Research Article Biological Characteristics and Propagative Technologies of Rhodeus Sinensis

Total Page:16

File Type:pdf, Size:1020Kb

Research Article Biological Characteristics and Propagative Technologies of Rhodeus Sinensis Advance Journal of Food Science and Technology 7(9): 668-675, 2015 DOI:10.19026/ajfst.7.1625 ISSN: 2042-4868; e-ISSN: 2042-4876 © 2015 Maxwell Scientific Publication Corp. Submitted: May ‎09, ‎2014 Accepted: December‎ ‎18, ‎2014 Published: March 25, 2015 Research Article Biological Characteristics and Propagative Technologies of Rhodeus sinensis Quan Wang and Xiaojiang Chen Jiangsu Agri-animal Husbandry Vocational College, Taizhou City, 225300, Jiangsu Province, China Abstract: Aim of study on biological characteristics and propagative technologies of Rgodeous sinensis is of great significance to rationally utilizing its resource, protecting the species, improving the benefit of aquaculture. Research contents comprise biological characteristics, living habits, propagative habits, the source of its parent fish, rearing of parent fish and spawning via artificial estrus and incubation. It is discovered that the main point for propagating Rhodeus sinensis lies in identification of the parent fish of Rhodeus sinensis, appropriate proportion among males and females, employment of odinagogue, appropriate selection of categories and specifications of freshwater mussels. Keywords: Biological characteristics, freshwater mussel, propagative techniques, Rhedeus sinensis INTRODUCTION Dissolved Oxygen (DO) content is more than 6 mg/L. The Rhodeus sinensis with body mass of (1.13±0.32) g Rhodeus sinensis which is a kind of famous that belongs to natural population captured from protogenic aquarium fish in China belongs to the riverway of Taizhou City, LiXiahe Area of Jiangsu Rhodeus category, Acheilognathinae subfamily, province. The early temporary culture adopted natural Cyprinidae of Cypriniformes, it is a kind of widely food chironomidae larvae (red worm) and the distributed and tiny fish among respective river systems tubificidae, then gradually changed into basic mixed in China, especially along the Yangtze River system. feed, siphon faeces, food residue etc. The healthy This kind of fish is featured with beautiful colors and individuals shall be selected as the experimental fishes. graceful body contour, thus can be cultivated for ornamentation and has become a kind of well-known Morphology index measurement and fecundity protogenetic ornamental fish in China. With living determination: Adopt digital calliper to measure the conditions being improved continuously, more and morphometrics of Rhodeus sinensis and then analyzed more people are demanding for ornamental fishes, its feeding habits. Observe the batches of oviposition, people’s demand for Rhedeus sinensis is also steadily fecundity per batch and total fecundity according to one increasing, whereas, it is relatively difficult to meet female to one male paired. The batches of oviposition such demand by way of fishing from the wild, which was shortened to one time with every extension on the makes it imperative to cultivate Rhodeus sinensis ovipositor of female fishes, then examine and verify the through artificial breeding, therefore, propagative egg output, record for one time. According to the techniques have become the foremost task to be number of fish eggs and fry spitted by mussel or the researched and solved. number of eggs counted by dissecting the mussel, the This study summarized the research of the number of eggs per batch can be ascertained to reproductive biology and artificial breeding of Rhodeus calculate the total number of eggs. sinensis. It to be used as reference for the extensive group of bitterling breeding enthusiasts. The selectivity of mussel: Three kinds of mussels: Anodonta woodiana, Unio douglasiae and Cristaria MATERIALS AND METHODS plicata captured from the riverway in Xiahe Area of Jiangsu province be put into the aquarium at the same The collection and feeding of material fish: The time. After the completion of every batch of experiment was conducted in 1.0×0.6×0.5 m glass oviposition, inspect to ascertain whether exist egg in aquarium with no mud in tank bottom, still water under those three mussels, then record its number of eggs. normal temperature, regular water exchange to keep Further, to judge the selectivity of Rhodeus sinensis’s well quality, feeding water as Yangtze River water, pH egg on those three common mussels as well as other 7.2~7.6, hardness of water is about 120 mg/L and ones with different sizes. Corresponding Author: Xiaojiang Chen, Department of Aquatic Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou City, 225300, Jiangsu Province, China, Tel.:+86-0523-86356598 This work is licensed under a Creative Commons Attribution 4.0 International License (URL: http://creativecommons.org/licenses/by/4.0/). 668 Adv. J. Food Sci. Technol., 7(9): 668-675, 2015 Reproductive behavior observation: To treat the Table 1: Analysis of feeding habits of Rhodeus sinensis experimental fish in the following methods for Food category Frequency for food occurrence Qauatic higher plant debris +++ observation at the coming of mating season: Oscillatoria sp. ++ Crustacean + Microcystis sp. + • One female, one male, put into mussel Zygnema sp. + • One female, 2~6 male, put into mussel Spirogyra sp. +++ • Two female, two male, do not put into mussel Synedra sp. + Amphora sp. ++ • Two female, no male, put into mussel Scenedesmus sp. +++ • Two females, no male, do not put into mussel Tribonema sp. +++ Cosmarium sp. ++ Cladophora sp. ++ The observation on swimming time of fry from Visual inspect the congesting degree of its intestines and stomach, mussel: The mussel with Rhodeus sinensis egg was fed classification standard with 4 grades will be adopted for singly, record the oviposition data and the mussel’s discrimination of satiation degree; Add water in the contents contained within the digestive tracts and made them into smears; Put swimming time, then observe the growth characteristics such smears under microscope in order to discriminate the food of fry at the time of swimming. The experimental category; Occurrence frequency should also be recorded observation lasted from October to the following October. Record the various physicochemical indexes comparing with males, ovipositor can be observed to be and data every day during the experimental period. reaching out of its abdomen. RESULTS AND DISCUSSION Living habits: Rhodeus sinensis is broadly distributed in a lot of water areas, such as Amur River, Yellow Biological characteristics of Rhodeus sinensis: River, Yangtz River and the Pearl River. This kind of Primary characteristics: Rhodeus sinensis is featured fish inhabits at the underlayer of the shallow water area with compressiform, tiny head, with mouth terminal, of lakes, reservoir and rivers, they prefer swarm swimming within water body with relatively slow without barbel, incomplete lateral line, there are 3-4 fluidity and lush aquatic plants. Rhodeus sinensis is a scales in its front side, it has one row of pharyngeal kind of omnivore fish, mainly living on algae and teeth, 5/5; the teeth surface is smooth, there are dimples organic detritus (Table 1), sometimes on aquatic plants on the surface of the pharyngeal teeth; its bladder has and higher plants (Zhang et al., 2010, 2001). This kind two compartments, the rear one is relatively larger than of fish usually gather together into a group within their the other one, 9-11 fin rays are distributed along the alevin stage, most of them live a kind of swimming life entire dorsal fin area, 10-12 fin rays are distributed by resting at the edges of aquatic plants near the river along the entire anal fin area, zigzagging number of its banks or at the upper water area without aquatic plant intestines is around 2.2~2.8, number for its gill raker is near the river banks; at the end of the alevin stage, those around 6-8; length of the digestive tract is about fishes would perform various kinds of swimming along 1.0~1.58 times of its body length. Body size of this fish the aquatic plant area, plain swimming, slanting is usually small, the largest body size is usually not swimming, rotating swimming and sideway jumping more than 8 cm, such silver blue longitudinal band swimming can be witnessed, which are beneficial for along its body center extends as far as the rear side of escaping from enemies and acting; juvenile fishes and the dorsal fin origin. adult fishes prefer to live at the underlayer of the water Body color of male Rhodeus sinensis with in the area. Water area with temperature limited within mating season is relatively more bright than usual, the 4~35°C, dissolving oxygen capacity limited in 4.0~8.3 red halo around the eyes and the red spots around the mg/L and pH value limited within 6.8~7.5 is suitable tail are darker, silver blue dots appear around the rear for habitation of Rhodeus sinensis. upper side of its spiracle, those longitudinal strips along the tail fin center present orange red, besides, both the Breeding habits: The Rhodeus sinensis reaches sexual front outer fringe of the dorsal fin and the anal fin maturity when they are growing to 1 year old, most of present red, no fin rays are generated around the pelvic the male and female Rhodeus sinensis with sexual fin area, the entire fin shows oyster white color, black maturity are 3-5 cm in body length and weigh 1.4-2.1 g. color is dotted at the outer edge of the anal fin, beard Breeding period is limited within February to October spots can be observed on the rostral side and with water temperature around 12.6~22.3°C, starting supraorbital area. Whereas, female Rhodeus sinensis is and ending of their spawning are probably caused by featured by tiny body, bumped belly, black dots can be rising water temperature in Spring time and shortening observed on the dorsal fin of a female Rhodeus sinensis of photoperiod in Autumn time (Asahina and Hanyu, with sexual maturity, body color of females is lighter 1983). Spawning high season is usually in April to June 669 Adv.
Recommended publications
  • Teleostei: Cyprinidae: Acheilognathinae) from China
    Zootaxa 3790 (1): 165–176 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3790.1.7 http://zoobank.org/urn:lsid:zoobank.org:pub:BD573A51-6656-4E86-87C2-2411443C38E5 Rhodeus albomarginatus, a new bitterling (Teleostei: Cyprinidae: Acheilognathinae) from China FAN LI1,3 & RYOICHI ARAI2 1Institute of Biodiversity Science, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Fudan University, Shanghai 200433, China. E-mail: [email protected] 2Department of Zoology, University Museum, University of Tokyo, 7–3–1 Hongo, Bunkyo-ku, Tokyo. 113-0033, Japan. E-mail: [email protected] 3Corresponding author Abstract Rhodeus albomarginatus, new species, is described from the Lvjiang River, a tributary flowing into Poyang Lake of Yang- tze River basin, in Anhui Province, China. It is distinguished from all congeneric species by unique combination of char- acters: branched dorsal-fin rays 10; branched anal-fin rays 10–11; longest simple rays of dorsal and anal fins strong and stiff, distally segmented; pelvic fin rays i 6; longitudinal scale series 34–36; transverse scale series 11; pored scales 4–7; vertebrae 33–34; colour pattern of adult males (iris black, belly reddish-orange, central part of caudal fin red, dorsal and anal fins of males edged with white margin). Key words: Cyprinidae, Rhodeus albomarginatus, new species, Yangtze River, China Introduction Bitterling belong to the subfamily Acheilognathinae in Cyprinidae and include three genera, Acheilognathus, Rhodeus and Tanakia. The genus Rhodeus can be distinguished from the other two genera by having an incomplete lateral line, no barbels, and wing-like yolk sac projections in larvae (Arai & Akai, 1988).
    [Show full text]
  • An Assessment of Exotic Species in the Tonle Sap Biosphere Reserve
    AN ASSESSMENT OF EXOTIC SPECIES IN THE TONLE SAP BIOSPHERE RESERVE AND ASSOCIATED THREATS TO BIODIVERSITY A RESOURCE DOCUMENT FOR THE MANAGEMENT OF INVASIVE ALIEN SPECIES December 2006 Robert van Zalinge (compiler) This publication is a technical output of the UNDP/GEF-funded Tonle Sap Conservation Project Executive Summary Introduction This report is mainly a literature review. It attempts to put together all the available information from recent biological surveys, and environmental and resource use studies in the Tonle Sap Biosphere Reserve (TSBR) in order to assess the status of exotic species and report any information on their abundance, distribution and impact. For those exotic species found in the TSBR, it is examined whether they can be termed as being an invasive alien species (IAS). IAS are exotic species that pose a threat to native ecosystems, economies and/or human health. It is widely believed that IAS are the second most significant threat to biodiversity worldwide, following habitat destruction. In recognition of the threat posed by IAS the Convention on Biological Diversity puts forward the following strategy to all parties in Article 8h: “each contracting party shall as far as possible and as appropriate: prevent the introduction of, control, or eradicate those alien species which threaten ecosystems, habitats or species”. The National Assembly of Cambodia ratified the Convention on Biological Diversity in 1995. After reviewing the status of exotic species in the Tonle Sap from the literature, as well as the results from a survey based on questionnaires distributed among local communities, the main issues are discussed, possible strategies to combat the spread of alien species that are potentially invasive are examined, and recommendations are made to facilitate the implementation of a strategy towards reducing the impact of these species on the TSBR ecosystem.
    [Show full text]
  • Molecular Phylogeography of the Tench
    Univerzita Karlova v Praze Přírodovědecká fakulta Katedra zoologie Molekulární fylogeografie lína obecného Tinca tinca (Linnaeus, 1758) Zdeněk Lajbner Disertační práce Školitel: RNDr. Petr Kotlík, Ph.D. ÚŽFG AV ČR, v.v.i., Liběchov Praha 2010 Prohlašuji, že jsem předloženou disertační práci vypracoval samostatně s použitím citované literatury. Dílčí publikace byly zkompletovány společně se jmenovanými spoluautory. Prohlašuji, že jsem nepředložil tuto práci ani žádnou její část k získání jiného nebo stejného akademického titulu. V Praze, 21. prosince 2010 …………..….................... Zdeněk Lajbner Poděkování Na prvním místě děkuji RNDr. Petru Kotlíkovi, Ph.D., z Ústavu živočišné fyziologie a genetiky (ÚŽFG) AV ČR, v.v.i., za trpělivost, kterou se mnou měl již od dob mého magisterského studia a s níž se zhostil i vedení mé práce disertační. Rovněž mu děkuji za všestrannou podporu, jíž se mi z jeho strany dostávalo. Děkuji Prof. Ing. Petru Rábovi, DrSc. a všem kolegům z Laboratoře genetiky ryb ÚŽFG AV ČR, v.v.i., v Liběchově, za vytvoření příjemného pracovního prostředí, trvalý přísun inspirace a cenné rady. V neposlední řadě děkuji spoluautorům publikací i všem dalším lidem, kteří mi během tvorby disertační práce jakkoliv pomohli a to především při shromažďování vzorků línů z celého světa. Velmi rád za trpělivost, s níž tolerovala mé zaneprázdnění, děkuji i mé rodině. Tato práce vznikla za finanční podpory Ministerstva školství mládeže a tělovýchovy České republiky - projekt číslo LC06073 a výzkumných záměrů přidělených Ústavu živočišné fyziologie a genetiky Akademie věd České republiky - projekt číslo AV0Z50450515, Přírodovědecké fakultě Univerzity Karlovy v Praze - projekt číslo 21620828, Fakultě rybářství a ochrany vod Jihočeské Univerzity v Českých Budějovicích - projekt číslo 6007665809 a Interní grantové agentury ÚŽFG AV ČR v.v.i.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]
  • 5Th Indo-Pacific Fish Conference
    )tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope.
    [Show full text]
  • APPENDIX 1 Classified List of Fishes Mentioned in the Text, with Scientific and Common Names
    APPENDIX 1 Classified list of fishes mentioned in the text, with scientific and common names. ___________________________________________________________ Scientific names and classification are from Nelson (1994). Families are listed in the same order as in Nelson (1994), with species names following in alphabetical order. The common names of British fishes mostly follow Wheeler (1978). Common names of foreign fishes are taken from Froese & Pauly (2002). Species in square brackets are referred to in the text but are not found in British waters. Fishes restricted to fresh water are shown in bold type. Fishes ranging from fresh water through brackish water to the sea are underlined; this category includes diadromous fishes that regularly migrate between marine and freshwater environments, spawning either in the sea (catadromous fishes) or in fresh water (anadromous fishes). Not indicated are marine or freshwater fishes that occasionally venture into brackish water. Superclass Agnatha (jawless fishes) Class Myxini (hagfishes)1 Order Myxiniformes Family Myxinidae Myxine glutinosa, hagfish Class Cephalaspidomorphi (lampreys)1 Order Petromyzontiformes Family Petromyzontidae [Ichthyomyzon bdellium, Ohio lamprey] Lampetra fluviatilis, lampern, river lamprey Lampetra planeri, brook lamprey [Lampetra tridentata, Pacific lamprey] Lethenteron camtschaticum, Arctic lamprey] [Lethenteron zanandreai, Po brook lamprey] Petromyzon marinus, lamprey Superclass Gnathostomata (fishes with jaws) Grade Chondrichthiomorphi Class Chondrichthyes (cartilaginous
    [Show full text]
  • And a Description of a New Species, Rhodeus Colchicus, from West Transcaucasia
    ISSN 0206-0477. NEW CONTRIBUTIONS TO FRESHWATER FISH RESEARCH ST. PETERSBURG, 2001 (PROCEEDINGS OF THE ZOOLOGICAL INSTITUTE, VOL. 287) РОССИЙСКАЯ АКАДЕМИЯ НАУК ТРУДЫ ЗООЛОГИЧЕСКОГО ИНСТИТУТА САНКТ-ПЕТЕРБУРГ, 2001, ТОМ 287 SOME NEW DATA TO MORPHOLOGY OF RHODEUS SERICEUS (CYPRINIDAE: ACHEILOGNATHINAE) AND A DESCRIPTION OF A NEW SPECIES, RHODEUS COLCHICUS, FROM WEST TRANSCAUCASIA N.G. Bogutskaya*, A. M. Komlev** *Zoological Institute, Russian Academy of Sciences Universitetskaya nab., 1, St. Petersburg, 199034, Russia **St. Petersburg State University Universitetskaya nab., 7, St. Petersburg, 199034, Russia Rhodeus sericeus is revised with a use of new characters – cephalic sensory canal pattern, configuration of infraorbitals, and vertebral structure along with some traditional ones. No characters were found which clearly confirm the specific status of R. sericeus amarus. Rhodeus colchicus, new species, is described from the rivers in West Transcaucasia, Georgia. It is distinguished from congeners by a suite of characters which includes large scales (34 to 37, commonly 35, in the lateral row), a low number of vertebrae (33 to 36, commonly 35, total, and 16 to 18, commonly 17, in the abdominal region), a deep shortened 2nd infraorbital, a broad 4th infraorbital and a well developed 5th one with a widened lamellate portion. Introduction The Amur common bitterling was described as Cyprinus sericeus by Pallas (1776) from River Onon (Upper Amur system) and the European bitterling, Cyprinus amarus, some years later by Bloch (1782) from River Elbe. They were considered to be close or conspecific by many authors, for example, Dybowski (1869, 1877) and Warpachowski (1887). The study by Svetovidov and Eremeyev (1935) showed that European and Asian bitterlings are slightly different in some characters and proposed to give them a rank of subspecies of one and the same species.
    [Show full text]
  • Amur Fish: Wealth and Crisis
    Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ......................................................................................................................
    [Show full text]
  • Genome Size Covaries More Positively with Propagule Size Than Adult Size: New Insights Into an Old Problem
    biology Article Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem Douglas S. Glazier Department of Biology, Juniata College, Huntingdon, PA 16652, USA; [email protected] Simple Summary: The amount of hereditary information (DNA) contained in the cell nuclei of larger or more complex organisms is often no greater than that of smaller or simpler organisms. Why this is so is an evolutionary mystery. Here, I show that the amount of DNA per cell nucleus (‘genome size’) relates more positively to egg size than body size in crustaceans (including shrimp, lobsters and crabs). Genome size also seems to relate more to the size of eggs or other gametes and reproductive propagules (e.g., sperm, spores, pollen and seeds) than to adult size in other animals and plants. I explain these patterns as being the result of genome size relating more to cell size (including that of single-celled eggs) than the number of cells in a body. Since most organisms begin life as single cells or propagules with relatively few cells, propagule size may importantly affect or be affected by genome size regardless of body size. Relationships between genome size and body size should thus become weaker as body size (and the amount of cell multiplication required during development) increases, as observed in crustaceans and other kinds of organisms. Abstract: The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei (‘genome size’). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has Citation: Glazier, D.S.
    [Show full text]
  • Aphanomyces Invadans R NUMBER: R6979 PROGRAMME: Aquaculture Research Programme (ARP) PROGRAMME MANAGER (INSTITUTION): Prof J.F
    DFID Applied studies on epizootic ulcerative syndrome Final Report February 2001 Project R6979 of the Aquaculture Research Programme of the Department for International Development of the United Kingdom This document is an output from a project funded by the UK Department for International Development (DFID) for the benefit of developing countries. The views expressed are not necessarily those of DFID. Hard copies of this report can be obtained from: ARP Manager Institute of Aquaculture University of Stirling Stirling FK9 4LA Scotland, UK Institute of Aquaculture University of Stirling, Scotland Aquatic Animal Health Research Institute Department of Fisheries, Thailand PROJECT COMPLETION SUMMARY SHEET Sheet Completed 28 February 2001 TITLE OF PROJECT: Applied studies on EUS - The ecology, immunogenicity and treatment of Aphanomyces invadans R NUMBER: R6979 PROGRAMME: Aquaculture Research Programme (ARP) PROGRAMME MANAGER (INSTITUTION): Prof J.F. Muir PROGRAMME PURPOSE: Productive benefits of aquatic resources for poor people generated through improved knowledge of aquaculture processes and their management PRODUCTION SYSTEM: Land/Water Interface BENEFICIARIES: Asian freshwater fish farmers TARGET INSTITUTIONS: AAHRI, FRI, BAU, CARE-LIFE, CIFA, BFAR, FDD, FRTI, RIA1 GEOGRAPHIC FOCUS: Southeast and South Asia Planned Actual START DATE: 1 July 1997 1 July 1997 FINISH DATE: 31 December 2000 28 February 2001 TOTAL COST: £250,613 £248,613 1. Project purpose: To generate the information needed for the formulation of strategies to contain EUS; and to develop and introduce improved prophylactic and therapeutic treatments to provide fish farmers with a means of reducing losses due to EUS. 2. Outputs: Some modifications were made to the original logical framework in January 1999.
    [Show full text]
  • The Role of Local Adaptation in Shaping Fish‐Mussel Coevolution
    Accepted: 17 August 2017 DOI: 10.1111/fwb.13026 ORIGINAL ARTICLE The role of local adaptation in shaping fish-mussel coevolution Karel Douda1 | Huan-Zhang Liu2 | Dan Yu2 | Romain Rouchet3 | Fei Liu2 | Qiong-Ying Tang2 | Caroline Methling3,4 | Carl Smith3,5,6 | Martin Reichard3 1Department of Zoology and Fisheries, Czech University of Life Sciences Prague, Abstract Prague, Czech Republic 1. The survival of affiliate (dependent) species in a changing environment is deter- 2The Key Lab of Aquatic Biodiversity and mined by the interactions between the affiliate species and their available hosts. Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, However, the patterns of spatial and temporal changes in host compatibility are China often unknown despite host shifts having direct impact on the persistence of 3Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, local populations. Bivalves of the order Unionida (freshwater mussels) are a func- Czech Republic tionally important but declining group of affiliate species, which are dependent 4 Technical University of Denmark, on freshwater fish to host their parasitic larvae. The role of local adaptations and Copenhagen, Denmark 5School of Biology and Bell-Pettigrew host fish resistance in shaping freshwater mussel host relationships remains Museum of Natural History, University of poorly understood. St Andrews, St Andrews, UK 2. We used an invasive East Asian unionid bivalve, Sinanodonta woodiana, and its 6Department of Ecology and Vertebrate Zoology, University of Łodz, Łodz, Poland potential host fishes to study the mechanisms shaping fish-mussel coevolution using a combination of laboratory cross-exposure methods and field-collected Correspondence Karel Douda, Department of Zoology and data.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]