Genome Size Covaries More Positively with Propagule Size Than Adult Size: New Insights Into an Old Problem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
Genome analysis of the smallest free-living eukaryote SEE COMMENTARY Ostreococcus tauri unveils many unique features Evelyne Derellea,b, Conchita Ferrazb,c, Stephane Rombautsb,d, Pierre Rouze´ b,e, Alexandra Z. Wordenf, Steven Robbensd, Fre´ de´ ric Partenskyg, Sven Degroeved,h, Sophie Echeynie´ c, Richard Cookei, Yvan Saeysd, Jan Wuytsd, Kamel Jabbarij, Chris Bowlerk, Olivier Panaudi, BenoıˆtPie´ gui, Steven G. Ballk, Jean-Philippe Ralk, Franc¸ois-Yves Bougeta, Gwenael Piganeaua, Bernard De Baetsh, Andre´ Picarda,l, Michel Delsenyi, Jacques Demaillec, Yves Van de Peerd,m, and Herve´ Moreaua,m aObservatoire Oce´anologique, Laboratoire Arago, Unite´Mixte de Recherche 7628, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP44, 66651 Banyuls sur Mer Cedex, France; cInstitut de Ge´ne´ tique Humaine, Unite´Propre de Recherche 1142, Centre National de la Recherche Scientifique, 141 Rue de Cardonille, 34396 Montpellier Cedex 5, France; dDepartment of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology and eLaboratoire Associe´de l’Institut National de la Recherche Agronomique (France), Ghent University, Technologiepark 927, 9052 Ghent, Belgium; fRosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149; gStation Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique–Universite´Pierre et Marie Curie-Paris 6, BP74, 29682 Roscoff Cedex, France; hDepartment of Applied Mathematics, Biometrics and -
Evolution of Oviductal Gestation in Amphibians MARVALEE H
THE JOURNAL OF EXPERIMENTAL ZOOLOGY 266394-413 (1993) Evolution of Oviductal Gestation in Amphibians MARVALEE H. WAKE Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,Berkeley, California 94720 ABSTRACT Oviductal retention of developing embryos, with provision for maternal nutrition after yolk is exhausted (viviparity) and maintenance through metamorphosis, has evolved indepen- dently in each of the three living orders of amphibians, the Anura (frogs and toads), the Urodela (salamanders and newts), and the Gymnophiona (caecilians). In anurans and urodeles obligate vivi- parity is very rare (less than 1%of species); a few additional species retain the developing young, but nutrition is yolk-dependent (ovoviviparity) and, at least in salamanders, the young may be born be- fore metamorphosis is complete. However, in caecilians probably the majority of the approximately 170 species are viviparous, and none are ovoviviparous. All of the amphibians that retain their young oviductally practice internal fertilization; the mechanism is cloaca1 apposition in frogs, spermato- phore reception in salamanders, and intromission in caecilians. Internal fertilization is a necessary but not sufficient exaptation (sensu Gould and Vrba: Paleobiology 8:4-15, ’82) for viviparity. The sala- manders and all but one of the frogs that are oviductal developers live at high altitudes and are subject to rigorous climatic variables; hence, it has been suggested that cold might be a “selection pressure” for the evolution of egg retention. However, one frog and all the live-bearing caecilians are tropical low to middle elevation inhabitants, so factors other than cold are implicated in the evolu- tion of live-bearing. -
Environmental Weeds of Coastal Plains and Heathy Forests Bioregions of Victoria Heading in Band
Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band b Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Heading in band Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria Contents Introduction 1 Purpose of the list 1 Limitations 1 Relationship to statutory lists 1 Composition of the list and assessment of taxa 2 Categories of environmental weeds 5 Arrangement of the list 5 Column 1: Botanical Name 5 Column 2: Common Name 5 Column 3: Ranking Score 5 Column 4: Listed in the CALP Act 1994 5 Column 5: Victorian Alert Weed 5 Column 6: National Alert Weed 5 Column 7: Weed of National Significance 5 Statistics 5 Further information & feedback 6 Your involvement 6 Links 6 Weed identification texts 6 Citation 6 Acknowledgments 6 Bibliography 6 Census reference 6 Appendix 1 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed alphabetically within risk categories. 7 Appendix 2 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by botanical name. 19 Appendix 3 Environmental weeds of coastal plains and heathy forests bioregions of Victoria listed by common name. 31 Advisory list of environmental weeds of coastal plains and heathy forests bioregions of Victoria i Published by the Victorian Government Department of Sustainability and Environment Melbourne, March2008 © The State of Victoria Department of Sustainability and Environment 2009 This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968. -
Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila
AGRICULTURAL RESEARCH FOUNDATION FINAL REPORT FUNDING CYCLE 2015 – 2017 TITLE: Identifying Lethal Temperatures Targeting Immature Life Stage Control of Spotted Wing Drosophila RESEARCH LEADER: Vaughn Walton COOPERATORS: Daniel Dalton, Riki York SUMMARY: Survival of spotted wing drosophila (D. suzukii, SWD) larvae to adulthood was evaluated after exposure to temperatures ranging 29-49°C in a laboratory thermal gradient bench for 60 minutes. Vials filled with pre-made fly diet up to approximately 1.5 cm from the bottom were used as oviposition media inside the gradient wells. Forty-three vials were prepared each day for 4 consecutive days. Five adult females were placed in each of 36 vials for 24 hours for oviposition to occur, seven vials were held as controls without flies. Upon removal, adult flies were placed in ethanol. Four ages were tested between 1-4-day old egg/larvae (i.e. 1 day old, 2 days old, 3 days old, and four days old). Sample vials were examined for oviposition success. Immature flies exposed temperatures of 32-35°C had the highest survival to adulthood. Above 38°C survival to adulthood with no survival at 41°C and 49°C, and a few surviving to adulthood under 45°C. An additional trial was conducted to evaluate the potential for thermal conditioning to improve larval survival at higher temperatures. For this study, four-day-old larvae were subject to 30, 60, and 90 minutes at 35°C, then allowed to cool to room temperature (22°C) for 60 minutes prior to placement in the thermal bench. These trials were used to determine how heat may reduce successful development to adulthood, leading to better management practices in the field. -
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin To cite this version: Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin. Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes. Current Biology - CB, Elsevier, 2020, 30 (19), pp.R1083- R1085. 10.1016/j.cub.2020.07.093. hal-03066151 HAL Id: hal-03066151 https://hal.archives-ouvertes.fr/hal-03066151 Submitted on 15 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DISPATCH Genome Evolution: Mutation is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais1, Bérénice Batut2, and Vincent Daubin1 1Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F- 69622 Villeurbanne, France 2Albert-Ludwigs-University Freiburg, Department of Computer Science, 79110 Freiburg, Germany Summary Despite intense research on genome architecture since the 2000’s, genome-size evolution in prokaryotes has remained puzzling. Using a phylogenetic approach, a new study found that increased mutation rate is associated with gene loss and reduced genome size in prokaryotes. In 2003 [1] and later in 2007 in his book “The Origins of Genome Architecture” [2], Lynch developed his influential theory that a genome’s complexity, represented by its size, is primarily the result of genetic drift. -
Evolution of Genome Size
Evolution of Genome Advanced article Article Contents Size • Introduction • How Much Variation Is There? Stephen I Wright, Department of Ecology and Evolutionary Biology, University • What Types of DNA Drive Genome Size of Toronto, Toronto, Ontario, Canada Variation? • Neutral Model • Nearly Neutral Model • Adaptive Hypotheses • Transposable Element Evolution • Conclusion • Acknowledgements Online posting date: 16th January 2017 The size of the genome represents one of the most in the last century. While considerable progress has been made strikingly variable yet poorly understood traits in the characterisation of the extent of genome size variation, in eukaryotic organisms. Genomic comparisons the dominant evolutionary processes driving genome size evolu- suggest that most properties of genomes tend tion remain subject to considerable debate. Large-scale genome sequencing is enabling new insights into both the proximate to increase with genome size, but the fraction causes and evolutionary forces governing genome size differ- of the genome that comprises transposable ele- ences. ments (TEs) and other repetitive elements tends to increase disproportionately. Neutral, nearly neutral and adaptive models for the evolution of How Much Variation Is There? genome size have been proposed, but strong evi- dence for the general importance of any of these Because determining the amount of DNA (deoxyribonucleic models remains lacking, and improved under- acid) in a cell has been much more straightforward and cheaper standing of factors driving the -
Molecular Phylogeny of Tribolium (Danthonioideae: Poaceae) and Its Taxonomic Implications
BOLUS LIBRARY C24 0007 9273 MOLECULAR PHYLOGENY OF TRIBOLIUM (DANTHONIOIDEAE: POACEAE) AND ITS TAXONOMIC IMPLICATIONS REFILOE NTSOHI NTSREF002 SYSTEMATICS HONOURS PROJECT, 2003 SUPERVISOR: TONY VERBOOM University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town ABSTRACT Molecular sequence data from two noncoding regions of D A (ITS AND TRNL-F) Were used to produce a phylogeny for the genus Tribolium and its African and Australasian allies. Topological comparisons of the combined molecular data with th e appended existing morphological tree were made. A significant incongruence was I revealed. Molecular data indicate that Tribolium is paraphyletic. The formally defined sections: Uniolae, Acutiflorae and Tribolium have been retrieved by the molecular data. The analysis retrieved Karroochloa as polyphyletic. Monophyly of Schismus is strongly supported. The Australasian species form a monophyletic clade. Data support early divergence of the Merxmuellera species and Pseudopentameris macrantha. I I I I 2 INTRODUCTION Tribolium is a genus of annual and perennial temperate, C3 grasses, currently comprising a total of ten species (Linder and Davidse, 1997). The genus is restricted to southern Africa, where the species are endemic to the winter rainfall region of the western Cape, which includes the Cape Floristic and Namaqualand regions. Here it forms part of the fynbos and succulent Karoo floras, with marginal populations of the most widespread species occurring in the neighbouring biomes. -
Molecular Phylogeography of the Tench
Univerzita Karlova v Praze Přírodovědecká fakulta Katedra zoologie Molekulární fylogeografie lína obecného Tinca tinca (Linnaeus, 1758) Zdeněk Lajbner Disertační práce Školitel: RNDr. Petr Kotlík, Ph.D. ÚŽFG AV ČR, v.v.i., Liběchov Praha 2010 Prohlašuji, že jsem předloženou disertační práci vypracoval samostatně s použitím citované literatury. Dílčí publikace byly zkompletovány společně se jmenovanými spoluautory. Prohlašuji, že jsem nepředložil tuto práci ani žádnou její část k získání jiného nebo stejného akademického titulu. V Praze, 21. prosince 2010 …………..….................... Zdeněk Lajbner Poděkování Na prvním místě děkuji RNDr. Petru Kotlíkovi, Ph.D., z Ústavu živočišné fyziologie a genetiky (ÚŽFG) AV ČR, v.v.i., za trpělivost, kterou se mnou měl již od dob mého magisterského studia a s níž se zhostil i vedení mé práce disertační. Rovněž mu děkuji za všestrannou podporu, jíž se mi z jeho strany dostávalo. Děkuji Prof. Ing. Petru Rábovi, DrSc. a všem kolegům z Laboratoře genetiky ryb ÚŽFG AV ČR, v.v.i., v Liběchově, za vytvoření příjemného pracovního prostředí, trvalý přísun inspirace a cenné rady. V neposlední řadě děkuji spoluautorům publikací i všem dalším lidem, kteří mi během tvorby disertační práce jakkoliv pomohli a to především při shromažďování vzorků línů z celého světa. Velmi rád za trpělivost, s níž tolerovala mé zaneprázdnění, děkuji i mé rodině. Tato práce vznikla za finanční podpory Ministerstva školství mládeže a tělovýchovy České republiky - projekt číslo LC06073 a výzkumných záměrů přidělených Ústavu živočišné fyziologie a genetiky Akademie věd České republiky - projekt číslo AV0Z50450515, Přírodovědecké fakultě Univerzity Karlovy v Praze - projekt číslo 21620828, Fakultě rybářství a ochrany vod Jihočeské Univerzity v Českých Budějovicích - projekt číslo 6007665809 a Interní grantové agentury ÚŽFG AV ČR v.v.i. -
Best Practices for Whole Genome Sequencing Using the Sequel System
Best Practices for Whole Genome Sequencing Using the Sequel System Justin Blethrow, Nick Sisneros, Shreyasee Chakraborty, Sarah Kingan, Richard Hall, Joan Wilson, Christine Lambert, Kevin Eng, Emily Hatas and Primo Baybayan PacBio, 1305 O’Brien Dr., Menlo Park, CA 94025 Library Construction Abstract Recommendations Data Analysis Plant and animal whole genome sequencing has proven to Recommended Shearing Devices for Large-insert Fragments Hierarchical Genome Assembly Process (HGAP) and Polishing be challenging, particularly due to genome size, high For shearing DNA, PacBio recommends either: 1) needle shearing with a 26 G needle, which density of repetitive elements and heterozygosity. The allows for flexibility in number of shearing pulses with the needle or 2) the Megaruptor, a simple, Sequel System delivers long reads, high consensus automated, and highly reproducible system to fragment DNA up to 75 kb. accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Megaruptor® DNA Shearing System Template Prep Kit reduces the time (~3 hours) and DNA Demonstration of Needle Shearing input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. 1 2 3 4 5 Here, we recommend the best practices for whole genome HGAP1 utilizes all PacBio data using the longest reads for contiguity and all reads to sequencing and de novo assembly of complex plant and generate high-quality de novo assemblies with high consensus accuracy (>QV50). -
5Th Indo-Pacific Fish Conference
)tn Judo - Pacifi~ Fish Conference oun a - e II denia ( vernb ~ 3 - t 1997 A ST ACTS Organized by Under the aegis of L'Institut français Société de recherche scientifique Française pour le développement d'Ichtyologie en coopération ' FI Fish Conference Nouméa - New Caledonia November 3 - 8 th, 1997 ABSTRACTS LATE ARRIVAL ZOOLOGICAL CATALOG OF AUSTRALIAN FISHES HOESE D.F., PAXTON J. & G. ALLEN Australian Museum, Sydney, Australia Currently over 4000 species of fishes are known from Australia. An analysis ofdistribution patterns of 3800 species is presented. Over 20% of the species are endemic to Australia, with endemic species occuiring primarily in southern Australia. There is also a small component of the fauna which is found only in the southwestern Pacific (New Caledonia, Lord Howe Island, Norfolk Island and New Zealand). The majority of the other species are widely distributed in the western Pacific Ocean. AGE AND GROWTH OF TROPICAL TUNAS FROM THE WESTERN CENTRAL PACIFIC OCEAN, AS INDICATED BY DAILY GROWm INCREMENTS AND TAGGING DATA. LEROY B. South Pacific Commission, Nouméa, New Caledonia The Oceanic Fisheries Programme of the South Pacific Commission is currently pursuing a research project on age and growth of two tropical tuna species, yellowfm tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). The daily periodicity of microincrements forrned with the sagittal otoliths of these two spceies has been validated by oxytetracycline marking in previous studies. These validation studies have come from fishes within three regions of the Pacific (eastem, central and western tropical Pacific). Otolith microincrements are counted along transverse section with a light microscope. -
The Reproductive Biology of Pempheris Schwenkii (Pempheridae)
Zoological Studies 51(7): 1086-1093 (2012) The Reproductive Biology of Pempheris schwenkii (Pempheridae) on Okinawa Island, Southwestern Japan Keita Koeda1,*, Taiki Ishihara1, and Katsunori Tachihara2 1Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan. E-mail:[email protected] (Accepted May 24, 2012) Keita Koeda, Taiki Ishihara, and Katsunori Tachihara (2012) The reproductive biology of Pempheris schwenkii (Pempheridae) on Okinawa Island, southwestern Japan. Zoological Studies 51(7): 1086-1093. The reproductive biology of Pempheris schwenkii, one of the most common nocturnal fishes in Okinawan waters, was studied using a total of 1834 specimens (3.1-125.9 mm standard length, SL) collected around Okinawa I. The spawning season was estimated to occur from Jan. to June, with a peak from Feb. to May, based on monthly changes in the gonadosomatic index and histological observations of the ovaries. The relationship between the SL and the appearance of mature females, and the monthly growth of the 0+ group suggested that maturity occurred at ca. 70 mm SL, corresponding to 1 yr after hatching. Spawning was not related to the lunar cycle. The batch fecundity of P. schwenkii was calculated as ca. 700-4100 eggs. Pempheris schwenkii appeared to spawn at night based on diurnal changes in the frequency of females exhibiting hydrated ovaries and postovulatory follicles. Such nighttime spawning seems to reduce the risk of predation of adults and eggs, which may be an adaptive characteristic of nocturnal fishes. -
Decoding Non-Coding DNA: Trash Or Treasure?
GENERAL ARTICLE Decoding Non-Coding DNA: Trash or Treasure? Namrata Iyer Non-coding DNA, once thought of as ‘junk’, represents a very large portion of an organism’s genome. However, recent research has brought to light many functional elements present within non-coding DNA sequences and unravelled a fascinat- ing array of functions performed by these elements. These findings have highlighted the nature of the evolutionary forces that led to the accumulation and retention of non-coding Namrata Iyer is a PhD DNA. In this article, the various elements present within non- student in the Department of Microbiology and Cell coding DNA, their functional relevance to the cell and the Biology, Indian Institute of changing perspective of the scientific community towards this Science, Bangalore. Her so-called ‘junk’ DNA have been described. research interest is the molecular basis of host– Since the dawn of time, man has always been plagued by the pathogen interactions in question of the origin of life. What are the forces that govern the human diseases. course of evolution? What are the elements that separate man from other forms of life? The discovery of DNA (deoxyribo- nucleic acid) as the genetic material in 1944 opened up new avenues to answer these questions. Surprisingly, the language of DNA comprises of only 4 letters, i.e., A,T,G,C which when read in groups of three (triplets) encode the information for the synthe- sis of proteins (by a process known as translation) which are the work-horses of a cell. Before translation can begin, the informa- tion on DNA is first copied into an intermediate known as mRNA (by a process known as transcription).