Chris Hardwick's Rubik's Cube Page 3/11/11 5:56 PM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
002-Contents.Pdf
CubeRoot Contents Contents Contents Purple denotes upcoming contents. 1 Preface 2 Signatures of Top Cubers in the World 3 Quotes 4 Photo Albums 5 Getting Started 5.1 Cube History 5.2 WCA Events 5.3 WCA Notation 5.4 WCA Competition Tutorial 5.5 Tips to Cubers 6 Rubik's Cube 6.1 Beginner 6.1.1 LBL Method (Layer-By-Layer) 6.1.2 Finger and Toe Tricks 6.1.3 Optimizing LBL Method 6.1.4 4LLL Algorithms 6.2 Intermediate 进阶 6.2.1 Triggers 6.2.2 How to Get Faster 6.2.3 Practice Tips 6.2.4 CN (Color Neutrality) 6.2.5 Lookahead 6.2.6 CFOP Algorithms 6.2.7 Solve Critiques 3x3 - 12.20 Ao5 6.2.8 Solve Critiques 3x3 - 13.99 Ao5 6.2.9 Cross Algorithms 6.2.10 Xcross Examples 6.2.11 F2L Algorithms 6.2.12 F2L Techniques 6.2.13 Multi-Angle F2L Algorithms 6.2.14 Non-Standard F2L Algorithms 6.2.15 OLL Algorithms, Finger Tricks and Recognition 6.2.16 PLL Algorithms and Finger Tricks 6.2.17 CP Look Ahead 6.2.18 Two-Sided PLL Recognition 6.2.19 Pre-AUF CubeRoot Contents Contents 7 Speedcubing Advice 7.1 How To Get Faster 7.2 Competition Performance 7.3 Cube Maintenance 8 Speedcubing Thoughts 8.1 Speedcubing Limit 8.2 2018 Plans, Goals and Predictions 8.3 2019 Plans, Goals and Predictions 8.4 Interviewing Feliks Zemdegs on 3.47 3x3 WR Single 9 Advanced - Last Slot and Last Layer 9.1 COLL Algorithms 9.2 CxLL Recognition 9.3 Useful OLLCP Algorithms 9.4 WV Algorithms 9.5 Easy VLS Algorithms 9.6 BLE Algorithms 9.7 Easy CLS Algorithms 9.8 Easy EOLS Algorithms 9.9 VHLS Algorithms 9.10 Easy OLS Algorithms 9.11 ZBLL Algorithms 9.12 ELL Algorithms 9.13 Useful 1LLL Algorithms -
Benchmarking Beginner Algorithms for Rubik's Cube
DEGREE PROJECT, IN COMPUTER SCIENCE , FIRST LEVEL STOCKHOLM, SWEDEN 2015 Benchmarking Beginner Algorithms for Rubik's cube ANDREAS NILSSON, ANTON SPÅNG KTH ROYAL INSTITUTE OF TECHNOLOGY CSC SCHOOL Supervisor: Michael Schliephake Examiner: Örjan Ekeberg Abstract Over the years different algorithms have been developed to step-by-step solve parts of the Rubik’s cube until fi- nally reaching the unique solution. This thesis explores two commonly known beginner algorithms for solving Rubik’s cube to find how they differ in solving speed and amount of moves. The algorithms were implemented and run on a large amount of scrambled cubes to collect data. The re- sults showed that Layer-by-layer with daisy algorithm had a lower average amount of moves than the Dedmore al- gorithm. The main difference in amount of moves lies in the steps that solve the last layer of the cube. The Layer- by-layer with daisy algorithm uses only one-seventh of the time-consuming operations that Dedmore algorithm uses, which concludes that it is more suitable for speedcubing. Sammanfattning Över åren har ett antal olika algoritmer utvecklats för att steg-för-steg lösa delar av Rubik’s kub för att till sist kom- ma fram till den unika lösningen. Denna rapport utforskar två allmänt kända nybörjaralgoritmer för att lösa Rubik’s kub, för att finna hur dem skiljer sig åt i tid samt antal operationer för att nå lösningen. Algoritmerna implemen- terades och kördes på ett stort antal blandade kuber för att samla data. Resultatet visar att Lager-för-lager med daisy algoritmen hade ett lägre genomsnittligt antal förflyttning- ar jämfört med Dedmore algoritmen. -
Breaking an Old Code -And Beating It to Pieces
Breaking an Old Code -And beating it to pieces Daniel Vu - 1 - Table of Contents About the Author................................................ - 4 - Notation ............................................................... - 5 - Time for Some Cube Math........................................................................... Error! Bookmark not defined. Layer By Layer Method................................... - 10 - Step One- Cross .................................................................................................................................. - 10 - Step Two- Solving the White Corners ................................................................................................. - 11 - Step Three- Solving the Middle Layer................................................................................................. - 11 - Step Four- Orient the Yellow Edges.................................................................................................... - 12 - Step Five- Corner Orientation ............................................................................................................ - 12 - Step Six- Corner Permutation ............................................................................................................. - 13 - Step Seven- Edge Permutation............................................................................................................ - 14 - The Petrus Method........................................... - 17 - Step One- Creating the 2x2x2 Block .................................................................................................. -
How to Solve the Rubik's Cube 03/11/2007 05:07 PM
How to Solve the Rubik's Cube 03/11/2007 05:07 PM Rubik's Revolution Rubik's Cubes & Puzzles Rubik Cube Boston's Wig Store Everything you wanted to know Rubiks Cube 4x4, Keychain & Huge selection of Rubik Cube Great selection & service Serving about the all new electronic Twist In Stock Now-Free Shipping items. the Boston area Rubik’s cube Over $75 eBay.com www.mayswigs.com www.rubiksrevolution.com AwesomeAvenue.biz Ads by Goooooogle Advertise on this site How to Solve the Rubik's Cube This page is featured under Recreation:Games:Puzzles:Rubik's Cube:Solutions in Yahoo! My Home Page | My Blog | My NHL Shootout Stats 2006-2007 There are three translations of this page: Danish (Dansk) (Word Document), Japanese (日本語) (HTML) and Portuguese (Português) (HTML). If you want to translate this page, go ahead. Send me an email when you are done and I will add your translation to this list. So you have a Rubik's Cube, and you've played with it and stared at it and taken it apart...need I go on any further? The following are two complete, fool-proof solutions to solving the cube from absolutely any legal position. Credit goes not to me, but to David Singmaster, who wrote a book in 1980, Notes on Rubik's Magic Cube, which explains pretty much all of what you need to know, plus more. Singmaster wrote about all of these moves except the move for Step 2, which I discovered independently (along with many other people, no doubt). I've updated this page to include a second solution to the cube. -
Rubik's Cube Solutions
Rubik’s Cube Solutions Rubik’s Cube Solution – Useful Links http://www.geocities.com/jaapsch/puzzles/theory.htm http://www.ryanheise.com/cube/ http://peter.stillhq.com/jasmine/rubikscubesolution.html http://en.wikibooks.org/wiki/How_to_solve_the_Rubik's_Cube http://www.rubiks.com/World/~/media/Files/Solution_book_LOW_RES.ashx http://helm.lu/cube/MarshallPhilipp/index.htm Rubik’s Cube in a Scrambled State Rubik’s Cube in a Solved State – CubeTwister Front: Red, Right: Yellow, Up: Blue Back: Orange, Down: Green, Left: White Cube Colors: Red opposed to Orange, Yellow opposed to White, Blue opposed to Green Rubik’s Cube Solutions 06.12.2008 http://www.mementoslangues.fr/ Rubik’s Cube Commutators and Conjugates Introduction A Commutator is an algorithm of the form X Y X' Y', and a conjugate is an algorithm of the form X Y X', where X and Y denote arbitrary algorithms on a puzzle, and X', Y' denote their respective inverses. They are formal versions of the simple, intuitive idea of "do something to set up another task which does something useful, and undo the setup." Commutators can be used to generate algorithms that only modify specific portions of a cube, and are intuitively derivable. Many puzzle solutions are heavily or fully based on commutators. Commutator and Conjugate Notation [X, Y] is a commonly used notation to represent the sequence X Y X' Y'. [X: Y] is a well-accepted representation of the conjugate X Y X'. Since commutators and conjugates are often nested together, Lucas Garron has proposed the following system for compact notation: Brackets denote an entire algorithm, and within these, the comma delimits a commutator, and a colon or a semicolon a conjugate. -
The Cubing Community Megasurvey 2021 Acknowledgements
THE CUBING COMMUNITY MEGASURVEY 2021 ACKNOWLEDGEMENTS This work follows in the footsteps of the r/Cubers tradition of yearly Megasurveys, of which this is the fifth instalment. For the first time we've been able to integrate the responses and experience of our colleagues from China, whose communities do not always have access to the same online spaces. We're happy to present the results of this survey as a whole, reuniting these two big communities The following people contributed to this project: You guys were awesome, The r/Cubers mods: have been running the survey for the • welcoming and super supportive past 5 years, wrote and managed the bulk of it and proofread this during the whole analysis process! whole monster of a document. Thank you naliuj, gilzu, stewy, greencrossonleft, topppits, g253, pianocube93 and leinadium! It's been a blast discussing with you, Ruimin Yan / CubeRoot : provided great ideas for the • getting your ideas and seeing you recruit survey, helped coordinate between the east and the west, a thousand people in a matter of days! leveraged his online standing and following to gather all respondents across China and re-translated most this document • Justin Yang: translated the survey into mandarin and helped You have no excuse for speaking re-translate answers during the re-combination and cleanup flawless french (on top of all phase your other languages) at your ridiculously young age! About the author of this document: Basilio Noris is an older cuber, who has spent the past 15 years working on understanding and measuring human behaviour. He spends way too much time playing with data and looking for ways in which to present it. -
WCA Regulations and Guidelines WCA Regulations Committee
WCA Regulations and Guidelines WCA Regulations Committee Règlement WCA Version : 1 Janvier 2018 [wca-regulations-translations:886ca87] Notes Traduction La traduction de ce document a été réalisée par Philippe Virouleau et mise à jour en 2018 par Jules Desjardin, et s'appuie sur les précédents travaux de Guillaume Erbibou, Pierre Calendini, et Gilles Roux. Des efforts sont faits pour que cette traduction soit constamment à jour, elle n'a rien d'officielle bien que présente sur le site officiel de la WCA. Elle est fournie à titre informatif : seule la version anglaise fait foi en cas de différence. Règlement et Recommandations WCA Le Règlement WCA contient l'ensemble des règles qui s'appliquent lors de toutes les compétitions officielles reconnues par la World Cube Association. Le Règlement WCA est également complémenté par les Recommandations WCA. Le Règlement devrait être considéré comme un document complet, mais les Recommandations contiennent des informations et explications additionnelles. Formulation L'utilisation du genre masculin a été adoptée afin de faciliter la lecture. Elle n'a aucune intention discriminatoire. L'utilisation des mots "doit", "ne doit pas", "devrait", "ne devrait pas", et "peut" correspondent respectivement aux mots "must", "must not", "should", "should not", et "may" tels que définis dans le RFC 2119. Informations sur internet Site internet de la World Cube Association : www.worldcubeassociation.org. Documents originaux du Règlement WCA : www.worldcubeassociation.org/regulations. Règlement WCA au format PDF. Sources Le développement du Règlement et des Recommandations est public sur GitHub. Le développement des traductions est public sur GitHub. La traduction française est maintenue dans ce dépôt. -
Full Beacher
THE TM 911 Franklin Street Weekly Newspaper Michigan City, IN 46360 Volume 36, Number 33 Thursday, August 20, 2020 An Artist’s Voice Takes Flight by Linda Weigel Editor’s note — This is the latest in an ongoing series that profi les women artists in the region. “In order to see birds it is necessary to become a part of the silence.” Robert Lynd Kristina Knowski knows how to be- come a part of the silence. As an avid birdwatcher and stunning illustrator of birds, she exudes a special joy when dis- cussing her love of being in the fi eld and the challenge of identifying species, es- pecially in the Michiana region. Born in Justice, Ill., she spent most of her childhood in Joliet. She was always interested in art, a sketchbook by her side. Interested in attending art school, she took summer classes at various col- leges while still in middle and high school. “I would always ask for new sketch- books for my birthday,” she said, “as I went from going through one book a year to two, to three, etc.” She didn’t start painting until high school. “Completed works” during her childhood primarily consisted of colored pencil or rendered graphite. “I had a lot of trouble completing a project,” she said, “as I tend to be a per- fectionist, and I feel like I needed to redo a halfway completed work. I had to get over that barrier in college.” She attended Joliet Junior College, Western Illinois University and the American Academy of Art during sum- mers off from school. -
Rubik's Cube Study
Rubik’s Cube Study Hwa Chong Institution (High School) Project Work 2020 - Category 8 (Mathematics) Written Report Group 8-21 1A1 - Alastair Chua Wei Jie (1) - Leader 1P2 - John Pan Zhenda (11) - Member 1P2 - Li Junle Tristen (16) - Member 1 Contents 1.0 Introduction 3 1.1 Rationale 3 1.2 Research Questions 3 2.0 Mechanics 3 2.0.1 Orientation of Colours 4 2.1 Notations 4 2.2 Intended Methodology 5 3.0 Literature Review 5 3.0.1 History of Rubik’s Cube 6 3.1 Background 7 4.0 Findings 8 4.1 Factors Affecting Speedcubing 8 4.2 Discovery of God’s Number 9 4.3 Formation of Algorithms 11 5.0 Conclusions 12 6.0 Possibility of Project Extension 13 7.0 References 13 2 1.0 Introduction The Rubik’s Cube has been a very well-known toy for several years, challenging for most, but a piece of cake for the intelligent few. As of January 2009, 350 million cubes had been sold worldwide, thus widely regarded as the world’s best selling toy. It is a 3D combination puzzle invented in 1974, by Ernö Rubik. 1.1 Rationale The Rubik’s Cube is not only a three-dimensional puzzle to toy with for fun, but also a source of mathematical concepts and calculations. Through this project, we intend to learn more about the mechanics of the Rubik’s Cube, and get more in-depth knowledge about how it works and the mathematics behind it. We also aim to discover more about the different types of cubes, including studying their mechanisms and algorithms. -
The Interpretation of Sustainability Criteria Using Game Theory Models (Sustainable Project Development with Rubik’S Cube Solution)
The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) The Interpretation of Sustainability Criteria using Game Theory Models (Sustainable Project Development with Rubik’s Cube Solution) DR. CSABA FOGARASSY Budapest, 2014 Reviewers: Prof. István Szűcs DSc., Prof. Sándor Molnár PhD. L’Harmattan France 7 rue de l’Ecole Polytechnique 75005 Paris T.: 33.1.40.46.79.20 L’Harmattan Italia SRL Via Bava, 37 10124 Torino–Italia T./F.: 011.817.13.88 © Fogarassy Csaba, 2014 © L’Harmattan Kiadó, 2014 ISBN 978-963-236-789-7 Responsible publiser: Ádám Gyenes L’Harmattan Liberary Párbeszéd könyvesbolt 1053 Budapest, Kossuth L. u. 14–16. 1085 Budapest, Horánszky u. 20. Phone: +36-1-267-5979 www.konyveslap.hu [email protected] www.harmattan.hu Cover: RICHÁRD NAGY – CO&CO Ltd. Printing: Robinco Ltd. Executive director: Péter Kecskeméthy I dedicate this book to the memory of my cousin, IT specialist and physicist Tamás Fogarassy (1968-2013) Table of contents ABSTRACT. 11 1. INTERPRETATION OF SUSTAINABILITY WITH BASIC GAME THEORY MODELS AND RUBIK’S CUBE SYMBOLISM. 14 1.1. SUSTAINABILITY DILEMMAS, AND QUESTIONS OF TOLERANCE. 14 . 14 1.1.2. Ecologic economy versus enviro-economy �������������������������������������������������������������������������������������������17 1.1.1. Definition of strong and weak sustainability 1.1.3. Relations between total economic value and sustainable economic value . 17 1.2. THEORY OF NON-COOPERATIVE GAMES . 19 1.2.1. Search for points of equilibrium in non-cooperative games ����������������������������������������������������������20 . 23 ����26 1.2.2. Theoretical correspondences of finite games 1.2.3.1. Games with a single point of equilibrium . -
Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM
Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM This page is for people who are interested in the Rubik's Cube, and other Rubik's puzzles. I've been interested in the Cube and other puzzles since June of 1998 and I still love doing them. I enjoy speed solving for all my puzzles, especially the Rubik's Cube. If you enjoy the cube or other Rubik-like puzzles then I invite you to browse my site. I hope you enjoy it. Left to right: Ian Winokur, myself, Raul Garcia: cubing in central park Rubik's Cube World Competition 2003 25th Anniversary of the cube Click here to read about the 2003 Rubik's Games World Championships United States Rubik's Cube Championships 2004 Click here to read about the 2004 United States Rubik's Games Championships November 2005: Cubing with Dan Knights Read about it here My officially recognized national records in Speedcubing and Sport Stacking You can see all my competition results at WCA sanctioned tournaments here. See the speedcubing.com main site Videos: Sport stacking video Me performing the cycle in 10.23 seconds. http://www.speedcubing.com/chris/ Page 1 of 10 Chris Hardwick's Rubik's Cube Page 07/16/2007 01:13 AM 3x3x3 solved blindfolded in 18.50 seconds I took approximately 1 hour and 54 minutes to memorize the cube and plan through my entire solution. I was then able to solve it in 18.50 seconds while blindfolded. I did not do any moves on the cube during the planning phase. -
Karisma Bayu Cipta Wijaya-150210101014.Pdf
DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI Oleh Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN JUDUL PENGEMBANGAN ALGORITMA PENYELESAIAN RUBIK STANDAR DALAM BENTUK GRAF BERARAH SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program Studi Pendidikan Matematika (S1) dan mencapai gelar Sarjana Pendidikan Oleh: Karisma Bayu Cipta Wijaya NIM 150210101014 PROGRAM STUDI PENDIDIKAN MATEMATIKA JURUSAN PENDIDIKAN MIPA FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS JEMBER 2019 ii DigitalDigital RepositoryRepository UniversitasUniversitas JemberJember HALAMAN PERSEMBAHAN Puji syukur kehadirat Allah SWT atas segala rahmat dan karunia-Nya, sehingga skripsi ini dapat terselesaikan. Skripsi ini saya persembahkan kepada: 1. Kedua orangtua saya yang tercinta, terima kasih untuk dukungan, motivasi, doa serta kasih sayang yang tidak pernah pudar; 2. Kakak dan adikku, serta keluarga besar bapak dan ibuku, terima kasih atas motivasi dan doa untuk saya selama ini; 3. Bapak dan Ibu Dosen Pendidikan Matematika yang telah membagikan ilmu dan pengalamannya; 4. Bapak dan Ibu Guru SDN Kepatihan 1 Jember, SMPN 2 Jember, dan SMAN 2 Jember yang telah mencurahkan ilmu, bimbingan, dan kasih sayangnya dengan tulus ikhlas; 5. Almamaterku tercinta Universitas Jember, khususnya Program Studi Pendidikan Matematika, Fakultas Keguruan dan Ilmu Pendidikan (FKIP). 6. Sahabat-sahabatku (Ida Ulan Asih, Kevin Dwi Wicaksono, Inggil Ismiharto, M. Taufik Hidayat, Lendi Ike Hermawan, Dodi Pratama, Kukuh Sahrianto, Yuris Mimbadri, Dwita Sari Oktavia, Rosalia Indah, Moch Yusup Ade, Keluarga Besar Logaritma, Keluarga Besar Paranada dan teman-teman yang selalu mendukung saya).