. Climate change ....................................425 12.2.2. Ecosystem processes and functions ........................399 12.4.2.2. Land-use, resource management and 12.2.2.1. Food web interactions .............................400 industrial development ............................426 12.2.2.2. Ecosystem functions ...............................404 12.5. Conclusions and recommendations ..............................426 12.2.2.3. Linking trophic interactions and 12.5.1. Status and trends: Implications for the future ...............426 ecosystem function ................................408 12.5.2. Conservation and management actions ....................427 12.3. Trends ...........................................................409 12.5.3. Research and monitoring ...................................427 12.3.1. Historical context ..........................................409 12.5.3.1. Needs for area- and ecosystem- 12.3.1.1. Environmental history and paleogeography ........409 representative measurements ����������������������427 12.3.1.2. Paleodiversity of Arctic terrestrial ecosystems .......409 12.5.3.2. Needs for ecosystem-based approaches ............428 12.3.2. Contemporary trends in drivers of change ..................411 Acknowledgements ....................................................428 12.3.2.1. Climate change ....................................411 12.3.2.2. Land-use, natural resource management and References .............................................................428 industrial development ............................412 List of acronyms .......................................................440 12.3.3. Contemporary trends in ecosystem structure and function . 413 12.3.3.1. Climate change and trends in vegetation ...........413 12.3.3.2. Climate change and phenology ��������������������417 12.3.3.3. Cascading impacts of trends in keystone animal species .....................................419 12.3.3.4. Trends related to land-use changes �����������������421 12.3.3.5. Impact of industrial development ������������������423 It has progressively become warmer. I recall that only » in our traditional area did the trees occur, but when I returned there via plane last year, a lot more of the tun- dra was inundated with trees, small mind you, but they have moved north and east. The area we used to inhabit has been overgrown with vegetation, mainly shrubs and small trees. It has become almost like a mini-forest where we used to have our main camp. We visited the site in 2000 and it was almost unrecognizable due to all of the growth that occurred during our absence. I think this is due to a shorter spring, a longer summer and longer frost free falls. Utok; Elders Conference on Climate Change 2001. 386 Arctic Biodiversity Assessment SUMMARY Recommended actions to conserve Arctic terrestrial ecosystems under the impacts of climatic change and The Arctic tundra biome is geographically restricted to other anthropogenic stressors include conservation a strip around the margins of the Arctic Ocean. A key of topographically diverse areas with landscape-scale force determining the tundra biome’s zonal structure is ‘buffer-capacity’ to maintain cold refuges in a warmer the bottom-up effect of decreased vegetation productiv- climate and of remote high Arctic islands that are the ity and complexity with increasing latitude. Accord- most physically protected from species invasions from ingly, there are trends of decreasing diversity within and the south and human presence. Prudent management of among trophic guilds of consumers with increasing lati- Arctic herbivores such as reindeer Rangifer tarandus, using tudes. Low food web complexity in the northern parts their capacity for shaping vegetation on landscape scales, of the biome is also due to island biogeographic features, may be considered for counteracting encroachment of as large parts of the high Arctic are located on islands. tall woody vegetation that otherwise will eliminate Similarly, a substantial proportion of the high biodiver- tundra habitats, while avoiding the negative impacts of sity of low Arctic zones stems from ‘spillover effects’ herbivore overabundance that have been documented in from sub-Arctic ecosystems. Historic processes have also some regions. contributed to shaping the current large-scale regional provinces in terms of Arctic species communities. At A key message from the present assessment is that essen- sub-regional scales the terrestrial Arctic harbors diverse tial attributes of terrestrial Arctic biodiversity, some of mosaics of communities that are structured by gradients which have global repercussions, are ultimately depend- and disturbances in climate, substrate, hydrology and ent on how interactions within ecological communi- cryosphere that form unique patterns of within – and ties and trophic webs are impacted by rapidly changing among – community diversity. Hot spots of high regional external drivers. Consequently, research, monitoring diversity are currently found in some old, topographi- and management ought to be properly ecosystem-based. cally and geologically complex regions. Because ecosystems are structurally and functionally heterogeneous across the tundra biome and may also be The architecture of tundra food webs is modulated by subjected to external drivers of different strengths, new inter-specific interactions within and between trophic ecosystem-based observatories that include state-of-the levels. Herbivores can regionally exert strong top-down art research, often combined with adaptive manage- controls on tundra vegetation, whereas predators often ment, should be widely distributed across the circum- control small mammal herbivores and the reproductive polar Arctic. Model-based predictions about how Arctic success of ground nesting birds. Multi-annual, cascading species and ecosystems will respond to the substantial bottom-up and top-down interaction cycles mediated climate change currently projected for the Arctic have by lemming populations are crucial for the maintenance limited powers to accommodate surprises in terms of of terrestrial Arctic biodiversity in many tundra eco- novel climates and ecosystems that may rapidly emerge. systems. Functional traits of plants in interactions with New efforts urgently need to be deployed to enable well- below-ground microbial communities and herbivores designed real-time observations as a basis for empirically maintain essential roles in the regulation of the global based documentation and understanding of cause-effect climate system through controls on fluxes of greenhouse relationships of future ecosystem changes in the terres- gasses (GHG) and heat fluxes between the earth surface trial Arctic. and the atmosphere. Changes to the composition of ter- restrial biodiversity may determine whether the Arctic will become a source or a sink for GHGs in a warming 12.1. INTRODUCTION climate. The Arctic tundra biome is characterized by low-grow- Climate is historically and currently the most import- ing vegetation composed of low shrubs, sedges, grasses, ant driver of change of Arctic terrestrial ecosystems, forbs, lichens and mosses (bryophytes) that grow beyond through alteration of coastal sea ice, glaciers, snow and the northern climatic limit of trees (see Section 2 in permafrost, changed seasonality and extreme events. Meltofte et al., Introduction for this assessment’s defini- At present, a second emerging driver is an increased tion of the Arctic). A polar view of the biome from space footprint of human presence within the Arctic. Current- reveals that the continental portion of the Arctic tundra ly, the
Recommended publications
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    732 _____________Mun. Ent. Zool. Vol. 7, No. 2, June 2012__________ STRUCTURE OF LEPIDOPTEROCENOSES ON OAKS QUERCUS DALECHAMPII AND Q. CERRIS IN CENTRAL EUROPE AND ESTIMATION OF THE MOST IMPORTANT SPECIES Miroslav Kulfan* * Department of Ecology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, SK-84215 Bratislava, SLOVAKIA. E-mail: [email protected] [Kulfan, M. 2012. Structure of lepidopterocenoses on oaks Quercus dalechampii and Q. cerris in Central Europe and estimation of the most important species. Munis Entomology & Zoology, 7 (2): 732-741] ABSTRACT: On the basis of lepidopterous larvae a total of 96 species on Quercus dalechampii and 58 species on Q. cerris were recorded in 10 study plots of Malé Karpaty and Trnavská pahorkatina hills. The families Geometridae, Noctuidae and Tortricidae encompassed the highest number of found species. The most recorded species belonged to the trophic group of generalists. On the basis of total abundance of lepidopterous larvae found on Q. dalechampii from all the study plots the most abundant species was evidently Operophtera brumata. The most abundant species on Q. cerris was Cyclophora ruficiliaria. Based on estimated oak leaf area consumed by a larva it is shown that Lymantria dispar was the most important leaf-chewing species of both Q. dalechampii and Q. cerris. KEY WORDS: Slovakia, Quercus dalechampii, Q. cerris, the most important species. About 300 Lepidoptera species are known to damage the assimilation tissue of oaks in Central Europe (Patočka, 1954, 1980; Patočka et al.1999; Reiprich, 2001). Lepidoptera larvae are shown to be the most important group of oak defoliators (Patočka et al., 1962, 1999).
    [Show full text]
  • Thesis.Pdf (3.979Mb)
    FACULTY OF BIOSCIENCES, FISHERIES AND ECONOMICS DEPARTMENT OF ARCTIC AND MARINE BIOLOGY Cyclically outbreaking geometrid moths in sub-arctic mountain birch forest: the organization and impacts of their interactions with animal communities — Ole Petter Laksforsmo Vindstad A dissertation for the degree of Philosophiae Doctor – October 2014 Cyclically outbreaking geometrid moths in sub-arctic mountain birch forest: the organization and impacts of their interactions with animal communities Ole Petter Laksforsmo Vindstad A dissertation for the degree of Philosophiae Doctor University of Tromsø – The arctic university of Norway Faculty of Biosciences, Fisheries and Economics Department of Arctic and Marine Biology Autumn 2014 1 Dedicated to everyone who has helped me along the way 2 Supervisors Professor Rolf Anker Ims1 Senior researcher Jane Uhd Jepsen2 1 Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway 2 Norwegian Institute for Nature Research, Fram Centre, Tromsø, Norway Cover photos Front cover – Larvae of Epirrita autumnata feeding on mountain birch during a moth outbreak in northern Norway. Photo: Moritz Klinghardt Study I – Portrait of Agrypon flaveolatum. One of the most important larval parasitoid species in study I. Photo: Ole Petter Laksforsmo Vindstad Study II – Carcass of an Operophtera brumata larva, standing over the cocoon of its killer, the parasitoid group Protapanteles anchisiades/P. immunis/Cotesia salebrosa. Photo: Ole Petter Laksforsmo Vindstad Study III – Larva of the parasitoid group Phobocampe sp./Sinophorus crassifemur emerging from Agriopis aurantiaria host larva. Photo: Tino Schott Study IV – An area of healthy mountain birch forest, representative for the undamaged sampling sites in study IV and V. Photo: Jakob Iglhaut Study V – An area of mountain birch forest that has been heavily damaged by a moth outbreak, representative for the damaged sampling sites in study IV and V.
    [Show full text]
  • Lepidoptera in Cheshire in 2002
    Lepidoptera in Cheshire in 2002 A Report on the Micro-Moths, Butterflies and Macro-Moths of VC58 S.H. Hind, S. McWilliam, B.T. Shaw, S. Farrell and A. Wander Lancashire & Cheshire Entomological Society November 2003 1 1. Introduction Welcome to the 2002 report on lepidoptera in VC58 (Cheshire). This is the second report to appear in 2003 and follows on from the release of the 2001 version earlier this year. Hopefully we are now on course to return to an annual report, with the 2003 report planned for the middle of next year. Plans for the ‘Atlas of Lepidoptera in VC58’ continue apace. We had hoped to produce a further update to the Atlas but this report is already quite a large document. We will, therefore produce a supplementary report on the Pug Moths recorded in VC58 sometime in early 2004, hopefully in time to be sent out with the next newsletter. As usual, we have produced a combined report covering micro-moths, macro- moths and butterflies, rather than separate reports on all three groups. Doubtless observers will turn first to the group they are most interested in, but please take the time to read the other sections. Hopefully you will find something of interest. Many thanks to all recorders who have already submitted records for 2002. Without your efforts this report would not be possible. Please keep the records coming! This request also most definitely applies to recorders who have not sent in records for 2002 or even earlier. It is never too late to send in historic records as they will all be included within the above-mentioned Atlas when this is produced.
    [Show full text]
  • Download (236Kb)
    Chapter (non-refereed) Welch, R.C.. 1981 Insects on exotic broadleaved trees of the Fagaceae, namely Quercus borealis and species of Nothofagus. In: Last, F.T.; Gardiner, A.S., (eds.) Forest and woodland ecology: an account of research being done in ITE. Cambridge, NERC/Institute of Terrestrial Ecology, 110-115. (ITE Symposium, 8). Copyright © 1981 NERC This version available at http://nora.nerc.ac.uk/7059/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is extracted from the publisher’s version of the volume. If you wish to cite this item please use the reference above or cite the NORA entry Contact CEH NORA team at [email protected] 110 The fauna, including pests, of woodlands and forests 25. INSECTS ON EXOTIC BROADLEAVED jeopardize Q. borealis here. Moeller (1967) suggest- TREES OF THE FAGACEAE, NAMELY ed that the general immunity of Q. borealis to QUERCUS BOREALIS AND SPECIES OF insect attack in Germany was due to its planting in NOTHOFAGUS mixtures with other Quercus spp. However, its defoliation by Tortrix viridana (green oak-roller) was observed in a relatively pure stand of 743 R.C. WELCH hectares. More recently, Zlatanov (1971) published an account of insect pests on 7 species of oak in Bulgaria, including Q. rubra (Table 35), although Since the early 1970s, and following a number of his lists include many pests not known to occur earlier plantings, it seems that American red oak in Britain.
    [Show full text]
  • Detección De Agriopis Aurantiaria Hübner (Lepidoptera, Geometridae) En Galicia
    Cuad. Soc. Esp. Cienc. For. 26: 181-186 (2008) «Actas de la I Reunión sobre Sanidad Forestal» DETECCIÓN DE AGRIOPIS AURANTIARIA HÜBNER (LEPIDOPTERA, GEOMETRIDAE) EN GALICIA Rosa Pérez Otero 1, José Pedro Mansilla Vázquez 1,2 y Pilar Vega Alonso 3 1 Estación Fitopatolóxica do Areeiro (Diputación Pontevedra), Subida la Robleda s/n. 36153- PONTEVEDRA (España). Correo electrónico: [email protected] 2 Departamento de Producción Vegetal. Universidad de Santiago de Compostela. Campus Universitario. 27002-LUGO (España) 3 Xunta de Galicia. Consellería do Medio Rural. Servicio de Montes e Industrias Forestais. Ronda da Muralla, 70 bajo 2º. 27071-LUGO (España) Resumen El espacio Ancares-Caurel es un gran espacio verde que en Galicia se extiende a lo largo del Sureste de la provincia de Lugo. Cuenta con una importante representación de especies arbóreas o arbustivas autóctonas entre las que destacan Betula celtiberica, Quercus robur, Quercus pyrenaica, Sorbus aucuparia, Fagus sylvatica o Erica australis. En el mes de mayo de 2006 se detecta un área defoliada por el geométrido Agriopis aurantiaria que en aquel momento afectaba principalmente a los pies de Betula celtiberica, aunque ya en junio, momento en que tuvo lugar la crisalidación, alcan- zaba a otras especies, estimándose la superficie atacada en 30 hectáreas. En 2007 vuelve a observar- se la defoliación, iniciándose en este caso a finales del mes de abril, alcanzándose la máxima densidad larvaria en mayo, cuando se calcula que el área afectada comprende ya cerca de 500 ha. En este trabajo se describe la especie y los daños causados, y se aportan las curvas de vuelo del lepidóp- tero y los resultados de un ensayo de control efectuado en laboratorio con un insecticida biológico.
    [Show full text]
  • Nonlinear Time Series Analysis Unravels Underlying Mechanisms of Interspecific Synchrony Among Foliage-Feeding Forest Lepidoptera Species
    Received: 28 November 2018 Revised: 5 August 2019 Accepted: 16 August 2019 Published on: 5 November 2019 DOI: 10.1002/1438-390X.12025 ORIGINAL ARTICLE - INVITED Nonlinear time series analysis unravels underlying mechanisms of interspecific synchrony among foliage-feeding forest Lepidoptera species Kazutaka Kawatsu1 | Takehiko Yamanaka2 | Jan Patoèka3† | Andrew M. Liebhold3,4 1Graduate School of Life Sciences, Tohoku University, Sendai, Japan Abstract 2Institute for Agro-Environmental Sciences, Interspecific synchrony, that is, synchrony in population dynamics among sympatric NARO (NIAES), Tsukuba, Japan populations of different species can arise via several possible mechanisms, including com- 3Faculty of Forestry and Wood Sciences, mon environmental effects, direct interactions between species, and shared trophic interac- Czech University of Life Sciences Prague, tions, so that distinguishing the relative importance of these causes can be challenging. In Praha, Czech Republic 4USDA Forest Service Northeastern this study, to overcome this difficulty, we combine traditional correlation analysis with a Research Station, Morgantown, West novel framework of nonlinear time series analysis, empirical dynamic modeling (EDM). Virginia The EDM is an analytical framework to identify causal relationships and measure chang- Correspondence ing interaction strength from time series. We apply this approach to time series of sympat- Kazutaka Kawatsu, Graduate School of Life ric foliage-feeding forest Lepidoptera species in the Slovak Republic and yearly mean Sciences, Tohoku University, Sendai temperature, precipitation and North Atlantic Oscillation Index. These Lepidoptera species 980-8578, Japan. Email: [email protected] include both free-feeding and leaf-roller larval life histories: the former are hypothesized to be more strongly affected by similar exogenous environments, while the latter are iso- Funding information lated from such pressures.
    [Show full text]
  • Scottish Macro-Moth List, 2015
    Notes on the Scottish Macro-moth List, 2015 This list aims to include every species of macro-moth reliably recorded in Scotland, with an assessment of its Scottish status, as guidance for observers contributing to the National Moth Recording Scheme (NMRS). It updates and amends the previous lists of 2009, 2011, 2012 & 2014. The requirement for inclusion on this checklist is a minimum of one record that is beyond reasonable doubt. Plausible but unproven species are relegated to an appendix, awaiting confirmation or further records. Unlikely species and known errors are omitted altogether, even if published records exist. Note that inclusion in the Scottish Invertebrate Records Index (SIRI) does not imply credibility. At one time or another, virtually every macro-moth on the British list has been reported from Scotland. Many of these claims are almost certainly misidentifications or other errors, including name confusion. However, because the County Moth Recorder (CMR) has the final say, dubious Scottish records for some unlikely species appear in the NMRS dataset. A modern complication involves the unwitting transportation of moths inside the traps of visiting lepidopterists. Then on the first night of their stay they record a species never seen before or afterwards by the local observers. Various such instances are known or suspected, including three for my own vice-county of Banffshire. Surprising species found in visitors’ traps the first time they are used here should always be regarded with caution. Clerical slips – the wrong scientific name scribbled in a notebook – have long caused confusion. An even greater modern problem involves errors when computerising the data.
    [Show full text]
  • Bat Aggregational Response to Pest Caterpillar Emergence Ján Blažek*, Adam Konečný & Tomáš Bartonička
    www.nature.com/scientificreports OPEN Bat aggregational response to pest caterpillar emergence Ján Blažek*, Adam Konečný & Tomáš Bartonička Moths (Lepidoptera) are major agricultural and forest pests in many parts of the world, including Europe, with many causing great economic damage to crops, horticultural plants, stored items, and wool products. Here, we focus on two ecologically similar inchworms, Operophtera brumata and Erannis defoliaria, known for their high foliage consumption during the spring emergence of caterpillars. We hypothesise that bats could play a role in reducing pests such as caterpillars by switching to this abundant emerging prey. At two infested and one control forest sites, caterpillars were sampled during spring to determine levels of infestation. At the same time, bat fight activity was monitored during the peak in caterpillar abundance. During the spring caterpillar outbreak, we collected faecal samples of forest-dwelling bats capable of using gleaning. The majority of samples were positive for our focus species, being 51.85% for O. brumata and 29.63% for E. defoliaria faecal samples. The foraging activity of two gleaning bats, Myotis nattereri and Myotis bechsteinii, increased at both infested sites, but not at the control site, during caterpillar emergence, as did foraging of Plecotus auritus/austriacus, which used both gleaning and aerial hawking. We conclude that both specialists and occasional gleaners, which prefer diferent prey but are able to switch their foraging strategies, aggregate at sites during pest emergence and, as such, our results confrm the high potential of bats to reduce numbers of pest species such as caterpillars. A predator’s efect on prey populations is generally studied using numerical responses 1,2 driven by two mecha- nisms, migration of predators to sites with high prey concentrations (aggregational response) and predator reproduction, which results in a delayed increase in the density of predators3.
    [Show full text]
  • Ennominae 70.205 1884 Magpie Moth (Abraxas Grossulariata
    Ennominae 70.205 1884 Magpie Moth (Abraxas grossulariata) 70.206 1885 Clouded Magpie (Abraxas sylvata) 70.207 1887 Clouded Border (Lomaspilis marginata) 70.208 1888 Scorched Carpet (Ligdia adustata) 70.210 1888a Dorset Cream Wave (Stegania trimaculata) 70.211 1889 Peacock Moth (Macaria notata) 70.212 1890 Sharp-angled Peacock (Macaria alternata) 70.213 1891 Dusky Peacock (Macaria signaria) 70.214 1893 Tawny-barred Angle (Macaria liturata) 70.215 1897 V-Moth (Macaria wauaria) 70.217 1896 Rannoch Looper (Macaria brunneata) 70.218 1894 Latticed Heath (Chiasmia clathrata) 70.220 1899 Frosted Yellow (Isturgia limbaria) 70.222 1902 Brown Silver-line (Petrophora chlorosata) 70.223 1903 Barred Umber (Plagodis pulveraria) 70.224 1904 Scorched Wing (Plagodis dolabraria) 70.225 1905 Horse Chestnut (Pachycnemia hippocastanaria) 70.226 1906 Brimstone Moth (Opisthograptis luteolata) 70.227 1907 Bordered Beauty (Epione repandaria) 70.228 1908 Dark Bordered Beauty (Epione vespertaria) 70.229 1909 Speckled Yellow (Pseudopanthera macularia) 70.230 1924 Orange Moth (Angerona prunaria) 70.231 1910 Lilac Beauty (Apeira syringaria) 70.232 1911 Large Thorn (Ennomos autumnaria) 70.233 1912 August Thorn (Ennomos quercinaria) 70.234 1913 Canary-shouldered Thorn (Ennomos alniaria) 70.235 1914 Dusky Thorn (Ennomos fuscantaria) 70.236 1915 September Thorn (Ennomos erosaria) 70.237 1917 Early Thorn (Selenia dentaria) 70.238 1918 Lunar Thorn (Selenia lunularia) 70.239 1919 Purple Thorn (Selenia tetralunaria) 70.240 1920 Scalloped Hazel (Odontopera bidentata) 70.241
    [Show full text]
  • The Potential Impacts of Climate Change on the Biodiversity of Norfolk Jeff Price
    The potential impacts of climate change on the biodiversity of Norfolk Jeff Price Introduction on a trajectory for ~3.2°C increase (UNEP Climate change is posing, and will continue 2016). While this is an improvement over to pose, increasing risks to biodiversity the previous ‘business as usual’ estimate (O’Neill et al. 2017). Changes in phenology of 4°- 4.5°C, it is still likely to have a large and range were first noted more than a impact on biodiversity. decade ago (Root et al. 2003) with many This paper reviews the projected climate publications since. Land use change is change impacts (relative to 1961-1990 increasingly a problem as species are being baseline) on some of the biodiversity further challenged by barriers to their in Norfolk (including birds, mammals, potential dispersal with their preferred reptiles, amphibians, butterflies, common climate across fragmented landscapes macro moths, dragonflies, bumblebees, (Settele et al. 2014). Many studies have grasshoppers, shieldbugs, ferns, orchids, examined the potential future impacts and some trees and shrubs. The paper of climate change on biodiversity using concentrates on the species currently found a variety of modelling techniques. This in Norfolk (largely based on lists on the includes results from Wallace Initiative Norfolk and Norwich Naturalist’s Society Phase 1 models showing the potential for website) and not on potential colonists range losses of greater than 50% across large from Europe. The exception is for some fractions of species globally at warming of the birds and dragonflies. For brevity levels of approximately 3.6 °C above pre- it concentrates on the climate changes industrial levels (Warren et al.
    [Show full text]
  • BIODIVERSITY and ENVIRONMENT of NEW ROAD, LITTLE LONDON and NEIGHBOURING COUNTRYSIDE by Dr Paul Sterry Contents: 1
    BIODIVERSITY AND ENVIRONMENT OF NEW ROAD, LITTLE LONDON AND NEIGHBOURING COUNTRYSIDE by Dr Paul Sterry Contents: 1. Summary. 2. A brief history. 3. Notable habitats alongside New Road and in the neighbouring countryside. 4. Protected and notable species found on New Road and in the surrounding countryside. Appendix 1 - Historical land use in Little London and its influence on biodiversity. Appendix 2 - Lepidoptera (Butterflies and Moths) recorded on New Road, Little London 2004-2019 (generalised OS Grid Reference SU6159). Appendix 3 - Ageing Hedgerows. About the author : Paul Sterry has BSc and PhD in Zoology and Ecology from Imperial College, London. After 5 years as a Research Fellow at the University of Sussex working on freshwater ecology he embarked on a freelance career as a wildlife author and photographer. Over the last 35 years he has written and illustrated more than 50 books, concentrating mainly on British Wildlife, with the emphasis on photographic field guides. Best-selling titles include Collins Complete British Trees, Collins Complete British Wildlife and Collins Life-size Birds. Above: Barn Owl flying over grassland in the neighbourhood of New Road. 1. Summary Located in the Parish of Pamber, Little London is a Biodiversity hotspot with New Road at its environmental heart. Despite the name New Road is one of the oldest highways in the village and this is reflected in the range of wildlife found along its length, and in the countryside bordering it. New Road has significance for wildlife far beyond is narrow, single-track status. Its ancient hedgerows and adjacent meadows are rich in wildlife but of equal importance is its role as a corridor of wildlife connectivity.
    [Show full text]
  • A Molecular Phylogeny of the Palaearctic and O.Pdf
    CSIRO PUBLISHING Invertebrate Systematics, 2017, 31, 427–441 http://dx.doi.org/10.1071/IS17005 A molecular phylogeny of the Palaearctic and Oriental members of the tribe Boarmiini (Lepidoptera : Geometridae : Ennominae) Nan Jiang A,D, Xinxin Li A,B,D, Axel Hausmann C, Rui Cheng A, Dayong Xue A and Hongxiang Han A,E AKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China. BUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049 China. CSNSB – Zoologische Staatssammlung München, Münchhausenstraße 21, Munich 81247, Germany. DThese authors contributed equally to this work. ECorresponding author. Email: [email protected] Abstract. Owing to the high species diversity and the lack of a modern revision, the phylogenetic relationships within the tribe Boarmiini remain largely unexplored. In this study, we reconstruct the first molecular phylogeny of the Palaearctic and Oriental members of Boarmiini, and infer the relationships among tribes within the ‘boarmiine’ lineage. One mitochondrial (COI) and four nuclear (EF-1a, CAD, RpS5, GAPDH) genes for 56 genera and 96 species of Boarmiini mostly from the Palaearctic and Oriental regions were included in the study. Analyses of Bayesian inference and maximum likelihood recovered largely congruent results. The monophyly of Boarmiini is supported by our results. Seven clades and seven subclades within Boarmiini were found. The molecular results coupled with morphological studies suggested the synonymisation of Zanclopera Warren, 1894, syn. nov. with Krananda Moore, 1868. The following new combinations are proposed: Krananda straminearia (Leech, 1897) (comb. nov.), Krananda falcata (Warren, 1894) (comb.
    [Show full text]