Genome Analysis of the Smallest Free-Living Eukaryote Ostreococcus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphology, Genome Plasticity, and Phylogeny in the Genus
Protist, Vol. 164, 643–659, xx 2013 http://www.elsevier.de/protis Published online date xxx ORIGINAL PAPER Morphology, Genome Plasticity, and Phylogeny in the Genus Ostreococcus Reveal a Cryptic Species, O. mediterraneus sp. nov. (Mamiellales, Mamiellophyceae) a,b c d a,b Lucie Subirana , Bérangère Péquin , Stéphanie Michely , Marie-Line Escande , a,b,2 a,b e a,b Julie Meilland , Evelyne Derelle , Birger Marin , Gwenaël Piganeau , a,b a,b a,b,1 Yves Desdevises , Hervé Moreau , and Nigel H. Grimsley a CNRS, UMR7232 Laboratoire de Biologie Intégrative des Organisms Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France b UPMC Univ Paris 06, Observatoire Océanologique, Banyuls-sur-Mer, France c Québec-Océan, Département de Biologie and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec (QC) G1 V 0A6, Canada d INRA UMR1319, AgroParisTech, Micalis, Bimlip, Bât. CBAI, BP 01, 78850 Thiverval-Grignon, France e Biozentrum Köln, Botanisches Institut, Universität zu Köln, Zülpicher Str. 47b, 50674 Köln, Germany Submitted December 4, 2011; Accepted June 18, 2013 Monitoring Editor: David Moreira Coastal marine waters in many regions worldwide support abundant populations of extremely small (1-3 m diameter) unicellular eukaryotic green algae, dominant taxa including several species in the class Mamiellophyceae. Their diminutive size conceals surprising levels of genetic diversity and defies classical species’ descriptions. We present a detailed analysis within the genus Ostreococcus and show that morphological characteristics cannot be used to describe diversity within this group. Karyotypic analyses of the best-characterized species O. tauri show it to carry two chromosomes that vary in size between individual clonal lines, probably an evolutionarily ancient feature that emerged before species’ divergences within the Mamiellales. -
Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes
Current Biology 21, 328–333, February 22, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.01.037 Report Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes Cheong Xin Chan,1,5 Eun Chan Yang,2,5 Titas Banerjee,1 sequences in our local database, in which we included the Hwan Su Yoon,2,* Patrick T. Martone,3 Jose´ M. Estevez,4 23,961 predicted proteins from C. tuberculosum (see Table and Debashish Bhattacharya1,* S1 available online). Of these hits, 9,822 proteins (72.1%, 1Department of Ecology, Evolution, and Natural Resources including many P. cruentum paralogs) were present in C. tuber- and Institute of Marine and Coastal Sciences, Rutgers culosum and/or other red algae, 6,392 (46.9%) were shared University, New Brunswick, NJ 08901, USA with C. merolae, and 1,609 were found only in red algae. A total 2Bigelow Laboratory for Ocean Sciences, West Boothbay of 1,409 proteins had hits only to red algae and one other Harbor, ME 04575, USA phylum. Using this repertoire, we adopted a simplified recip- 3Department of Botany, University of British Columbia, 6270 rocal BLAST best-hits approach to study the pattern of exclu- University Boulevard, Vancouver, BC V6T 1Z4, Canada sive gene sharing between red algae and other phyla (see 4Instituto de Fisiologı´a, Biologı´a Molecular y Neurociencias Experimental Procedures). We found that 644 proteins showed (IFIBYNE UBA-CONICET), Facultad de Ciencias Exactas y evidence of exclusive gene sharing with red algae. Of these, Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, 145 (23%) were found only in red + green algae (hereafter, Argentina RG) and 139 (22%) only in red + Alveolata (Figure 1A). -
Is Chloroplastic Class IIA Aldolase a Marine Enzyme&Quest;
The ISME Journal (2016) 10, 2767–2772 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismej SHORT COMMUNICATION Is chloroplastic class IIA aldolase a marine enzyme? Hitoshi Miyasaka1, Takeru Ogata1, Satoshi Tanaka2, Takeshi Ohama3, Sanae Kano4, Fujiwara Kazuhiro4,7, Shuhei Hayashi1, Shinjiro Yamamoto1, Hiro Takahashi5, Hideyuki Matsuura6 and Kazumasa Hirata6 1Department of Applied Life Science, Sojo University, Kumamoto, Japan; 2The Kansai Electric Power Co., Environmental Research Center, Keihanna-Plaza, Kyoto, Japan; 3School of Environmental Science and Engineering, Kochi University of Technology, Kochi, Japan; 4Chugai Technos Corporation, Hiroshima, Japan; 5Graduate School of Horticulture, Faculty of Horticulture, Chiba University, Chiba, Japan and 6Environmental Biotechnology Laboratory, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan Expressed sequence tag analyses revealed that two marine Chlorophyceae green algae, Chlamydo- monas sp. W80 and Chlamydomonas sp. HS5, contain genes coding for chloroplastic class IIA aldolase (fructose-1, 6-bisphosphate aldolase: FBA). These genes show robust monophyly with those of the marine Prasinophyceae algae genera Micromonas, Ostreococcus and Bathycoccus, indicating that the acquisition of this gene through horizontal gene transfer by an ancestor of the green algal lineage occurred prior to the divergence of the core chlorophytes (Chlorophyceae and Treboux- iophyceae) and the prasinophytes. The absence of this gene in some freshwater chlorophytes, such as Chlamydomonas reinhardtii, Volvox carteri, Chlorella vulgaris, Chlorella variabilis and Coccomyxa subellipsoidea, can therefore be explained by the loss of this gene somewhere in the evolutionary process. Our survey on the distribution of this gene in genomic and transcriptome databases suggests that this gene occurs almost exclusively in marine algae, with a few exceptions, and as such, we propose that chloroplastic class IIA FBA is a marine environment-adapted enzyme. -
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B
Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin To cite this version: Gabriel A.B. Marais, Bérénice Batut, Vincent Daubin. Genome Evolution: Mutation Is the Main Driver of Genome Size in Prokaryotes. Current Biology - CB, Elsevier, 2020, 30 (19), pp.R1083- R1085. 10.1016/j.cub.2020.07.093. hal-03066151 HAL Id: hal-03066151 https://hal.archives-ouvertes.fr/hal-03066151 Submitted on 15 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DISPATCH Genome Evolution: Mutation is the Main Driver of Genome Size in Prokaryotes Gabriel A.B. Marais1, Bérénice Batut2, and Vincent Daubin1 1Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F- 69622 Villeurbanne, France 2Albert-Ludwigs-University Freiburg, Department of Computer Science, 79110 Freiburg, Germany Summary Despite intense research on genome architecture since the 2000’s, genome-size evolution in prokaryotes has remained puzzling. Using a phylogenetic approach, a new study found that increased mutation rate is associated with gene loss and reduced genome size in prokaryotes. In 2003 [1] and later in 2007 in his book “The Origins of Genome Architecture” [2], Lynch developed his influential theory that a genome’s complexity, represented by its size, is primarily the result of genetic drift. -
Evolution of Genome Size
Evolution of Genome Advanced article Article Contents Size • Introduction • How Much Variation Is There? Stephen I Wright, Department of Ecology and Evolutionary Biology, University • What Types of DNA Drive Genome Size of Toronto, Toronto, Ontario, Canada Variation? • Neutral Model • Nearly Neutral Model • Adaptive Hypotheses • Transposable Element Evolution • Conclusion • Acknowledgements Online posting date: 16th January 2017 The size of the genome represents one of the most in the last century. While considerable progress has been made strikingly variable yet poorly understood traits in the characterisation of the extent of genome size variation, in eukaryotic organisms. Genomic comparisons the dominant evolutionary processes driving genome size evolu- suggest that most properties of genomes tend tion remain subject to considerable debate. Large-scale genome sequencing is enabling new insights into both the proximate to increase with genome size, but the fraction causes and evolutionary forces governing genome size differ- of the genome that comprises transposable ele- ences. ments (TEs) and other repetitive elements tends to increase disproportionately. Neutral, nearly neutral and adaptive models for the evolution of How Much Variation Is There? genome size have been proposed, but strong evi- dence for the general importance of any of these Because determining the amount of DNA (deoxyribonucleic models remains lacking, and improved under- acid) in a cell has been much more straightforward and cheaper standing of factors driving the -
Best Practices for Whole Genome Sequencing Using the Sequel System
Best Practices for Whole Genome Sequencing Using the Sequel System Justin Blethrow, Nick Sisneros, Shreyasee Chakraborty, Sarah Kingan, Richard Hall, Joan Wilson, Christine Lambert, Kevin Eng, Emily Hatas and Primo Baybayan PacBio, 1305 O’Brien Dr., Menlo Park, CA 94025 Library Construction Abstract Recommendations Data Analysis Plant and animal whole genome sequencing has proven to Recommended Shearing Devices for Large-insert Fragments Hierarchical Genome Assembly Process (HGAP) and Polishing be challenging, particularly due to genome size, high For shearing DNA, PacBio recommends either: 1) needle shearing with a 26 G needle, which density of repetitive elements and heterozygosity. The allows for flexibility in number of shearing pulses with the needle or 2) the Megaruptor, a simple, Sequel System delivers long reads, high consensus automated, and highly reproducible system to fragment DNA up to 75 kb. accuracy and uniform coverage, enabling more complete, accurate, and contiguous assemblies of these large complex genomes. The latest Sequel chemistry increases yield up to 8 Gb per SMRT Cell for long insert libraries >20 kb and up to 10 Gb per SMRT Cell for libraries >40 kb. In addition, the recently released SMRTbell Express Megaruptor® DNA Shearing System Template Prep Kit reduces the time (~3 hours) and DNA Demonstration of Needle Shearing input (~3 µg), making the workflow easy to use for multi- SMRT Cell projects. 1 2 3 4 5 Here, we recommend the best practices for whole genome HGAP1 utilizes all PacBio data using the longest reads for contiguity and all reads to sequencing and de novo assembly of complex plant and generate high-quality de novo assemblies with high consensus accuracy (>QV50). -
Decoding Non-Coding DNA: Trash Or Treasure?
GENERAL ARTICLE Decoding Non-Coding DNA: Trash or Treasure? Namrata Iyer Non-coding DNA, once thought of as ‘junk’, represents a very large portion of an organism’s genome. However, recent research has brought to light many functional elements present within non-coding DNA sequences and unravelled a fascinat- ing array of functions performed by these elements. These findings have highlighted the nature of the evolutionary forces that led to the accumulation and retention of non-coding Namrata Iyer is a PhD DNA. In this article, the various elements present within non- student in the Department of Microbiology and Cell coding DNA, their functional relevance to the cell and the Biology, Indian Institute of changing perspective of the scientific community towards this Science, Bangalore. Her so-called ‘junk’ DNA have been described. research interest is the molecular basis of host– Since the dawn of time, man has always been plagued by the pathogen interactions in question of the origin of life. What are the forces that govern the human diseases. course of evolution? What are the elements that separate man from other forms of life? The discovery of DNA (deoxyribo- nucleic acid) as the genetic material in 1944 opened up new avenues to answer these questions. Surprisingly, the language of DNA comprises of only 4 letters, i.e., A,T,G,C which when read in groups of three (triplets) encode the information for the synthe- sis of proteins (by a process known as translation) which are the work-horses of a cell. Before translation can begin, the informa- tion on DNA is first copied into an intermediate known as mRNA (by a process known as transcription). -
Simplified Transformation of Ostreococcus Tauri Using
G C A T T A C G G C A T genes Technical Note Simplified Transformation of Ostreococcus tauri Using Polyethylene Glycol Frédéric Sanchez 1, Solène Geffroy 2, Manon Norest 1, Sheree Yau 1, Hervé Moreau 1 and Nigel Grimsley 1,* 1 CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France; [email protected] (F.S.); [email protected] (M.N.); [email protected] (S.Y.); [email protected] (H.M.) 2 IFREMER, Centre Atlantique, 44331 Nantes CEDEX 03, France; solene.geff[email protected] * Correspondence: [email protected] Received: 15 March 2019; Accepted: 21 May 2019; Published: 26 May 2019 Abstract: Ostreococcus tauri is an easily cultured representative of unicellular algae (class Mamiellophyceae) that abound in oceans worldwide. Eight complete 13–22 Mb genomes of phylogenetically divergent species within this class are available, and their DNA sequences are nearly always present in metagenomic data produced from marine samples. Here we describe a simplified and robust transformation protocol for the smallest of these algae (O. tauri). Polyethylene glycol (PEG) treatment was much more efficient than the previously described electroporation protocol. Short (2 min or less) incubation times in PEG gave >104 transformants per microgram DNA. The time of cell recovery after transformation could be reduced to a few hours, permitting the experiment to be done in a day rather than overnight as used in previous protocols. DNA was randomly inserted in the O. tauri genome. In our hands PEG was 20–40-fold more efficient than electroporation for the transformation of O. -
Genome Complexity in a Lean, Mean Photosynthetic Machine
COMMENTARY Genome complexity in a lean, mean photosynthetic machine John M. Archibald* Canadian Institute for Advanced Research, Program in Evolutionary Biology, and Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, Canada B3H 1X5 hotosynthetic organisms come in et al. (1) weighs in at 12.56 Mbp, mak- all shapes and sizes. From a hu- ing it among the smallest, although not man perspective, the trees and the smallest, nuclear genome of a free- plants of dry land are the most living eukaryote characterized thus far Pconspicuous examples, but the next time [that honor belongs to the 9.2-Mbp ge- you admire a colorful tulip or marvel at nome of the fungus Ashbya gossypii the girth of a giant Sequoia, consider (14)]. The O. tauri genome is composed the following: Approximately half of the of 20 linear chromosomes between 1.07 oxygen we breathe is generated by single- and 0.16 Mbp (1) and, given its small celled photosynthesizers, phytoplankton, size, is remarkable in the number of adrift in the world’s oceans, invisible to genes it encodes: 8,166 protein-coding the naked eye and unfathomably large genes are predicted (6,265 by similarity in number, quietly harnessing solar en- to known genes), far more than in the ergy, fixing carbon dioxide, and produc- Ϸ16-Mbp genome of the red alga Cyan- ing oxygen by the bucket-load. In this idioschyzon merolae (5,331 genes) (15) issue of PNAS, Derelle et al. (1) present or in the Ϸ12-Mbp genome of the labo- the complete genome sequence of the ratory yeast Saccharomyces cerevisiae smallest of the small eukaryotic (nucle- (6,563 genes) (16). -
Genome Analysis and Its Significance in Four Unicellular Algae
J Plant Res (2008) 121:3–17 DOI 10.1007/s10265-007-0133-9 INVITED ARTICLE Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana Osami Misumi Æ Yamato Yoshida Æ Keiji Nishida Æ Takayuki Fujiwara Æ Takayuki Sakajiri Æ Syunsuke Hirooka Æ Yoshiki Nishimura Æ Tsuneyoshi Kuroiwa Received: 5 October 2007 / Accepted: 30 October 2007 / Published online: 12 December 2007 Ó The Botanical Society of Japan and Springer 2007 Abstract Algae play a more important role than land In particular, examples of post-genome studies of organelle plants in the maintenance of the global environment and multiplication in C. merolae based on analyzed genome productivity. Progress in genome analyses of these organ- information are presented. isms means that we can now obtain information on algal genomes, global annotation and gene expression. The full Keywords Algae Á Genome Á Organelle Á Metabolism Á genome information for several algae has already been Photosynthetic organisms analyzed. Whole genomes of the red alga Cyanidioshyzon merolae, the green algae Ostreococcus tauri and Chla- mydomonas reinhardtii, and the diatom Thalassiosira Introduction pseudonana have been sequenced. Genome composition and the features of cells among the four algae were com- Algae are a highly diverse group of organisms that live in a pared. Each alga maintains basic genes as photosynthetic variety of environments, such as in oceans, in fresh water, eukaryotes and possesses additional gene groups to repre- in the soil, on ice, on rock, and so on. This characteristic sent their particular characteristics. This review discusses makes algae very suitable for studies concerning the and introduces the latest research that makes the best use of adaptation of organisms to different environments, and it the particular features of each organism and the signifi- provides the possibility of finding novel genes related to cance of genome analysis to study biological phenomena. -
How Much Non-Coding DNA?
ARTICLE IN PRESS Journal of Theoretical Biology 252 (2008) 587–592 www.elsevier.com/locate/yjtbi How much non-coding DNA do eukaryotes require? Sebastian E. Ahnerta,c,Ã, Thomas M.A. Finkb, Andrei Zinovyeva aInstitut Curie, Bioinformatics, 26 rue d’Ulm, Paris 75248, France bInstitut Curie, CNRS UMR 144, 26 rue d’Ulm, Paris 75248, France cTheory of Condensed Matter, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK Received 13 May 2007; received in revised form 5 February 2008; accepted 5 February 2008 Available online 14 February 2008 Abstract Despite tremendous advances in the field of genomics, the amount and function of the large non-coding part of the genome in higher organisms remains poorly understood. Here we report an observation, made for 37 fully sequenced eukaryotic genomes, which indicates that eukaryotes require a certain minimum amount of non-coding DNA (ncDNA). This minimum increases quadratically with the amount of DNA located in exons. Based on a simple model of the growth of regulatory networks, we derive a theoretical prediction of the required quantity of ncDNA and find it to be in excellent agreement with the data. The amount of additional ncDNA (in basepairs) which eukaryotes require obeys N 1/2 (N /N ) (N N ), where N is the amount of exonic DNA, and N is a constant of about DEF ¼ C P CÀ P C P 10 Mb. This value NDEF corresponds to a few percent of the genome in Homo sapiens and other mammals, and up to half the genome in simpler eukaryotes. Thus, our findings confirm that eukaryotic life depends on a substantial fraction of ncDNA and also make a prediction of the size of this fraction, which matches the data closely. -
Primer on Molecular Genetics
DOE Human Genome Program Primer on Molecular Genetics Date Published: June 1992 U.S. Department of Energy Office of Energy Research Office of Health and Environmental Research Washington, DC 20585 The "Primer on Molecular Genetics" is taken from the June 1992 DOE Human Genome 1991-92 Program Report. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. Human Genome Management Information System Oak Ridge National Laboratory 1060 Commerce Park Oak Ridge, TN 37830 Voice: 865/576-6669 Fax: 865/574-9888 E-mail: [email protected] 2 Contents Primer on Molecular Introduction ............................................................................................................. 5 Genetics DNA............................................................................................................................... 6 Genes............................................................................................................................ 7 Revised and expanded Chromosomes ............................................................................................................... 8 by Denise Casey (HGMIS) from the Mapping and Sequencing the Human Genome ...................................... 10 primer contributed by Charles Cantor and Mapping Strategies ..................................................................................................... 11 Sylvia Spengler Genetic Linkage Maps ...........................................................................................