Nonlinear Time Series Analysis Unravels Underlying Mechanisms of Interspecific Synchrony Among Foliage-Feeding Forest Lepidoptera Species

Total Page:16

File Type:pdf, Size:1020Kb

Nonlinear Time Series Analysis Unravels Underlying Mechanisms of Interspecific Synchrony Among Foliage-Feeding Forest Lepidoptera Species Received: 28 November 2018 Revised: 5 August 2019 Accepted: 16 August 2019 Published on: 5 November 2019 DOI: 10.1002/1438-390X.12025 ORIGINAL ARTICLE - INVITED Nonlinear time series analysis unravels underlying mechanisms of interspecific synchrony among foliage-feeding forest Lepidoptera species Kazutaka Kawatsu1 | Takehiko Yamanaka2 | Jan Patoèka3† | Andrew M. Liebhold3,4 1Graduate School of Life Sciences, Tohoku University, Sendai, Japan Abstract 2Institute for Agro-Environmental Sciences, Interspecific synchrony, that is, synchrony in population dynamics among sympatric NARO (NIAES), Tsukuba, Japan populations of different species can arise via several possible mechanisms, including com- 3Faculty of Forestry and Wood Sciences, mon environmental effects, direct interactions between species, and shared trophic interac- Czech University of Life Sciences Prague, tions, so that distinguishing the relative importance of these causes can be challenging. In Praha, Czech Republic 4USDA Forest Service Northeastern this study, to overcome this difficulty, we combine traditional correlation analysis with a Research Station, Morgantown, West novel framework of nonlinear time series analysis, empirical dynamic modeling (EDM). Virginia The EDM is an analytical framework to identify causal relationships and measure chang- Correspondence ing interaction strength from time series. We apply this approach to time series of sympat- Kazutaka Kawatsu, Graduate School of Life ric foliage-feeding forest Lepidoptera species in the Slovak Republic and yearly mean Sciences, Tohoku University, Sendai temperature, precipitation and North Atlantic Oscillation Index. These Lepidoptera species 980-8578, Japan. Email: [email protected] include both free-feeding and leaf-roller larval life histories: the former are hypothesized to be more strongly affected by similar exogenous environments, while the latter are iso- Funding information lated from such pressures. Correlation analysis showed that interspecific synchrony is gen- Operational Programme Research, Development and Education, Grant/Award erally strongest between species within same feeding guild. In addition, the convergent Number: CZ.02.1.01/0.0/0.0/16_019/ cross mapping analysis detected causal effects of meteorological factors on most of the 0000803; JSPS KAKENHI, Grant/Award Numbers: 15H04613, 18K14797, free-feeding species while such effects were not observed in the leaf-rolling species. How- 16K18625, 16H04846 ever, there were fewer causal relationships among species. The multivariate S-map analy- sis showed that meteorological factors tend to affect similar free-feeding species that are synchronous with each other. These results indicate that shared meteorological factors are key drivers of interspecific synchrony among members of the free-feeding guild, but do not play the same role in synchronizing species within the leaf-roller guild. KEYWORDS convergent cross mapping, cross-correlation coefficient, empirical dynamic modeling, Moran effect, multivariate S-map 1 | INTRODUCTION Synchrony among spatially disjunct populations of the same †Deceased. species is known to occur in diverse taxa (e.g., Liebhold & This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Population Ecology published by John Wiley & Sons Australia, Ltd on behalf of The Society of Population Ecology Population Ecology. 2020;62:5–14. wileyonlinelibrary.com/journal/pope 5 6 KAWATSU ET AL. Kamata, 2000; Peltonen, Liebhold, Bjørnstad, & Williams, unknown. Thus, we still cannot rule out the possibility of the 2002). Such spatially synchronous pattern can be caused by other factors, such as shared environmental factors and the movement of individuals among populations and/or direct interactions between lepidopteran species. shared exogenous abiotic/biotic drivers (e.g., weather condi- A recently developed approach to nonlinear time series tions and common predator impacts, respectively) among the analysis, empirical dynamic modeling (EDM), is a promising populations (Blasius, Huppert, & Stone, 1999; Liebhold, method for overcoming the inference problems described Koenig, & Bjørnstad, 2004; Moran, 1953). Synchronous above. The approach of EDM is based on theories of dynamics can also occur among populations of different spe- nonlinear dynamical systems (e.g., Deyle & Sugihara, 2011; cies coexisting across a common area. In fact, interspecific, Takens, 1981), and enables testing for causal relationships synchronous population fluctuations have been observed in between observed time series. In particular, we focused on several taxa, including tetraonid birds (Lindström, Ranta, & the two methods of EDM, convergent cross mapping (CCM) Lindén, 1996; Ranta, Lindström, & Lindén, 1995), small and the multivariate S-map procedure. The CCM method is mammals (Norrdahl & Korpimäki, 1996) and insects used to determine the direction of causal effect (Sugihara (Raimondo, Liebhold, Strazanac, & Bulter, 2004; Raimondo, et al., 2012; Ye et al., 2015), and the S-map analysis is used Turcáni, Patoéka, & Liebhold, 2004). Possible mechanisms to measure the strength of the causal interaction (Deyle, of “interspecific” synchrony are analogous to but slightly May, Munch, & Sugihara, 2016). The EDM is applicable to different from those of intraspecific synchrony. Specifically, a wide variety of problems involving inference of causal intraspecific immigration/migration among populations can- relationships from ecological time series, and its application not generate synchronous dynamics among species and in ecology is rapidly increasing (e.g., Kawatsu & Kishi, instead interspecific synchrony may arise when sympatric 2018; Sugihara et al., 2012; Ushio et al., 2018). For example, populations of different species share at least one common Kawatsu and Kishi (2018) leveraged the CCM method and abiotic or biotic influence, including environmental (e.g., the multivariate S-map analysis to identify critical interac- meteorological) effects, direct interactions, shared hosts/ tions in the competition dynamics between two bean beetle shared predators and parasitoids/pathogens. Because these species, where two different interspecific interactions, that is, exogenous factors are capable of generating similar patterns resource competition between larvae and reproductive inter- of synchrony, distinguishing the relative importance among ference between adults, can co-occur. Similarly, application them can be challenging (Vesseur & Fox, 2009). of EDM approach to lepidopteran time series and candidate Here we explore the causes of interspecific synchrony causal series (e.g., weather conditions and predators) could using a system studied by Raimondo, Liebhold, et al. (2004) be expected to provide more definitive identification of the and Raimondo, Turcáni, et al. (2004) consisting of sympatric drivers of interspecific synchrony. For example, since free- foliage-feeding forest Lepidoptera species in the Slovak feeding larvae are likely exposed to similar environmental Republic. This insect community can be categorized into conditions while leaf-rolling larvae are likely more isolated two groups based on larval feeding biology, that is, free- from exogenous environments (Raimondo, Turcáni, et al., feeding species and leaf-rollers (Raimondo, Liebhold, et al., 2004), we hypothesize that the free-feeding species may be 2004; Raimondo, Turcáni, et al., 2004). These two species more strongly synchronized by shared meteorological condi- guilds are likely to be differently influenced by environmen- tions (i.e., the direction of causality and the sign of climate tal conditions and/or predators that use search images within same feeding group. Applying cross-correlation analysis to effects) than would leaf-rollers. In this study, we reanalyze the dynamics of the foliage- lepidopteran abundance time series and using a model analy- sis of prey dynamics with shared predators, they found that feeding forest Lepidoptera community studied by Raimondo, (a) significant synchrony occurs more frequently among spe- Turcáni, et al. (2004) applying EDM analysis. The analysis cies exhibiting similar feeding strategies, and (b) pairs of consists of the following four steps. First, to confirm the prey species yielding similar search images to predators are degree of interspecific synchrony, we quantify cross- easily synchronized compared to species with different correlation between each species. Second, to test the impor- images (Raimondo, Turcáni, et al., 2004). Based on these tance of the weather conditions on interspecific synchrony, results they concluded that generalist predators are likely we performed CCM analysis between the lepidopteran time causal drivers of observed interspecific synchrony among series and meteorological time series. Third, to explore the forest Lepidoptera (Raimondo, Turcáni, et al., 2004). How- possibility of direct interactions, we performed the CCM ever, their conclusion dependent upon inference from the analysis between the lepidopteran time series. Finally, to correlation, which is not necessarily a good indicator of cau- infer the sign of the detected causal effects of climatic factors sality (Sugihara et al., 2012), and inference from the behav- on lepidopteran species, we applied multivariate S-map anal- ior of a population model, whose validity in the real world is ysis. The results
Recommended publications
  • Addenda and Amendments to a Checklist of the Lepidoptera of the British Isles on Account of Subsequently Published Data
    Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 98 94 Entomologist’s Rec. J. Var. 128 (2016) ADDENDA AND AMENDMENTS TO A CHECKLIST OF THE LEPIDOPTERA OF THE BRITISH ISLES ON ACCOUNT OF SUBSEQUENTLY PUBLISHED DATA 1 DAVID J. L. A GASSIZ , 2 S. D. B EAVAN & 1 R. J. H ECKFORD 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD 2 The Hayes, Zeal Monachorum, Devon EX17 6DF This update incorpotes information published before 25 March 2016 into A Checklist of the Lepidoptera of the British Isles, 2013. CENSUS The number of species now recorded from the British Isles stands at 2535 of which 57 are thought to be extinct and in addition there are 177 adventive species. CHANGE OF STATUS (no longer extinct) p. 17 16.013 remove X, Hall (2013) p. 25 35.006 remove X, Beavan & Heckford (2014) p. 40 45.024 remove X, Wilton (2014) p. 54 49.340 remove X, Manning (2015) ADDITIONAL SPECIES in main list 12.0047 Infurcitinea teriolella (Amsel, 1954) E S W I C 15.0321 Parornix atripalpella Wahlström, 1979 E S W I C 15.0861 Phyllonorycter apparella (Herrich-Schäffer, 1855) E S W I C 15.0862 Phyllonorycter pastorella (Zeller, 1846) E S W I C 27.0021 Oegoconia novimundi (Busck, 1915) E S W I C 35.0299 Helcystogramma triannulella (Herrich-Sch äffer, 1854) E S W I C 41.0041 Blastobasis maroccanella Amsel, 1952 E S W I C 48.0071 Choreutis nemorana (Hübner, 1799) E S W I C 49.0371 Clepsis dumicolana (Zeller, 1847) E S W I C 49.2001 TETRAMOERA Diakonoff, [1968] langmaidi Plant, 2014 E S W I C 62.0151 Delplanqueia inscriptella (Duponchel, 1836) E S W I C 72.0061 Hypena lividalis (Hübner, 1790) Chevron Snout E S W I C 70.2841 PUNGELARIA Rougemont, 1903 capreolaria ([Denis & Schiffermüller], 1775) Banded Pine Carpet E S W I C 72.0211 HYPHANTRIA Harris, 1841 cunea (Drury, 1773) Autumn Webworm E S W I C 73.0041 Thysanoplusia daubei (Boisduval, 1840) Boathouse Gem E S W I C 73.0301 Aedia funesta (Esper, 1786) Druid E S W I C Ent Rec 128(2)_Layout 1 22/03/2016 12:53 Page 99 Entomologist’s Rec.
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    732 _____________Mun. Ent. Zool. Vol. 7, No. 2, June 2012__________ STRUCTURE OF LEPIDOPTEROCENOSES ON OAKS QUERCUS DALECHAMPII AND Q. CERRIS IN CENTRAL EUROPE AND ESTIMATION OF THE MOST IMPORTANT SPECIES Miroslav Kulfan* * Department of Ecology, Faculty of Natural Sciences, Comenius University, Mlynská dolina B-1, SK-84215 Bratislava, SLOVAKIA. E-mail: [email protected] [Kulfan, M. 2012. Structure of lepidopterocenoses on oaks Quercus dalechampii and Q. cerris in Central Europe and estimation of the most important species. Munis Entomology & Zoology, 7 (2): 732-741] ABSTRACT: On the basis of lepidopterous larvae a total of 96 species on Quercus dalechampii and 58 species on Q. cerris were recorded in 10 study plots of Malé Karpaty and Trnavská pahorkatina hills. The families Geometridae, Noctuidae and Tortricidae encompassed the highest number of found species. The most recorded species belonged to the trophic group of generalists. On the basis of total abundance of lepidopterous larvae found on Q. dalechampii from all the study plots the most abundant species was evidently Operophtera brumata. The most abundant species on Q. cerris was Cyclophora ruficiliaria. Based on estimated oak leaf area consumed by a larva it is shown that Lymantria dispar was the most important leaf-chewing species of both Q. dalechampii and Q. cerris. KEY WORDS: Slovakia, Quercus dalechampii, Q. cerris, the most important species. About 300 Lepidoptera species are known to damage the assimilation tissue of oaks in Central Europe (Patočka, 1954, 1980; Patočka et al.1999; Reiprich, 2001). Lepidoptera larvae are shown to be the most important group of oak defoliators (Patočka et al., 1962, 1999).
    [Show full text]
  • Thesis.Pdf (3.979Mb)
    FACULTY OF BIOSCIENCES, FISHERIES AND ECONOMICS DEPARTMENT OF ARCTIC AND MARINE BIOLOGY Cyclically outbreaking geometrid moths in sub-arctic mountain birch forest: the organization and impacts of their interactions with animal communities — Ole Petter Laksforsmo Vindstad A dissertation for the degree of Philosophiae Doctor – October 2014 Cyclically outbreaking geometrid moths in sub-arctic mountain birch forest: the organization and impacts of their interactions with animal communities Ole Petter Laksforsmo Vindstad A dissertation for the degree of Philosophiae Doctor University of Tromsø – The arctic university of Norway Faculty of Biosciences, Fisheries and Economics Department of Arctic and Marine Biology Autumn 2014 1 Dedicated to everyone who has helped me along the way 2 Supervisors Professor Rolf Anker Ims1 Senior researcher Jane Uhd Jepsen2 1 Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway 2 Norwegian Institute for Nature Research, Fram Centre, Tromsø, Norway Cover photos Front cover – Larvae of Epirrita autumnata feeding on mountain birch during a moth outbreak in northern Norway. Photo: Moritz Klinghardt Study I – Portrait of Agrypon flaveolatum. One of the most important larval parasitoid species in study I. Photo: Ole Petter Laksforsmo Vindstad Study II – Carcass of an Operophtera brumata larva, standing over the cocoon of its killer, the parasitoid group Protapanteles anchisiades/P. immunis/Cotesia salebrosa. Photo: Ole Petter Laksforsmo Vindstad Study III – Larva of the parasitoid group Phobocampe sp./Sinophorus crassifemur emerging from Agriopis aurantiaria host larva. Photo: Tino Schott Study IV – An area of healthy mountain birch forest, representative for the undamaged sampling sites in study IV and V. Photo: Jakob Iglhaut Study V – An area of mountain birch forest that has been heavily damaged by a moth outbreak, representative for the damaged sampling sites in study IV and V.
    [Show full text]
  • Lepidoptera in Cheshire in 2002
    Lepidoptera in Cheshire in 2002 A Report on the Micro-Moths, Butterflies and Macro-Moths of VC58 S.H. Hind, S. McWilliam, B.T. Shaw, S. Farrell and A. Wander Lancashire & Cheshire Entomological Society November 2003 1 1. Introduction Welcome to the 2002 report on lepidoptera in VC58 (Cheshire). This is the second report to appear in 2003 and follows on from the release of the 2001 version earlier this year. Hopefully we are now on course to return to an annual report, with the 2003 report planned for the middle of next year. Plans for the ‘Atlas of Lepidoptera in VC58’ continue apace. We had hoped to produce a further update to the Atlas but this report is already quite a large document. We will, therefore produce a supplementary report on the Pug Moths recorded in VC58 sometime in early 2004, hopefully in time to be sent out with the next newsletter. As usual, we have produced a combined report covering micro-moths, macro- moths and butterflies, rather than separate reports on all three groups. Doubtless observers will turn first to the group they are most interested in, but please take the time to read the other sections. Hopefully you will find something of interest. Many thanks to all recorders who have already submitted records for 2002. Without your efforts this report would not be possible. Please keep the records coming! This request also most definitely applies to recorders who have not sent in records for 2002 or even earlier. It is never too late to send in historic records as they will all be included within the above-mentioned Atlas when this is produced.
    [Show full text]
  • Download (236Kb)
    Chapter (non-refereed) Welch, R.C.. 1981 Insects on exotic broadleaved trees of the Fagaceae, namely Quercus borealis and species of Nothofagus. In: Last, F.T.; Gardiner, A.S., (eds.) Forest and woodland ecology: an account of research being done in ITE. Cambridge, NERC/Institute of Terrestrial Ecology, 110-115. (ITE Symposium, 8). Copyright © 1981 NERC This version available at http://nora.nerc.ac.uk/7059/ NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access This document is extracted from the publisher’s version of the volume. If you wish to cite this item please use the reference above or cite the NORA entry Contact CEH NORA team at [email protected] 110 The fauna, including pests, of woodlands and forests 25. INSECTS ON EXOTIC BROADLEAVED jeopardize Q. borealis here. Moeller (1967) suggest- TREES OF THE FAGACEAE, NAMELY ed that the general immunity of Q. borealis to QUERCUS BOREALIS AND SPECIES OF insect attack in Germany was due to its planting in NOTHOFAGUS mixtures with other Quercus spp. However, its defoliation by Tortrix viridana (green oak-roller) was observed in a relatively pure stand of 743 R.C. WELCH hectares. More recently, Zlatanov (1971) published an account of insect pests on 7 species of oak in Bulgaria, including Q. rubra (Table 35), although Since the early 1970s, and following a number of his lists include many pests not known to occur earlier plantings, it seems that American red oak in Britain.
    [Show full text]
  • Detección De Agriopis Aurantiaria Hübner (Lepidoptera, Geometridae) En Galicia
    Cuad. Soc. Esp. Cienc. For. 26: 181-186 (2008) «Actas de la I Reunión sobre Sanidad Forestal» DETECCIÓN DE AGRIOPIS AURANTIARIA HÜBNER (LEPIDOPTERA, GEOMETRIDAE) EN GALICIA Rosa Pérez Otero 1, José Pedro Mansilla Vázquez 1,2 y Pilar Vega Alonso 3 1 Estación Fitopatolóxica do Areeiro (Diputación Pontevedra), Subida la Robleda s/n. 36153- PONTEVEDRA (España). Correo electrónico: [email protected] 2 Departamento de Producción Vegetal. Universidad de Santiago de Compostela. Campus Universitario. 27002-LUGO (España) 3 Xunta de Galicia. Consellería do Medio Rural. Servicio de Montes e Industrias Forestais. Ronda da Muralla, 70 bajo 2º. 27071-LUGO (España) Resumen El espacio Ancares-Caurel es un gran espacio verde que en Galicia se extiende a lo largo del Sureste de la provincia de Lugo. Cuenta con una importante representación de especies arbóreas o arbustivas autóctonas entre las que destacan Betula celtiberica, Quercus robur, Quercus pyrenaica, Sorbus aucuparia, Fagus sylvatica o Erica australis. En el mes de mayo de 2006 se detecta un área defoliada por el geométrido Agriopis aurantiaria que en aquel momento afectaba principalmente a los pies de Betula celtiberica, aunque ya en junio, momento en que tuvo lugar la crisalidación, alcan- zaba a otras especies, estimándose la superficie atacada en 30 hectáreas. En 2007 vuelve a observar- se la defoliación, iniciándose en este caso a finales del mes de abril, alcanzándose la máxima densidad larvaria en mayo, cuando se calcula que el área afectada comprende ya cerca de 500 ha. En este trabajo se describe la especie y los daños causados, y se aportan las curvas de vuelo del lepidóp- tero y los resultados de un ensayo de control efectuado en laboratorio con un insecticida biológico.
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Monitoring Report Spring/Summer 2015 Contents
    Wimbledon and Putney Commons Monitoring Report Spring/Summer 2015 Contents CONTEXT 1 A. SYSTEMATIC RECORDING 3 METHODS 3 OUTCOMES 6 REFLECTIONS AND RECOMMENDATIONS 18 B. BIOBLITZ 19 REFLECTIONS AND LESSONS LEARNT 21 C. REFERENCES 22 LIST OF FIGURES Figure 1 Location of The Plain on Wimbledon and Putney Commons 2 Figure 2 Experimental Reptile Refuge near the Junction of Centre Path and Somerset Ride 5 Figure 3 Contrasting Cut and Uncut Areas in the Conservation Zone of The Plain, Spring 2015 6/7 Figure 4 Notable Plant Species Recorded on The Plain, Summer 2015 8 Figure 5 Meadow Brown and white Admiral Butterflies 14 Figure 6 Hairy Dragonfly and Willow Emerald Damselfly 14 Figure 7 The BioBlitz Route 15 Figure 8 Vestal and European Corn-borer moths 16 LIST OF TABLES Table 1 Mowing Dates for the Conservation Area of The Plain 3 Table 2 Dates for General Observational Records of The Plain, 2015 10 Table 3 Birds of The Plain, Spring - Summer 2015 11 Table 4 Summary of Insect Recording in 2015 12/13 Table 5 Rare Beetles Living in the Vicinity of The Plain 15 LIST OF APPENDICES A1 The Wildlife and Conservation Forum and Volunteer Recorders 23 A2 Sward Height Data Spring 2015 24 A3 Floral Records for The Plain : Wimbledon and Putney Commons 2015 26 A4 The Plain Spring and Summer 2015 – John Weir’s General Reports 30 A5 a Birds on The Plain March to September 2015; 41 B Birds on The Plain - summary of frequencies 42 A6 ai Butterflies on The Plain (DW) 43 aii Butterfly long-term transect including The Plain (SR) 44 aiii New woodland butterfly transect
    [Show full text]
  • Arctic Biodiversity Assessment
    384 Arctic Biodiversity Assessment Wild and semi-domestic herds of Rangifer (caribou or reindeer) are almost omnipresent in Arctic tundra. Rangifer management is an important issue, as the herds exert a number of important controls on the Arctic terrestrial ecosystem through their effects on vegetation and carnivore populations, as well as providing essential ecosystem goods to indigenous people. Photo: Susan Morse. 385 Chapter 12 Terrestrial Ecosystems Lead Authors Rolf A. Ims and Dorothee Ehrich Key Contributing Authors Bruce C. Forbes, Brian Huntley, Donald A. Walker and Philip A. Wookey Contributing Authors Dominique Berteaux, Uma S. Bhatt, Kari A. Bråthen, Mary E. Edwards, Howard E. Epstein, Mads C. Forchhammer, Eva Fuglei, Gilles Gauthier, Scott Gilbert, Maria Leung, Irina E. Menyushina, Nikita Ovsyanikov, Eric Post, Martha K. Raynolds, Donald G. Reid, Niels M. Schmidt, Audun Stien, Olga I. Sumina and Rene van der Wal Contents Summary ..............................................................386 12.4. Key findings .....................................................424 12.1. Introduction .....................................................386 12.4.1. How the structure and functioning of tundra ecosystems are determined ............................................424 12.2. Ecosystem structure, processes and functions �������������������387 12.4.1.1. Abiotic controls on ecosystem structure ............424 12.2.1. Ecosystem structure .......................................387 12.4.1.2. Biotic processes shaping biodiversity and 12.2.1.1. Circumpolar-scale variation ������������������������389 tundra ecosystem functioning ����������������������424 12.2.1.2. Regional- to local-scale variation ��������������������395 12.4.2. Trends attributed to drivers of change ......................425 12.2.1.3. Hot spots of diversity ...............................399 12.4.2.1. Climate change ....................................425 12.2.2. Ecosystem processes and functions ........................399 12.4.2.2.
    [Show full text]
  • Lepidoptera: Tortricidae) 677-686 Download
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2017 Band/Volume: 0049_1 Autor(en)/Author(s): Maharramova Sheyda Mamed, Ayberk Hamit Artikel/Article: New records of leafrollers reared in Azerbaijan (Lepidoptera: Tortricidae) 677-686 download www.zobodat.at Linzer biol. Beitr. 49/1 677-686 28.7.2017 New records of leafrollers reared in Azerbaijan (Lepidoptera: Tortricidae) Sheyda MAHARRAMOVA & Hamit AYBERK A b s t r a c t : 17 species of tortricid moths had been defined for the eastern parts of Azerbaijan during the years of 1994-2015. Five of these, Ptycholoma lecheana (LINNAEUS, 1758), Cacoecimorpha pronubana HÜBNER, 1799, Eudemis profundana ([DENIS & SCHIFFERMÜLLER], 1775), Hedya salicella (LINNAEUS, 1758), and Epinotia demarniana (FISCHER VON RÖSLERSTAMM, 1840), are new to the Azerbaijan fauna; two of them (Cacoecimorpha pronubana and Epinotia demarniana) are new to the Caucasian fauna, as well. Leafrollers were collected in the larval and pupal stage from March to September on their food plants according to the sampling methods. The early stages were kept in the laboratory until adult emergence, after which they were killed and pinned. Data on newly recorded leafrollers are given in the text including species name, collection area, coordinates of area, data of collection, food plants on which they were recorded, and sex of specimen(s). Key words: Tortricids, damage, host plants, Azerbaijan, fauna. Introduction Tortricidae, commonly known as leafrollers, are one of the most diverse families in the Microlepidoptera. The number of leafroller species in countries bordering Azerbaijan differs among the adjacent regions: 469 species are recorded from Turkey (KOÇAK & KEMAL 2012), 145 species from Iran (KOÇAK & KEMAL 2012), and 139 species from Georgia (ESARTIA 1988).
    [Show full text]
  • Desktop Biodiversity Report
    Desktop Biodiversity Report Lindfield Rural and Urban Parishes ESD/14/65 Prepared for Terry Oliver 10th February 2014 This report is not to be passed on to third parties without prior permission of the Sussex Biodiversity Record Centre. Please be aware that printing maps from this report requires an appropriate OS licence. Sussex Biodiversity Record Centre report regarding land at Lindfield Rural and Urban Parishes 10/02/2014 Prepared for Terry Oliver ESD/14/65 The following information is enclosed within this report: Maps Sussex Protected Species Register Sussex Bat Inventory Sussex Bird Inventory UK BAP Species Inventory Sussex Rare Species Inventory Sussex Invasive Alien Species Full Species List Environmental Survey Directory SNCI L61 - Waspbourne Wood; M08 - Costells, Henfield & Nashgill Woods; M10 - Scaynes Hill Common; M18 - Walstead Cemetery; M25 - Scrase Valley Local Nature Reserve; M49 - Wickham Woods. SSSI Chailey Common. Other Designations/Ownership Area of Outstanding Natural Beauty; Environmental Stewardship Agreement; Local Nature Reserve; Notable Road Verge; Woodland Trust Site. Habitats Ancient tree; Ancient woodland; Coastal and floodplain grazing marsh; Ghyll woodland; Traditional orchard. Important information regarding this report It must not be assumed that this report contains the definitive species information for the site concerned. The species data held by the Sussex Biodiversity Record Centre (SxBRC) is collated from the biological recording community in Sussex. However, there are many areas of Sussex where the records held are limited, either spatially or taxonomically. A desktop biodiversity report from the SxBRC will give the user a clear indication of what biological recording has taken place within the area of their enquiry.
    [Show full text]
  • Scottish Macro-Moth List, 2015
    Notes on the Scottish Macro-moth List, 2015 This list aims to include every species of macro-moth reliably recorded in Scotland, with an assessment of its Scottish status, as guidance for observers contributing to the National Moth Recording Scheme (NMRS). It updates and amends the previous lists of 2009, 2011, 2012 & 2014. The requirement for inclusion on this checklist is a minimum of one record that is beyond reasonable doubt. Plausible but unproven species are relegated to an appendix, awaiting confirmation or further records. Unlikely species and known errors are omitted altogether, even if published records exist. Note that inclusion in the Scottish Invertebrate Records Index (SIRI) does not imply credibility. At one time or another, virtually every macro-moth on the British list has been reported from Scotland. Many of these claims are almost certainly misidentifications or other errors, including name confusion. However, because the County Moth Recorder (CMR) has the final say, dubious Scottish records for some unlikely species appear in the NMRS dataset. A modern complication involves the unwitting transportation of moths inside the traps of visiting lepidopterists. Then on the first night of their stay they record a species never seen before or afterwards by the local observers. Various such instances are known or suspected, including three for my own vice-county of Banffshire. Surprising species found in visitors’ traps the first time they are used here should always be regarded with caution. Clerical slips – the wrong scientific name scribbled in a notebook – have long caused confusion. An even greater modern problem involves errors when computerising the data.
    [Show full text]